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Abstract. We give a constructive proof of the.fact that any Mar-

kov state (even non-homogeneous) on &z M,,,C is diagonalizable.
However, due to the local entanglement effects, they are not necessarily
of Ising type (Theorem 3.2). In addition, we prove that the underlying
classical measure is Markov, and therefore, in the faithful case, it natu-
rally defines a nearest neighbour Hamiltonian. In the translation in-
variant case, we prove that the spectrum of the two-point block of this
Hamiltonian, in some cases, uniquely determines the type of the von
Neumann factor generated by the Markov state (Theorem 5.3). In
particular, we prove that, if all the quotients of the differences of two
such eigenvalues are rational, then this factor is of type III, for some
A€(0, 1), and that, if this factor is of type III;, then these quotients
cannot be all rational. We conjecture that the converses of these state-
ments are also true.
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1. INTRODUCTION

It is known that, in quantum statistical mechanics, concrete systems are
identified with states on corresponding algebras. In many cases, the algebra is -
a quasi-local C*-algebra of observables. The states satisfying the Kubo—Mar-
tin—Schwinger (KMS for short) boundary condition, as known, describe equilib-
rium states of the quantum system under consideration. On the other hand, for
classical systems with finite radius of interaction, limiting Gibbs measures are
known to be Markov random fields; see e.g. [13], [20], [25]. In connection with
this, it is natural to address the problem of constructing quantum analogues of
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Markov chains, the last arising from quantum statistical mechanics, or
quantum field theory in a natural way. This problem was firstly explored in [1]
by introducing the quantum Markov chains on the algebra of quasi-local
observables. In the last decades, the investigation of quantum Markov proces-
ses had a considerable growth, in view of natural applications to quantum
statistical mechanics, quantum field theory or quantum information theory as
well. The reader is referred to [1], [3]-[8], [10], [16], and the references cited
therein, for recent developments of the theory of quantum stochastic processes
and their applications.

The investigation of a particular class of quantum Markov chains, called
quantum Markov states, was pursued in [3], [4], [6], [7], where connections
with properties of the modular operator of the states under consideration were
established. This provides natural applications to temperature states arising
from suitable quantum spin models, that is natural connections with the KMS
boundary condition.?

In [3], the most general one-dimensional quantum Markov state has been
considered. Among the other results concerning the structure of such states, the
connection with classes of local Hamiltonians satisfying certain commutation
relations and quantum Markov states has been obtained. The situation arising
from quantum Markov states on the one-dimensional ordered chain describes
some models of statistical mechanics with mutually commuting nearest neigh-
bour interactions.

In the present paper, we clarify the meaning of diagonalizability of one-
dimensional non-homogeneous quantum Markov states. Namely, in Section 3
we prove that, for each Markov state ¢ on the spin algebra

—C*
M:=® M, (C) ,
jeZ

there exist a suitable maximal Abelian subalgebra ® < I (called diagonal in
the sequel), a Umegaki conditional expectation €: MM — D and a Markov mea-
sure u on spec(D) such that ¢ = ¢,0€, the Markov state ¢, being the state on
D arising from the measure u. This allows us also to clarify a question raised in
Section 6 of [3], relative to the role played by the non-commuting boundary
terms naturally arising from quantum Markov states, see Section 4 below.
Diagonal Markov states were considered in [27]. In [18], the diagonaliza-
bility of more general one-dimensional translation invariant quantum Markov
states on the forward chain was proved, but not the Markovianity of the
underlying classical measure. The proof in [18] of diagonalizability depends on
the commuting square condition (3.10) for the increasing sequence of Umegaki
conditional expectations. The proof of (3.10), omitted in [18], heavily depends

! Most of the states arising from Markov processes considered in [16] describe ground
states (ie. states at zero temperature) of certain models of quantum spin chains.
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on the fine structure of the local expected subalgebras and the corresponding
potentials, first investigated in detail in [3].

