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Abstract. We give a constructive proof of the fact that any  Mar- 
c 

kov state (even non-homogeneous) on &Iz M,, is diagonalizable. 
However, due to the focal entanglement effects, thky are not necessarily 
of Ising type (Theorem 3.2). In addition, we prove that the underlying 
classical measure is Markov, and therefore, in the faithful case, it natu- 
rally defines a nearest neighbour Hamiltonian. In the translation in- 
variant case, we prove that the spectrum of the two-point block of this 
Hamiltonian, in some cases, uniquely determines the type of the von 
Neumann factor generated by the Markov state (Theorem 5.3). In 
particular, we prove that, if all the quotients of the differences of two 
such eigenvalues are rational, then this factor is of type 111, for some 
1~(0, I), and that, if this factor is of type III,, then these quotients 
cannot be all rational. We conjecture that the converses of these state- 
ments are also true. 
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1. INTRODUCTION 

It  is known that, in quantum statistical mechanics, concrete systems are 
identified with states on corresponding algebras. In many cases, the algebra is 
a quasi-local C*-algebra of observables. The states satisfying the Kubo-Mar- 
tin-Schwinger (KMS for short) boundary condition, as known, describe equilib- 
rium states of the quantum system under consideration. On the other hand, for 
classical systems with finite radius of interaction, limiting Gibbs measures are 
known to be Markov random fields; see e.g. [13], [20], [25]. In connection with 
this, it is natural to address the problem of constructing quantum analogues of 
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Markov chains, the last arising from quantum statistical mechanics, or 
quantum field theory in a natural way. This problem was firstly explored in [I] 
by introducing the quantum Markov chains on the algebra of quasi-local 
observables. In the last decades, the investigation of quantum Markov proces- 
ses had a considerable growth, in view of natural applications to quantum 
statistical mechanics, quantum field theory or quantum information theory as 
well. The reader is referred to [I], [3]-[g], [lO], [ld], and the references cited 
therein, for recent developments of the theory of quantum stochastic processes 
and their applications. 

The investigation of a particular class of quantum Markov chains, called 
quantum Markov states, was pursued in [3], [4], [6], [7], where connections 
with properties of the modular operator of the states under consideration were 
established. This provides natural applications to temperature states arising 
from suitable quantum spin models, that is natural connections with the KMS 
boundary condition. 

In [3], the most general one-dimensional quantum Markov state has been 
considered. Among the other results concerning the structure of such states, the 
connection with classes of local Hamiltonians satisfying certain commutation 
relations and quantum Markov states has been obtained. The situation arising 
from quantum Markov states on the one-dimensional ordered chain describes 
some models of statistical mechanics with mutually commuting nearest neigh- 
bour interactions. 

In the present paper, we clarify the meaning of diagonalizability of one- 
dimensional non-homogeneous quantum Markov states. Namely, in Section 3 
we prove that, for each Markov state q on the spin algebra 

there exist a suitable maximal Abelian subalgebra 9 c %Jl (called diagonal in 
the sequel), a Umegaki conditional expectation a: 9Ji H 9 and a Markov mea- 
sure p on spec (3) such that q = q,otE, the Markov state cp, being the state on 
9 arising from the measure This allows us also to clarify a question raised in 
Section 6 of [3], relative to the role played by the non-commuting boundary 
terms naturally arising from quantum Markov states, see Section 4 below. 

Diagonal Markov states were considered in [27]. In [18], the diagonaliza- 
bility of more general one-dimensional translation invariant quantum Markov 
states on the forward chain was proved, but not the Markovianity of the 
underlying classical measure. The proof in [la] of diagona1izabiIity depends on 
the commuting square condition (3.10) for the increasing sequence of Umegaki 
conditional expectations. The proof of (3.101, omitted in [IS], heavily depends 

Most of the states arising from Markov processes considered in [16J describe ground 
states (is. states at zero temperature) of certain models of quantum spin chains. 
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on the fine structure of the local expected subalgebras and the corresponding 
potentials, first investigated in detail in [3]. 

