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Abstract. The convergence of a geometric sum of positive i.i.d. 
random variables to an exponential distribution is a well-known re 
sult. This convergence provided various and useful approximations in 
reliability, queueing or risk theory. However, for concrete applications, 
this exponential approximation is not sharp enough for small values of 
mission time. So, other approximations have been proposed (Bon and 
Pamphile (2001), Kalashnikov (1997)). In this paper we propose a new 
point of view where the exponential approximation appears as a first- 
order approximation. We consider more general random sums stop- 
ped by a rare event, where summands am no more assumed to be 
independent neither nonnegative. So we give a second-order approxi- 
mation. As illustration we consider stopping time with negative bino- 
mial distribution. This approximation provides a new evaluation tool 
in reliability analysis of highly reliable systems. The accuracy of this 
approximation is studied numerically. 

2000 AMS Subject Classification: Primary 41A25, 60F99,60K10; 
Secondary 601342, 60F05. 

Key words and phases: Random sums, limit theorems, approxi- 
mations, reliability. 

1. INTRODUCTION 

A geometric sum of nonnegative i.i.d. random variables (X, )  is defined as 
fol1ows: 

Nu 

SNO = C X,, 
where No is independent of the sequence (X,) and has the geometric distribution 

Generally, an explicit computation of the distribution function of SNu is not 
possible. So we have to resort to approximations. This sum usually modifies 
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a discrete-time cumulative process stopped by a rare event. This means that we 
are in the asymptotic where 0 goes to zero. In this case the following theorem is 
useful (see Kalashnikov (1 997)) : 

THEOREM 1.1. Assume that XI is integrable and let ,u == E [XI]. Then 0 S N B  
converges in distribution to the exponential distribution with mean p. 

This convergence theorem gives, for small 8, the following approximation 
formula: 

(2) B (S,, > t /8 )  = exp ( - t /p )  + o (1) (t E R). 

In the special case where the summands in (1) have an exponential distribution 
(with mean p), OSN, has also, for any 6 > 0, the same exponential law. Hence we 
may think that if the common distribution of the random variables (X,) is not far 
away from an exponential one, the approximation formula (2) should be sharp. 
This is why this first-order approximation has been widely used in various 
applied disciplines like reliability, queueing, insurance risk, storage and inventory 
(for applications see, for example, Gertsbakh (1984), Asmussen (1987), Kalash- 
nikov (1997)) and various bounds have been obtained by using renewal technics 
(cf. Brown (1990) and Kalashnikov (1997)). This paper is motivated by the study 
of rare events in reliability models (see Section 3). Our fust aim is to propose 
a tight approximation for situations where the summands are not independent 
and the random index is a stopping time. We choose a martingale framework, 
but other kind of dependence (Markovian or mixing) may also been studied. 

The paper is organized as follows. Firstly we will extend Theorem 1.1 to 
a drifted stopped square-integrable martingale. This means that the summands in 
(I) are no more assumed to be independent neither nonnegative. Moreover, the 
random index and the summand are no more independent. Namely, the first-order 
approximation is that the normalized stopped drifted martingale shares the same 
asymptotic as the normalized stopping time. Further, assuming independence we 
give a second-order approximation (see Theorem 2.1). We point out that in the 
framework of i.i.d. summands this second-order approximation involved the gene 
ralized inverse Gaussian distribution introduced by Barndorff-Nielsen and Hal- 
green (see Seshadri (1993), p. 27). In Section 3 we illustrate our results, firstly 
considering stopping time with negative binomial distribution, and then discussing 
some examples of stopped martingales coming from reliability problems. The last 
section is devoted to some numerical experiments where the accuracy of the first- 
order and the second-order approximations are compared. 

2. MAIN RESULTS 

2.1. Model and assumptions. In what follows, all the limits are taken for 
6 going to 0+.  Hence G and % denote, respectively, the convergence in dis- 
tribution and the convergence in probability for 0 going to O + .  
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Let (0, d ,  B) be a probability space and P = (F,,)n,N be a given filtration. 
In this probability space, let E = (E,, n 2 1) be a real square-integrable rnartin- 
gale increments adapted to 9. That is, for any  EN we have 

E [ E , + ~ ~ P , J = O  and E [ E ; ] < + C O .  

Let p > 0; for any n 2 1 we set X ,  = g + ~ , .  Let (S,),,31 be the partial sum 
process of the sequence (XnIn Notice that (MA,,  = (S, - np), is a martin- 
gale. We will consider the stopped sum 

where (N,)klo,lI is a family of stopping time with respect to the filtration F. In 
order to establish a limit theorem for SNO,  we assume from now that Ne con- 
verges in distribution: 

where v is a nondegenerate (not concentrated at a single point) probability 
measure. Further, we assume that v does not weight 0. This implies that No 
diverges, almost surely (a.s.1, towards inhity. For ~ E R * ,  we set 

23. First-order approximation. We begin with the following 

Remark. If we assume 

then %SN, converges in distribution to v,. 

Indeed, from (3) we obtain OS,, = ON, p+ OMN,. Now, by assumption, the 
first term in the last equality converges in distribution to v,. Hence it remains 
to show that the second one converges in probability to 0. Now, we get 

On the one hand, using (5) and the Martingale Theorem 7.9.3, p. 243, of Feller 
(1971), MJn converges a.s. to 0. Further, as No diverges a.s., MNe/N8 also 
converges a.s. to 0. On the other hand, as (ONB) converges, it is bounded in 
probability. Consequently, OMN, converges to 0. ra 

Roughly speaking, this result states that if a law of large numbers is 
available for the martingale S, - np, then OS,, and ON, share the same asymp- 
totic. 
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In the case of Theorem 1.1, the convergence of 9N0 to an exponential 
distribution follows directly from the convergence of the binomial distribution 
to the Poisson law. The more general case of a gamma limit will be considered 
in Section 3. 