Section 5 of this paper is devoted to determine the type of the von Neu-
mann factors arising from the GNS representation of the quantum Markov
states. This is done by using the explicit form of the nearest neighbour Hamil-
tonian associated with the quantum Markov state. We prove that the spectrum
of the two-point block of this Hamiltonian, in some cases, uniquely determines
the type of the von Neumann factor generated by the Markov state. In par-
ticular, we prove that, if all the quotients of the differences of two such eigen-
values are rational, then this factor is of type III, for some A€(0, 1), and that, if
this factor is of type III,, then these quotients cannot be all rational. This
classification result, in the form established in Theorem 5.3, is not known even
for the Ising model, or for states arising from classical Markov chains, the last
treated in some detail in Section 5. We conjecture that the converses of these
statements are also true. At present, it is still an open problem.

We end by noticing that in the literature there are many examples of
diagonal liftings of Markov states on factorizable Abelian algebras, e.g. the
Ising model. However, the states considered here are diagonal liftings of
classical Markov processes on non-factorizable Abelian subalgebras.? Thus,
they provide concrete constructive examples of a situation abstractly consid-
ered in [31].

2. PRELIMINARIES

We start with recalling some well-known facts about inclusions of finite-
dimensional C*-algebras.

Let N = M be an inclusion of finite-dimensional C*-algebras. Consider
the finite sets {p;}, {q,} of all the minimal central projections of M, N, respec-
tively. We symbolically write

J i

Let us set M;:= M, N;j:= N,,, M;;:= M, ,, N;;:= N,,.. Then we have v

inclusions N;; ¢ M;; of finite-dimensional factors. Hence

(21) MijNNij®Nij

piq;

for other finite-dimensional factors N;;.?

2 Other nontrivial quantum liftings of classical Markov chains are constructed and studied
in [5].

3 The square root of the dimension of Ny; is precisely the multiplicity of which the piece
q;N c N appears into the piece p; M < M.
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Consider the canonical traces Tr;; and Try, that is the traces which assign
weight one to minimal projections. Notice that Try, = Try 0 E, where E is the
conditional expectation of M onto Zi 14 (p: M) g; given by

E(x) = Z q;P: xq;.

i,j

Taking into account the identification (2.1) and the last considerations,
one can write symbolically

TI'M = @ (TrN”®Trﬁu)-
L.J

Furthermore, the completely positive (Try, Try)-preserving linear map
EY of M onto N is given by

(2.2) E} = @ (idy,,®Try,).
: Y,

- Let ¢ be a positive functional on M, together with its restriction @[y
to N. Consider the corresponding Radon-Nikodym derivatives T3 and
T with respect to the canonical traces Try and Try, respectively. We get

23) T¢ = B (T5).
| The starting point of our analysis is the C*-infinite tensor product
M= @V,C
JjeZ
where for jeZ
24 M; =M, (C).

With abuse of the notation, we denote by the same symbols elements of
local algebras and their canonical embeddings into bigger (local) algebras if this
causes no confusion. For k < [, we denote by M ; the local algebra relative to
the segment [k, [] = Z. Let & (M) be the set of all states on Wi. The restriction
of a state pe (M) to My, will be denoted by oy p.

Suppose we have an increasing sequence { Ny, »}r<; of local algebras such
that

Ny < M[k,k] =M, Npx+13©< M[k,k+ 11>
M[k,l] < N[k—l,l-f—l] = M[k—1,1+1], k<l

Consider an increasing sequence of C*-algebras {Dy ;}1<i» Where Dy, is maxi-
mal Abelian in N . '
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A diagonal algebra D < I is the Abelian C*-subalgebra of M obtained as

—
D = (llin D[k,l])
k1112

for Dy, and Ny, as above.

We deal only with locally faithful states (ie. states on I with faithful
restrictions to local subalgebras) even if most of the forthcoming analysis
applies to non-faithful states as well. For ¢ € & (M), locally faithful, the gene-
ralized conditional expectation, or @-expectation, &, My 41+ My, is the
completely positive ¢-preserving linear map associated with the inclusion
Mpy.n © Mpy,1+ 1 defined in [2]. We refer the reader to that paper for the precise
definition and further details about the Accardi—Cecchini generalized condi-
tional expectation.