Section 5 of this paper is devoted to determine the type of the von Neu- 
mann factors arising from the GNS representation of the quantum Markov 
states. This is done by using the explicit form of the nearest neighbour Hamil- 
tonian associated with the quantum Markov state. We prove that the spectrum 
of the two-point block of this Hamiltonian, in some cases, uniquely determines 
the type of the von Neumann factor generated by the Markov state. In par- 
ticular, we prove that, if all the quotients of the differences of two such eigen- 
values are rational, then this factor is of type 111, for some A E (0, I), and that, if 
this factor is of type III,, then these quotients cannot be all rational. This 
classification result, in the form established in Theorem 5.3, is not known even 
for the Ising model, or for states arising from classical Markov chains, the last 
treated in some detail in Section 5. We conjecture that the converses of these 
statements are also true. At present, it is still an open problem. 

We end by noticing that in the literature there are many examples of 
diagonal liftings of Markov states on factorizable Abelian algebras, e.g, the 
Ising model. However, the states considered here are diagonal liftings of 
classical Markov processes on non-factorizable Abelian sub algebra^.^ Thus, 
they provide concrete constructive examples of a situation abstractly consid- 
ered in [31] .  

2. PRELIMINARIES 

We start with recalling some well-known facts about inclusions of finite- 
dimensional C*-algebras. 

Let N c M be an inclusion of finite-dimensional C*-algebras. Consider 
the finite sets {pi), ( q j )  of all the minimal central projections of M ,  N, respec- 
tively. We symbolically write 

Let us set Mi : = M,,, Nj : = Ngj, Mij : = MPiP1, Nij : = Npiqj. Then we have 
inclusions Nij c Mij of finite-dimensional factors. Hence 

(2.1) M~~ - ivij @ mij 
for other finite-dimensional factors Rij.3 

Other nontrivial quantum liftings of classical Markov chains are constructed and studied 
in [5 ] .  

The square root of the dimension of Nij is precisely the multiplicity of which the piece 
q j  N c N appears into the piece pi M c M. 
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Consider the canonical traces Tr, and Tr,, that is the traces which assign 
weight one to minimal projections. Notice that Tr, = TrM o E ,  where E is the 
conditional expectation of M onto xi.j qj (Pi M) qj given by 

Taking into account the identification (2.1) and the last considerations, 
one can write symbolically 

Furthermore, the completely positive (TrM, Tr,)-preserving linear map 
E p  of M onto N is given by 

Let cp be a positive functional on M ,  together with its restriction qh 
to N .  Consider the corresponding Radon-Nikodym derivatives T$ and 
Tf with respect to the canonical traces Try and TrN, respectively. We get 

The starting point of our analysis is the C*-infinite tensor product 

where for j~ Z 

(2.4) M j  = Md, (C). 

With abuse of the notation, we denote by the same symbols elements of 
local algebras and their canonical embeddings into bigger (local) algebras if this 
causes no confusion. For k < E, we denote by MLk,ll the local algebra relative to 
the segment [k, Z l  c Z .  Let Y (93) be the set of all states on 93. The restriction 
of a state V E  Y (W) to Mlk,8 Will be denoted by qwtl. 

Suppose we have an increasing sequence { N [ k , l l ) k ~ l  of local algebras such 
that 

Consider an increasing sequence of C*-algebras (D[k , l l )kgI ,  where DIkPll is maxi- 
mal Abelian in NIk,,]. 
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A diagonal algebra D c W is the Abelian C*-subalgebra of 9Jl obtained as 

C* 
9 : = (lim 

[ k , $ ~  

for Dik,ll and NIk,n as above. 
We deal only with locally faithful states (i.e. states on !Ui with faithful 

restrictions to local subalgebras) even if most of the forthcoming analysis 
applies to non-faithful states as well. For 9 E Y (m), locally faithful, the gene- 
ralized conditional expectation, or 9-expectation, &&: Mrk,[ + l1 H MIkpr1 is the 
completely positive rp-preserving linear map associated with the inclusion 

c M,,,+ defined in [2]. We refer the reader to that paper for the precise 
definition and further details about the Accardi-Cecchini generalized condi- 
tional expectation. 