3. DIAGONALIZABILITY OF MARKOV STATES

Let pe & (M) be a locally faithful state.

DermNITION 3.1. The state ¢ e.% (M) is said to be a Markov state if, for
k,leZ, k <, we have

" s
&1 |_M[k,l—1] = ldM[k,l—l]'

Quantum Markov states were firstly studied in [1] and [6]. Among other
potential applications, they are relevant in quantum statistical mechanics. The
structure of quantum Markov states was intensively studied in [3] and [7],
where most of their properties were understood. Here, we report some useful
results relative to the structure of Markov states. We refer the reader to [3] for
details and proofs.

After taking the ergodic limit of the p-expectations &f;, and a decreasing
martingale limit ([3], Section 5), it is possible to recover a sequence {¢7};.z of
transition expectations which are Umegaki conditional expectations

such that
(3.1) Opn(4®..04) = (P[k,k1(éak(Ak®---@51-1(141—1@141)---))

for every k,leZ with k <[, and 4, ®...® A;,_; ® A, any linear generator of
My Let {P, Jw,en, be the set of all minimal central projections of the range
R; = #(&’) of &. Put

Bj:= z P.LUMIP{JJJ and B[k,l]:= ® BJ.

m,eﬂj kgjgl

13 — PAMS 24.2
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Consider the conditional expectation E’: M;— B; given by

Ei(d):= Y Pi, AP,

@ jE.Q 5]
Define
(3.2) E[k,l] = ® E‘,.
k<jst

By (3.1), it is easy to show that
Own = P Epen-
After the identification M Py, = Pi, M;Pi (ie. the reduced algebra Mﬂu
acting on P, C%), we have -
MjP{aJ = N{;),®Nc];oj
for finite-dimensional factors N%,, and NJ,. Thus, we can write

(3.3) By = (‘D (N ®NE)®...® (N, @ NL).

Consider the potentials {hM[k',]}ks, obtained by the formula
Py = Tragg (exp(— Prpen)” )

Then hyy, ,, has the nice decomposition

(34) h'M[k,l] C_D h mk O + 1 ®.. ® hml 1,01 ® Efm

for selfadjoint elements hj,,, &, ki, ., localized in N, J; NI, N, @ Ni}1,
respectively. After defining

H;:=Y P (b, ® D P}, ZP I®Hh,)P;,

Hj,j+1 = z (P.i)j ® P{D-:-L)(I ® ha)j @j+1 ® I)(Pi)_, ® P‘,’le)
WjyWj+1
we find sequences of selfadjoint operators {H}} .z, {H} .z localized in My;, =M,
and {H; 1}z localized in M; ;. ,,, respectively, satisfying the commutation
relations-

(3-5) [ ]+1]_[H]]+1’ j+1]=[Hjs Hj:|=|:Hj.j+1,Hj+1,j+2:|=0
such that »

-1 -
(3.6) - by, = He+ Z H;; +H

i=k

for each k<1
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In Section 5 of [3] it is proved also the converse. Namely, if ¢ € & (1) is
locally faithful, with potentials having the form (3.6), for addenda localized as
above, and satisfying the commutation relations (3.5), then it is a Markov state.

We are ready to prove the diagonalizability result for quantum Markov
states.

THEOREM 3.2, Let pe % (M) be a Markov state. Then there exist a diago-
nal algebra © < M, a classical Markov process with Markov measure p on
spec(D) with respect to the same order localization of Z, and a Umegaki con-
ditional expectation €: M— D such that ¢ = ¢,0€, where @, is the state on
D corresponding to the measure p.

Proof. Let R; be the range of the transition expectation &1 with relative
commutant R}:= RjA M;. Define

Npsg:=Z(R), Npur1:=Ri® Ry y,
Nppn:=Ri®Myy1-1y®R,, k<l+1.