3. DPAGQNALIZABTLITY OF MARKOV STATES 

Let cp E Y (!Dl) be a locally faithful state. 

DEFINITION 3.1. The state cp E Y (JZ) is said to be a Markov state if, for 
k, 1 EZ, k < 1, we have 

Quantum Markov states were firstly studied in [I] and [6] .  Among other 
potential applications, they are relevant in quantum statistical mechanics. The 
structure of quantum Markov states was intensively studied in [3] and [7], 
where most of their properties were understood. Here, we report some useful 
results relative to the structure of Markov states. We refer the reader to [3] for 
details and proofs. 

After taking the ergodic limit of the q-expectations and a decreasing 
martingale limit (131, Section 5), it is possible to recover a sequence ( ~ ? j } ~ ,  of 
transition expectations which are Umegaki conditional expectations 

such that 

for every k, 1 E Z with k < E ,  and Ak @ .. . @ A 1 -  Q AI any linear generator of 
M,,,,. Let {Pj,,),,,,, be the set of all minimal central projections of the range 
Rj = W (&j) of 8 j .  Put 

B j :  = P',,MjPLj and BIk,ll:= @ Bj.  
" J E ~ J  kdjdl 

13 - PAMS 24.2 
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Consider the conditional expectation ~ j :  Mj H Bj given by 

Define 

(3.2) E l k , l l  : = @ Ej .  
k S j S 1  

By (3.1), it is easy to show that 

q [ k . f l  = ' ? [ k , l ~ ~ ~ [ k , l ] -  

After the identification MjPi j  E P i l  MjPhj  (i.e. the reduced algebra MjpiJ 
acting on Pi,, Cdj), we have 

for finite-dimensional factors Nj,, and mi,. Thus, we can write 

(3.3) B[k,l] : = @ (NLk @ R k )  0 - -  ' @ (Nil @ mbz)' 
rnk,....a)t 

Consider the potentials (h,,,,I,)k,l obtained by the formula 

IP[k,ll = T r ~ [ k , l ]    ex^ (- h ~ [ k , z ] )  ')' 
Then h,,,,,, has the nice decomposition 

A .  . 
for selfadjoint elements hi, ,  hi , ,  hkj,, ,+ , localized in N&, N i j ,  Ni., O iV;;+ll 
respectively. After defining 

we fmd sequences of selfadjoint operators {Hi} jEZ,  ( f i j } p Z  localized in Mu,,, = Mjy  
and { H j , j +  localized in 11, respectively, satisfying the commutation 
relations 

such that 
1 - 1  

VS6)  h ~ [ k , j l  = ~ k  f x H j g j +  1 + f i  
j = k  

for each k < 1. 
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In Section 5 of [3] it is proved also the converse. Namely, if cp E Y (!Dl) is 
locally faithful, with potentials having the form (3.61, for addenda localized as 
above, and satisfying the commutation relations (3.5), then it is a Markov state. 

We are ready to prove the diagonafizability result for quantum Markov 
states. 

THEOREM 3.2. Let cp E Y (m) be a Markov state. Then there exist a diago- 
nal algebra 3 c W, a classical Markov process with Markov measure p on 
spec@) with respect to the same order localization of 2, and u Umegaki con- 
ditional expectation &: ' ~ U H  rD such that cp = cp,oE, where p, is the state on 
D corresponding to the measure p. 

Proof. Let Rj be the range of the transition expectation 8j with relative 
cornmutant Rg : = R) A M i .  Define 

For each k < j < I ,  and w j €  Oj, choose a maximal Abelian subalgebra 
p m j , m j  + I of iVAi 6 N c : ,  containing hij ,mj+ Put 

D c ~ , ~ I  : = N [ k , k i  Z(Rk)? 

According to our definition, 9 is a diagonal algebra of IgZ. Consider the 
potentials h,,,,,, associated with the restrictions cp r,,,,,, . We get, by (2.3), 

Taking into account (2.2) and (3.41, we obtain 

for 

(3.8) 

Summarizing, by restricting ourselves to the sequence (NIk,rl)ksl, we find 
a collection {hNrr,rl)kdl  of mutually commuting potentials, with hN[k,zl  ED^^,^,, 



408 F. F idaleo  and F. Mukhamedov 

arising from a nearest neighbour interaction; see (3.5), (3.7), (3.8). Namely, 
{ h N [ r , l l ) k < l  

Let NIkSi1 H DLk,ll be the canonical conditional expectation of NlkTCl on- 
to the maximal Abelian subalgebra D ~ ~ , ~ ~ . ~  We have 

Furthermore, 

(3.10) ER- I , I +  I rNLr.zl = ek,[. 
Indeed, by projectivity, 

Ek,l = &.lo E[k,c, 

with Eck,,, given in (3.2). The compatibility condition (3.10) immediately follows 
by (3.3). 

Let q, : = rp r,, where p is the probability measure on spec (rD) associated 
with cp r,. BY (3.10), 

Eo : = lim E,,, 
[ k ; ; i ; ~  

is well defined on U , , N , , , ,  (which is a dense subalgebra of m), and extends by 
continuity to a Umegaki conditional expectation E of !Dl onto 3. Furthermore, 
by (3.9), p = cp o E, = cp, o E, on localized elements of 2Jl. By a standard con- 
tinuity argument, we obtain cp = rp, o @. The fact that ,u is a Markov measure 
on spec (a) with respect to the order localization of Z is checked in the Appen- 
dix. s 

The diagonalizability result for homogeneous quantum Markov states on 
the forward chain is contained in [18] without any mention about the Mar- 
kovianity of the underlying classical processes. As in our situation, the proof of 
the diagonalizability in Theorem 4.1 of 1181 heavily depends on the commuting 
square condition (3.10). In the most general situation considered here (hence, 
including the case considered in [18]), (3.10) easily follows by a direct inspection 
of the structure of local expected subalgebras and potentials investigated in 
detail in [3], and reported in the present paper for the convenience of the 
reader. 

We end by noticing that Theorem 3.2 can be proved for non-homogeneous 
processes on one-side (forward or backward) ordered chains. By looking at the 

Let M = z i p i  M be a finite-dimensional C*-algebra, {pi) being the set of its minimal 
central projections, and D c A4 a maximal Abelian subalgebra. Then there exists a complete set of 
matrix units (eiIji) for M such that D is generated by the diagonal part {eLnk,). The canonical 
expectation E of M onto the diagonal algebra D is easily given by 
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support projections of the local restrictions of the states (or, equivalently, by 
defining the Markov property directly in terms of Umegaki transition expec- 
tations, see [3], Definition 2.1), it is straightforward to prove Theorem 3.2 even 
for general (not necessarily locally faithful) Markov states on ordered one- 
dimensional lattices. 

4. THE STRUCTURE OF THE ASSOCIATED HAMILTONIAN: 
LOCAL ENTANGLEMENT 

In standard models of statistical mechanics describing classical or quan- 
tum spin systems, one considers, on a quasi-local algebra a, local Hamilto- 
nians {hA)A,  Z d ,  A bounded, satisfying suitable conditions. Then one constructs 
the finite volume Gibbs states (to simplify matter, we reduce ourselves to the 
case with inverse temperature p = 1) 

Z being the partition function, see e.g. [ll], [26], [28]. The local Hamiltonian 
hA is usually based on an interaction term describing the mutual interaction of 
all spins in the volume A, and a boundary term arising from some fixed bound- 
ary conditions imposed on the spins surrounding the region A. After extending 
the rp, to all of N, each *-weak limit lim,n,,acp,n of the net { ( ~ ~ ) ~ ~ ~ d  is an 
infinite volume Gibbs state, or a Dobrushin-Lanford-Ruelle state (KMS state 
in quantum setting) for the system under consideration; see e.g. [14], [15], 
~191, ~211. 

In the classical case, it is established for finite range interactions that an 
infinite volume Gibbs state arises from a b-Markov process and vice versa, 
6 being the range of the interaction, see e.g. [13], 1201, [25]. For ordered 
unidirnensional chains, a quantum analogue of that result is proved in [3], 
provided that the ccleading" terms {Hj , j+ l ) jEz  commute with each other, see 
also [4] for connected results relative to the multidimensional case. In the 
quantum setting, it can happen that { h A ) A c z d  does not generate a commutative 
algebra due to the boundary effects (see [3], Section 6). 