For each k €j <[, and w;€Q;, choose a maximal Abelian subalgebra
Di, 0., of NL ® N1 containing k), . ,. Put

Wji+1

Dyojyi= Npa = Z(Ry),

Dyni= @ DX, ®.-- @D L), k<,
D:= (i “
-= (lgn Dy -
k112

According to our definition, D is a diagonal algebra of M. Consider the
potentials hy, , associated with the restrictions ¢ [y, ,. We get, by (2.3),

exp( - hN[k,l]) = ?V‘[Eck;;] (CXP (_ hM[k,l]))'
Taking into account (2.2) and (3.4), we obtain

-1
() I hygen, = K+ Y Hjj+K,
=k

for

K;:= —-Zln(TrNiajexp(—hﬂ,j))P{;j,
(3.8) o;
K;:= —Zln(Trﬁg]!exp(—ﬁi,j))P{;,j.
j
Summarizing, by restricting ourselves to the sequence {Ny n}x<;, We find
a collection {hy, ,}x<; of mutually commuting potentials, with hy, , € Dy,
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arising from a nearest neighbour interaction; see (3.5), (3.7), (3.8). Namely,
{hN[k,IJ}k <D

Let E; ;: Ny, Dy iy be the canonical conditional expectation of Ny, on-
to the maximal Abelian subalgebra Dy ;.* We have

(39) (4 I-N[k,;] = TrN[k,;] (exp(_ hN[k,u) . ) = TrN[k,u (exp ( - hN[k,u) Ek,l( * ))

Furthermore,

(3‘10) Ek—l,!+1 |-N[k,z] = Ek,l'
Indeed, by projectivity,

Eg, = E; 0Ey

with Ep j given in (3.2). The compatibility condition (3.10) immediately follows
by (3.3).

Let ¢, := ¢ [y, where p is the probability measure on spec (D) associated
with ¢[4. By (3.10),

Cy:= lim E
0 e k.l

is well defined on Uk,l N,y (which is a dense subalgebra of ), and extends by
continuity to a Umegaki conditional expectation € of I onto D. Furthermore,
by (3.9), ¢ = 90 €, = ¢,0E, on localized elements of M. By a standard con-
tinuity argument, we obtain ¢ = ¢,0 €. The fact that yx is a Markov measure
on spec (D) with respect to the order localization of Z is checked in the Appen-
dix. m

The diagonalizability result for homogeneous quantum Markov states on
the forward chain is contained in [18] without any mention about the Mar-
kovianity of the underlying classical processes. As in our situation, the proof of
the diagonalizability in Theorem 4.1 of [18] heavily depends on the commuting
square condition (3.10). In the most general situation considered here (hence,
including the case considered in [18]), (3.10) easily follows by a direct inspection
of the structure of local expected subalgebras and potentials investigated in
detail in [3], and reported in the present paper for the convenience of the
reader.

We end by noticing that Theorem 3.2 can be proved for non-homogeneous
processes on one-side (forward or backward) ordered chains. By looking at the

4 let M= Zip,-M be a finite-dimensional C*-algebra, {p;} being the set of its minimal
central projections, and D = M a maximal Abelian subalgebra. Then there exists a complete set of
matrix units {ef,} for M such that D is generated by the diagonal part {e}, }. The canonical
expectation E of M onto the diagonal algebra D is easily given by

E( Y diyeta) = Y B, Cha
ity Lki
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support projections of the local restrictions of the states (or, equivalently, by
defining the Markov property directly in terms of Umegaki transition expec-
tations, see [3], Definition 2.1), it is straightforward to prove Theorem 3.2 even
for general (not necessarily locally faithful) Markov states on ordered one-
dimensional lattices.

4. THE STRUCTURE OF THE ASSOCIATED HAMILTONIAN:
LOCAL ENTANGLEMENT

In standard models of statistical mechanics describing classical or quan-
tum spin systems, one considers, on a quasi-local algebra U, local Hamilto-
nians {h,} < z4, A bounded, satisfying suitable conditions. Then one constructs
the finite volume Gibbs states (to simplify matter, we reduce ourselves to the
case with inverse temperature f = 1)

4.1) @a:=Z ' Try, (exp(—h4)"),

Z being the partition function, see e.g. [11], [26], [28]. The local Hamiltonian
h4 is usually based on an interaction term describing the mutual interaction of
all spins in the volume A, and a boundary term arising from some fixed bound-
ary conditions imposed on the spins surrounding the region A. After extending
the @, to all of A, each x-weak limit lim 4 ;z4@,, of the net {¢,}scza is an
infinite volume Gibbs state, or a Dobrushin—Lanford-Ruelle state (KMS state
in quantum setting) for the system under consideration; see e.g. [147, [15],
[19], [21].

In the classical case, it is established for finite range interactions that an
infinite volume Gibbs state arises from a §-Markov process and vice versa,
0 being the range of the interaction, see e.g. [13], [20], [25]. For ordered
unidimensional chains, a quantum analogue of that result is proved in [3],
provided that the “leading” terms {H .}z commute with each other, see
also [4] for connected results relative to the multidimensional case. In the
quantum setting, it can happen that {h 4}, z« does not generate a commutative
algebra due to the boundary effects (see [3], Section 6).

In the present paper we have shown that, starting from a quantum Mar-
kov state on

—C*
M= ® Md_,(C) ’
jeZ
we can recover a nontrivial filtration {Ny plx<; of M and an increasing se-
quence {Dy, n}r<: of Abelian algebras with the Dy ; nontrivial (i.e. not factor-
izable) maximal Abelian subalgebras of the Ny ;, such that ¢ is the lifting of
@[, the last one being a classical Markov state on

—C*
b L= (llm D[k,l]) N
_)
k.11 Z
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constructed by the compatible sequence of Umegaki conditional expectations
Ey;: Ny Dy, preserving the canonical trace TrN[k,,].5 This is possible as
the nearest neighbour potentials {fy, ,}x<; generate a commutative subalgebra
of D.

As straightforwardly seen, the converse is also true. Namely, one can start
with any fixed filtration {Np ;}i<; as above, together with a nearest neighbour
interaction

-1
(4-2) h'k,l = Z Hj,j+1
. et
with {H; 1} ez mutually commuting. By adding boundary terms K, and K, to
(4.2) such that all addenda commute with each other, one can construct, for
finite regions A = [k, I], finite volume Gibbs states {¢,},<z as in (4.1), as-
sociated with the Hamiltonian

hyn = K+ by + K,

having the same form as in (3.7).

Each #-weak limit point of the sequence {@,} 4z gives rise to a Markov
state on MM which is the lifting of a classical Markov state on a suitable “diago-
nal” algebra, due to the commutativity of the Ay .

Now, the following remark is in order. In our generic situation, the spec-
tral resolution of the two-point block of the Hamiltonian has the form

(43) Hn,n +1 = Z K?jn *1 e?i',nj)-:i,lj')s
ij

where {ef%uly} = My, (C) @ My, (C) is a suitable system of matrix units for
M, (C)® M,_.,(C). It it in general impossible, for any choice of the system of
matrix units {ef} = M, (C), to write (4.3) as

_ Ja+1 n +1
Hypiy = Z’d"j e,
ij

the last being the typical form of the interaction appearing in the Ising model, .
see (5.2). The generic case, when the spectral projections of two-point block of
the Hamiltonian cannot be factorizable as above, has the meaning of a local
entanglement effect.

Taking into account the above considerations, one can assert that each quan-
tum Markov state on Z arises from some underlying (nontrivial) classical Markov
process. But, due to this entanglement phenomenon, it is not of Ising type.®

* The restriction of Tryy, ,, to Dy is the uniform measure which assigns the same weight 1 to
the minimat projections of Dy .