In the present paper we have shown that, starting from a quantum Mar- 
kov state on 

we can recover a nontrivial filtration (N[k, l l )kC1 of llTl and an increasing se- 
quence { ~ C k , l l ) k ~ l  of Abelian algebras with the DIk,l1 nontrivial (i.e. not factor- 
izable) maximal Abelian subalgebras of the Nrksl1, such that rp is the lifting of 
cp rD, the last one being a classical Markov state on 
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constructed by the compatible sequence of Umegaki conditional expectations 
E,,,: N ,,,, I+ D,,,, preserving the canonical trace TrN ,,,,,.' This is possible as 
the nearest neighbour potentials (hN,,,},Gl generate a commutative subalgebra 
of 9. 

As straightforwardly seen, the converse is also true. Namely, one can start 
with any fixed filtration ( N L k , l l ) k C I  as above, together with a nearest neighbour 
interaction 

with ( H j m j +  l}jEz mutually commuting. By adding boundary terms K, and to 
(4.2) such that all addenda commute with each other, one can construct, for 
finite regions A = [k, lJ, finite volume Gibbs states {qA)Ac,  as in (4.1), as- 
sociated with the Hamiltonian 

having the same form as in (3.7). 
Each *-weak limit point of the sequence {~p,],,, gives rise to a Markov 

state on 'ZJI which is the lifting of a classical Markov state on a suitable "diago- 
nal" algebra, due to the commutativity of the kIk,,l.  

Now, the following remark is in order. In our generic situation, the spec- 
tral resolution of the two-point block of the Hamiltonian has the form 

where (qi,"~${~) c Mdn (C) @ M,, + (6) is a suitable system of matrix units for 
Mdn (C) @I Md,, (C). It it in general impossible, for any choice of the system of 
matrix units {e$} c Mdn (C), to write (4.3) as 

the last being the typical form of the interaction appearing in the Ising model, 
see (5.2). The generic case, when the spectral projections of two-point block of 
the Hamiltonian cannot be factorizable as above, has the meaning of a local 
entanglement effect. 

Taking into account the above considerations, one can assert that each quan- 
tum Markov state on Z arises from some underlying (nontrivial) classical Markov 
process. But, due to this entanglement phenomenon, it is not of Ising type.6 

The restriction of Tr,,,,, to D,,, is the uniform measure which assigns the same weight 1 to 
the minimal projections of DIk.ll. 

For Markov states with multidimensional indices, where there is no canonical order (i.e. for 
the Markov fields considered in [4]), the appearance of non-diagonalizable examples is expected 
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The quantum character of such states manifests itself in the following way. 
In order to construct (or recover) such states, one should take into account 
various nontrivial local Fdtrations of !Dl, together with various (commuting) 
boundary terms. Conversely, if one chooses to investigate quantum Markov 
states by considering only the natural fdtration (MI,,,,],,, of illZ, one obtains 
a leading term as that in (4.2). But non-commuting boundary terms could 
naturally arise in (3.6), see the examples in Section 6 of [3]. In the constructive 
approach, the appearance of such non-commuting boundary terms cannot be 
disregarded in order to obtain general infinite volume Gibbs states for a fixed 
nearest neighbour interaction. However, it should be noted that if the nearest 
neighbour model is translation invariant or periodic, then according to Theo- 
rem 1 of [9], the construction of quantum Markov states does not depend on 
boundary terms. 

5. TYPES OF VON NEUMANN ALGEBRAS 
ASSOCIATET) WITH QUANTUM MARKOV STATES 

In this section we investigate the type of von Neumann factors generated 
by the GNS representation of the quantum Markov states. 

Let us consider the C*-algebra 9X defined in Section 2. The shift automor- 
phism of the algebra '2JI will be denoted by 0. A state F E Y  jm) is called 
I-periodic if cp (@'(A)) = cp (A) for all A E iD1. If I = 1, cp is translation invariant. 
Notice that, in order to have I-periodicity, it is necessary that d j + I  = d j ,  ~ E Z ,  
for the d j  in (2.4). We have, for the localized Hamiltonians (3.4) and their 
leading terms (4.2), 

for all j, ~ E Z .  In order to avoid the trivial situation, we consider only 
non-tracial locally faithful translation invariant or I-periodic Markov states. 
This means that h,,, # CI, that is h,,, is nontrivial. 

We are going to connect the type of the von Neumann factor xp (Dl)" with 
properties of the spectrum a(h,,,) of the fundamental block ho,, of the leading 
term (4.2) of the Hamiltonian associated with q. 

Due to commuting properties of the hM,-.,,, (see ( 3 3 ,  the following strong 
limit 

@ (A)  = R + ~  lim exp (ithM ,-,,,,,,) A exp (- ith M,-n,n 3, A mi 

exists. Furthermore, q is a KMS state (at inverse temperature 1) for np. Ac- 
cording to Theorem 1 of [9], it is the unique KMS state for aq, and n,(ZX)" 
is a factor. Notice that we have also 

af (A) = lim exp (ith -,,,) A exp (- ith -,,, ). 
n+ m 
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The extension to all of n,(!B)", denoted also by CJ', is preciseIy the modu- 
lar group associated with the normal extension of cp (denoted also by p) to 
Kg (my'. 

Let sp(z) be the Arveson spectrum of the action 7 of a locally compact 
group on a C'-algebra.' Let us put a: := ad(e~p(ith-,,,~~)), where I is the 
period of the state under consideration. 

LEMMA 5.1. In the above situation, we have 

P r o  of. By passing to the regrouped algebra, we can consider Z = 1. Taking 
into account the commuting properties of the interaction, we have 

sp (ap) = U U spd(A) = tJ U span+' (A) 

The proof follows by Proposition 14.13 of [30]. ssl 

LEMMA 5.2. Let (xi, , , ., xn) c R\(o) be such that x i / x j € Q  fur all i ,  j. 
Then 

(5.1) { x l ,  ..., x,) c Zlno: 

for some a E (0, I).' 

Proof. By our assumptions we have 

where pi E N\{O), q, E Z\(O). Define 

Then 

' For the definition of the Arveson spectrum sp(z), as well as spT(A), see e.g. [24J. 
The best a in (5.1) is the minimum of the a ~ ( 0 ,  1) such that (5.1) holds true. 
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Let h,,, be the fundamental block of the leading term of the canonical H a d -  
tonian associated with the locally faithful Markov state rp. Consider, for 
h, k, h', k ' ~  a(homE) with h # k, h' # k', the following fractions: (h - k)/(h'- k'). 

THEOREM 5.3. Let ~ E Y  (Yl) be a locally faithful Markov state. The fol- 
lowing assertions hold true: 

(i) If {(h - k)/(hl- kt ) )  c Q, then 7~+(2R)" is a type IIIA factor for some 
n ~ ( 0 ,  1). 

(ii) If 7c, (!Dl)" is a type 111, factor, then ((h - k)/(hl- k')) $ Q. 

P r o  o f. As before, we can consider only translation invariant Markov 
states. By applying Theorem 3.1 of [29], we get for the Connes invariant I' (see 
[12]) r (n, (!Dl)'') E ~ { D V )  = sp (uq). Furthermore, this means also that nq, (2Il)'' 
is a type 111, factor, 2 E (0, 11, as we are considering non-tracial states, Then it 
is enough to prove the former, the latter being a direct consequence of the 
former. 

Let ( (h-  k)/(h' - k')) r (P be satisfied. By Lemma 5.2, 

( h - k l h ,  ~ E G ( H ~ , ~ ) )  c Zlna 

for some a ~ ( 0 ,  1). From the simultaneous diagonalizability of the Wi,i+l we 
infer that 

Then we have 

From Lemma 5.1 we infer that sp (a? c Zln a, that is sp(a') is discrete. 
Hence there is a number rn E N\{O) such that sp (~3 = Z ln A with A : = clm. 