8 For Markov states with multidimensional indices, where there is no canonical order (i.c. for
the Markov fields considered in [4]), the appearance of non-diagonalizable examples is expected.
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The quantum character of such states manifests itself in the following way.
In order to construct (or recover) such states, one should take into account
various nontrivial local filtrations of M, together with various (commuting)
boundary terms. Conversely, if one chooses to investigate quantum Markov
states by considering only the natural filtration {My, ;},<; of M, one obtains
a leading term as that in (4.2). But non-commuting boundary terms could
naturally arise in (3.6), see the examples in Section 6 of [3]. In the constructive
approach, the appearance of such non-commuting boundary terms cannot be
disregarded in order to obtain general infinite volume Gibbs states for a fixed
nearest neighbour interaction. However, it should be noted that if the nearest
neighbour model is translation invariant or periodic, then according to Theo-
rem 1 of [9], the construction of quantum Markov states does not depend on
boundary terms.

5. TYPES OF VON NEUMANN ALGEBRAS
ASSOCIATED WITH QUANTUM MARKOYV STATES

In this section we investigate the type of von Neumann factors generated
by the GNS representation of the quantum Markov states.

Let us consider the C*-algebra M defined in Section 2. The shift automor-
phism of the algebra M will be denoted by 0. A state e % (M) is called
I-periodic if ¢ (0"(A)) = ¢ (A) for all AeM. If I = 1, ¢ is translation invariant.
Notice that, in order to have [-periodicity, it is necessary that d;.;, = d,, je Z,
for the d; in (2.4). We have, for the localized Hamiltonians (3.4) and their
leading terms (4.2),

hM[j+l,k+I] = hM[j,k]’ hj+l,k+l =Nk

for all j, keZ. In order to avoid the trivial situation, we consider only
non-tracial locally faithful translation invariant or l-periodic Markov states.
This means that hy; # CI, that is hg, is nontrivial.

We are going to connect the type of the von Neumann factor =, ()" with
properties of the spectrum o (k) of the fundamental block kg, of the leading
term (4.2) of the Hamiltonian associated with .

Due to commuting properties of the hy,_ . (see (3.5)), the following strong
limit

of (A) = lim exp (ithy,_, ) Aexp(—ithy _, ), AeM,

n—+w

exists. Furthermore, ¢ is a KMS state (at inverse temperature 1) for ¢ Ac-
cording to Theorem 1 of [9], it is the unique KMS state for ¢, and =, ()"
is a factor. Notice that we have also

of (A) = lim exp (ith_,,) Aexp(—ith_,,).
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The extension to all of «,, (I)", denoted also by a?, is precisely the modu-
lar group associated with the normal extension of ¢ (denoted also by ¢) to
m, (M)

Let sp(z) be the Arveson spectrum of the action 7 of a locally compact
group on a C*-algebra.” Let us put of := ad (exp(ith—;n)), Where [ is the
period of the state under consideration. ‘

LemMma 5.1. In the above situation, we have

sp(0?) = U (0' (h—tnm)—0a(h —ln,lu))'

Proof. By passing to the regrouped algebra, we can consider / = 1. Taking
into account the commuting properties of the interaction, we have

spe = U sp”AD=U U """

n AeM[-n,n) n AeMi_
n+1
< U U Spo' : (A) = Usp(o-rl+1 rM[—n—1,n+1])'
n AeMi-n-1,n+1] n

The proof follows by Proposition 14.13 of [30]. =

LEMMA 5.2. Let {x, ..., X,} = R\{0} be such that x;/x;eQ for all i,}j.
Then ’

(5.1) {X1, .., Xp} €« ZInw
for some ae(0, 1).8
Proof. By our assumptions we have

X1 _Di
Xi 4

where p;e N\{0}, g;e Z\{0}. Define

. x4
a:=exp| ———|
Hj::pi

, i=2,..,mn,

Then
X1 = —sign(xl)(H Pj)lﬂ“,
j=2
xi=—q( J] pj)lnac, i=2,..,n m
j=2,j#i

7 For the definition of the Arveson spectrum sp(t), as well as sp’(4), see e.g. [24].
8 The best o in (5.1) is the minimum of the ae(0, 1) such that (5.1) holds true.
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Let hy,; be the fundamental block of the leading term of the canonical Hamil-
tonian associated with the locally faithful Markov state ¢. Consider, for
h,k, W, k' ea(hy,) with h #k, i’ # k', the following fractions: (h—k)/(h' —k').