Thus, x, (!Ill)" is a type IIIB factor. rn 

Here, it should be noted that one might argue that the spectrum a (h,,,) of 
the fundamental block of the Harniltonian associated with the l-periodic Mar- 
kov state rp completely determines the type of T C , { ~ D ~ ) ' ~ .  Unfortunately, we are 
not able to prove the reverse statements in Theorem 5.3. 

Even if one can construct, by the results in Section 4 of [3], a wide class of 
quantum Markov states to which the previous results apply, in order to explain 
some natural applications of Theorem 5.3 to pre-assigned models, we are going 
to consider some examples. We refer the reader to [17], [22], [23] for some 
results along the same line. 

5.1. Ising model. In this situation, 
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The Ising model on Z is defined by the following forma1 Hamiltonian: 

where J1,,+ E R are coupling constants and a: is the Pauli matrix a, on the j-th 
site. Moreover, we suppose that the coupling constants are defined by 

J1, j ~ 2 z ,  
Jj.j+ 1 = 

J , ,  j ~ 2 Z + l ,  

where J1, J z  ER. It is known (see 191) that for the given Hamiltonian there 
exists a unique Gibbs state q on Dl which is 2-periodic. In this case, the 
operators H j , j + l  have the following form: 

The spectrum of Hj,i+l is (J,, - J1) if j~2Z, {J , ,  - J 2 )  if j~2Z+ 1, re- 
spectively. Now, if J1/J2 is rational, the rationality condition of Theorem 5.3 is 
satisfied, and consequently the von Neumann factor s, (my' is of type 111, for 
some RE(O, 1). 

5.2. Markov chain. Consider a Markov chain with the state space 
d : = {I ,  . . ., d )  and the transition probabilities defined by the stochastic matrix 
P = (gij)f , j=l with (not all equal) pu > 0 for all i, j. Consider the canonical 
inclusion 

Here, 9 -- C(Q), where D = nz d. Let pp be the translation invariant Markov 
measure on D determined by the transition matrix P. Define the diagonal 
lifting of the classical process associated with P as 
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where E is the canonical Umegaki conditional expectation of 2R onto the 
Abelian algebra 9. 

It is not hard to check that the corresponding Hj,j+l operator has the 
form 

B'f' 0 . . . 
0 B'Z' 0 . . 

where Pk' = (bii,k)f,j= k = 1, . . ., d ,  are d x d diagonal matrices such that 

If there exist integers mu, i, j~ (1, . . ., d ) ,  and some number u ~ ( 0 , I )  such 
that p l l / p i , j  = amiJ, then we easily see that the rationality condition of Theorem 
5.3 is satisfied, which means that the von Neumann factor x, (Wi)" is of type 111, 
for some A E (0, 1). This extends a result of [17]. 

6. APPENDIX 

For convenience of the reader we verify that the measure ,u on TI as- 
sociated with q r3 is a Markov measure on spec@) with respect to the order 
localization of Z.  

For our purpose, it sates to venfy that for every k < n < I in Z and 
BE spec (DIn,ll) we have, for the conditional probability, 

Here, fi,, . . ., 6, are fixed elements in spec (2 (R~)), . . . , spec (Z (R,)), respective- 
ly, and spec(z(Rj)) is isomorphic to Slj .  In order to make computations, we 
should see the past algebra DLk,,], the present algebra D[,,,l = Z(R,), and the 
future algebra DIngtl inside the ambient algebra D,,,. In such a situation, 
spec(DIk,,,) is given by the disjoint union 

Using formulae (3.4) and (3.7), for 
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we calculate 

where the densities T are positive functions, and j assigns weight 1 to atoms 
(see footnote 5). 

Inside spec (D,,]), we have for the sets r, c spec (D,,]), TGn c 
spec(DI,,,,), describing the collection of points a,, . . ., 12, and the point a,, 
respectively, 

Furthermore, the generic points of B~spec (D~ , , , ~ )  have the fonn 

Dehe  h (b) : = w, (b). Taking into account (6.1) and (6.21, we have 



Diagonalizability of Markov states 41 7 

Collecting together the last computations, we get 

which is the assertion, 
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