THEOREM 5.3. Let pe % (M) be a locally faithful Markov state. The fol-
lowing assertions hold true:

() If {(h—k)/(W—k)} = Q, then w,(MM)" is a type III, factor for some
A€(0, 1). ‘

(i) If =, (M)’ is a type 11, factor, then {(h—Kk)/(H —k)} £ Q.

Proof. As before, we can consider only translation invariant Markov
states. By applying Theorem 3.1 of [29], we get for the Connes invariant I" (see
[12]) I'(r,(M)") = I' (6®) = sp(c®). Furthermore, this means also that =, (YR)"
is a type III; factor, A1€(0, 1], as we are considering non-tracial states. Then it
is enough to prove the former, the latter being a direct consequence of the
former.

Let {(h—k)/(W —k')} = Q be satisfied. By Lemma 5.2,

{h—k|h,kea(Hy)} = Zlna

for some «€(0, 1). From the simultaneous diagonalizability of the H,;;,; we
infer that

ohon {3 b |heo(Hon}.

i=-—n

Then we have

n—1
0 (hn)—0(hny = { Y (—k) |, kieo(Ho )} = Zlna.
From Lemma 5.1 we infer that sp(¢®) = ZlIna, that is sp(c®) is discrete.
Hence there is a number me N\{0} such that sp(¢®) = ZIni with i:=a™
Thus, =, (M)" is a type III; factor. m :

Here, it should be noted that one might argue that the spectrum o (ko) of
the fundamental block of the Hamiltonian associated with the /-periodic Mar-
kov state ¢ completely determines the type of z,(3)". Unfortunately, we are
not able to prove the reverse statements in Theorem 5.3.

Even if one can construct, by the results in Section 4 of [3], a wide class of
quantum Markov states to which the previous results apply, in order to explain
some natural applications of Theorem 5.3 to pre-assigned models, we are going
to consider some examples. We refer the reader to [17], [22], [23] for some
results along the same line.

5.1. Ising model. In this situation,

M=QM,©C) .
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The Ising model on Z is defined by the following formal Hamiltonian:

(5:2) - H=—-3%J;;s0}0i*t,

jeZ
where J; ;. € R are coupling constants and ¢ is the Pauli matrix o, on the j-th
site. Moreover, we suppose that the coupling constants are defined by

J Jy, je2Z,
MELTON g, je2Z+1,

where Jy, J,€R. Tt is known (see [9]) that for the given Hamiltonian there
exists a unique Gibbs state ¢ on I which is 2-periodic. In this case, the
operators H; ;. have the following form:

(5, 0 o0 o)
0 —J, 0 0
, Je2Z,
‘0 0 —=J, 0
Y J 0o 0 0 7
qhitl =
(7, 0 0 0)
0O —-J, 0 O
, je2Z+1.
0 0 —-J, 0
LLO 0 0 JZJ

The spectrum of H; ;4 is {J;, —J.} if je2Z, {J,, —J,} f je2Z +1, re-
spectively. Now, if J,/J, is rational, the rationality condition of Theorem 5.3 is
satisfied, and consequently the von Neumann factor =, (M)” is of type III; for
some A€(0, 1).

5.2. Markov chain. Consider a Markov chain with the state space
d:= {1, ..., d} and the transition probabilities defined by the stochastic matrix
P = (p;)!;=1 with (not all equal) p; > 0 for all i,j. Consider the canonical
inclusion

———C* _C
D=®C, cM=Q M;(C) .
z z
Here, ® ~ C(Q), where @ = Hz d. Let pp be the translation invariant Markov

measure on  determined by the transition matrix P. Define the diagonal
lifting of the classical process associated with P as

@(4):= !} € (4)(w) up (dw),
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where € is the canonical Umegaki conditional expectation of IR onto the
Abelian algebra D.

It is not hard to check that the corresponding H; ;. operator has the
form

(BY o0 . . . 0)

0 B® 0 .. 0
Hoz | o

L0 0 . .. B9

where B® = (b;;,){;=1, k=1, ..., d, are dxd diagonal matrices such that

{_lnpk,is i=j3 i=1!-'-a d:
bij,k= 0 . .
) L#].

If there exist integers my;, i, je{1, ..., d}, and some number ae(0, 1) such
that p;,/p;; = «™, then we easily see that the rationality condition of Theorem
5.3 is satisfied, which means that the von Neumann factor =, ()" is of type III,
for some Ae(0, 1). This extends a result of [17].

6. APPENDIX

~ For convenience of the reader we verify that the measure 4 on D as-
sociated with ¢ [ is a Markov measure on spec (D) with respect to the order
localization of Z. .
For our purpose, it suffices to verify that for every k <n<!in Z and
Bespec(Dy,;) we have, for the conditional probability,

P(B|dy, ..., @) = P(B|®,).

Here, @, ..., @, are fixed elements in spec(Z (Ry)), ..., spec(Z (Ry)), respective-
ly, and spec(Z(R;)) is isomorphic to ;. In order to make computations, we
should see the past algebra Dy ,;, the present algebra Dy, ,; = Z(R,), and the
future algebra Dy, inside the ambient algebra Dy ;. In such a situation,
spec(Dy, ;) is given by the disjoint union

spec (D[k,l]) = U ’é’k,mk+ 1 X...X St!iowt—lhwx'

Dcyesey w1

Using formulae (3.4) and (3.7), for

k —
f:= Z '%'S!;k.wk“x_..xsf-l fmk,mk+1®"'®foix—1|,w1’

@]~ 1,0]




416 F. Fidaleo and F. Mukhamedov

we calculate

(61) (P (f) = Z ( Tol;k.wk+1 fl";k-,mk+ 1) X ... ( J. Tﬂt’l_—:lhﬂ)l Uil_—lbwl)’

-1
Dkey-++»D1 Smkmu+1 Sm: 10

where the densities T are positive functions, and | assigns weight 1 to atoms
(see footnote 5).

Inside spec(Dy, ), we have for the sets I'z,. . .z, < spec(Dyn) I's, <
spec (Dyn,p), describing the collection of points @y, ..., @, and the point @,,
respectively,

. —1 -1
(62) FtT)k.---.EJn - U Swmmkﬂ - X S:—)n— 1@n X S::Jmmn+ 1 - X Swl- 1

Dp+ 13000501

— k m—1 n -1
FfT)n - U ka,wku X... X Swn—l.tTJn X Swmmn+1 - X Smt-n,m‘t'

Wipgsrars@n— 1,
@n+ 1yeney ]

Furthermore, the generic points of Bespec(Dy, ) have the form

— ht iI—1
b= bmn(b),mn+ iy X X bwl— 1(b),01(b)*

Define A(b):= w,(b). Taking into account (6.1) and (6.2), we have

@ (%‘Fﬁu m,. ( j Tﬂ,;kawrn-:) - X ( j Tt_")ln_—ltsﬁn)

mkﬂ-'k+\ sl::n-llfun
x X (§ Ba)xx( | Tlhe)
Dn+1y:0000 Smn Wn+ 1 stlm_-lnmn

e@r)= Y (| Toeuw)x-x( | Tla)

Dksreas®@n—1 Sy mps @y~ 1, By

x Y (J Ba.)xx( | Ta)

On+ 15000001 S5 0 wr- 1,01

(;D (%FE,, Bn ‘%‘B) ( j T"':k O+ l) X ( j T£n_—11:a’n)

3 s:l—l
mkmk+1 Bn-1.8n

N -1 i—1
X Y T sy Obane o) X X Tay Sy, O 211,000
BeB|A()=Bn

0@ = Y (§ Thow)xx( | Tolia)

n—1
DkeyeryWn—1 Sm&fﬂku smn 1:8n

-1 -1
X Y T on16) Bhnon. i) X -+ X T Seya0) (Pl 21,0 -
 beB|A(D)=@n
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Collecting together the last computations, we get

P(B|dy, ..., G,) = <P(-%"r:m_—) = @) = P(B|®,),

which is the assertion.
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