For concrete applications, for example reliabiIity analysis, the first-order 
approximation is not tight for mission time less than E [S, J, see Section 5 for 
numerical examples. So it cannot be used for a highly reliable system, with very 
large MTTF, like nuclear plants. 

2.3. Second-order approxhatiorn. In this section, we assume that the stop- 
ping time N o  is independent d the process (EJ. In this frame, a refined limit 
theorem can be derived: 

THEOREM 2.1. Assum thut there exist positive reaE numbers p2 and S such that 

(6) 
1 1 " 

lim - ( M ) ,  = lirn - C E [e; 1 Fj- = p2 a.s. and 
n-+m n n a m  il j = l  

Then (ON., ,/%M,J converges in distribution to the imv o f ( U ,  V), where U has 
the distribution v andfor u 2 0 the conditional distribution of K giuen {U = tr), is 
the centered Gaussian distribution with variance upz.  In other words, for the 
Lebesgue measure A on R the density of (U,  P') with respect to vjdu)@A(dv) ,is 

1 
((u, V )  E R +  * x R). 

P r o  of. For a random variable Z let qz denote its characteristic function. 
We shall prove that qeNRfiMNa, converges to cp[,,,, which implies the result. 
First, using Fubini's theorem we have, for ( t ,  s ) € R Z ,  

exp (i (tu + sv) - v /( 
%U,V, ( t ~  S )  = S I -  I 2upz)) v (du) du 

= , eim exp ( - $) v (h) = E [ap (U [it -$])], 
R++ 

Now, we write 

+ E (... [it - $I)] - E [eXP (U [it - $I)]. 
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As BNg converges in distribution to the law of U, the last difference goes to zero 
witli 0, On the other hand, using the independence assumption we may write 

(71 I ~(..,3M3 6. S) - [exp ( 6 ~ ~  [it -q])]I 

Let E > 0. As ONB is uniformly tight and its limit distribution v does not weight 
0, we may find an interval lo = [k,6-'; K ,  0-'1 such that, for all sufficiently 
small 6, B ( N ,  6 I,) < E. The right-hand side of (7) may be rewritten as 

Thus, the first sum in the last expression is bounded by 2s. Now, by assump- 
tions, as n goes to W i t y ,  ~ j f i  converges in distribution to the centered 
Gaussian law with variance p, (see, for example, Duflo (1997), p. 46). Therefore, 
its characteristic function rpMdfi(s) converges, for any s, to exp(-(p2s2)/2). 
Moreover, by (6), the first moment of I M . I / , , , ~  is uniformly bounded. This 
implies, by Ascoli's theorem, that the convergence is uniform over the compact 
set [k,, K,]. Thus, for 0 small enough, the second sum in (8) is bounded by E. 

Hence 

As E > 0 is arbitrary, we may conclude that qeNe,aMNJ converges everywhere to 
Cp(r7.v). 

In the spirit of the Barndorff-Nielsen and Halgreen definition of the gene- 
ralized inverse Gaussian distribution (see Seshadri (1993), p. 27), we introduce 
the following definition : 

DEFINITION 2.2. Let v be a probability measure on R'. The generalized 
Y-inverse Gaussian distribution of parameters a, b > 0 is the probability measure 
v a v b  defined by 

(9) f9b (du) = (Z  (a, b) &) - ' exp ( - a/u) vb (du), 

where Z (a, b) is the partition function 
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In the framework of i.i.d. random variables the following result links 
the generalized v-inverse Gaussian distribution with the asymptotic of 

(ON., $ ~ e ) .  

COROLLARY 2.3. Assume that the sequence (EA is i.i.d. Suppose further that 
has afinite third moment and that its characteristic function cp,, Eies, for some 

> 1, in E(R). Then, for any real v, the conditional law of ONB, giuen 
( f i ~ ,  = v), converges in distribution to  the generalized v-inverse Ga~ss ian  
distribution of parameters ( ~ ~ / ( 2 ~ ~ ) ,  1). 

Proof.  Without loss of generality we may assume that p2 = 1. We only 
give the proof in the case where [ = 1. The case f > 1 could be tackled similar- 
ly, but the formula (11) is heavier to write. As p,, EI? (R),  for n 2 1 the dis- 
tribution of n-l l2  M,  has a densityh. Moreover, using Theorem 8.2.1, p. 533, of 
Feller (1971), we may approximate uniformly over R this density by the Gaus- 
sian one: 

For u E R and 0 > 0 small enough, the conditional distribution K ~ , ~  ( dy )  of ONe, 
given { $ M ,  = uh is 

The characteristic function of this distribution is, for ~ E R ,  

Now, using the uniform approximation given in (lo), we may mimic the proof 
of Theorem 2.1 to evaluate both sums in the last equation. This leads to 

allowing to conclude the proof. 

Remarks. (i) Let @ be the standard normal cumulative distribution func- 
tion. From Theorem 2.1, using Fubini's theorem we have, for t ER and 0 > 0, 
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Thus, we obtain the following "second-order approximation": 

ales,, G t )  = R + I  1 s ( ) +  ( L F R ) .  

This approximation will be discussed and numerically evaluated in Section 5. 

(ii) Theorem 2.1 also gives the asymptotic of the stopped martingale MN,. 
Indeed, fihfNB converges in distribution to the marginal law of V In other words 

This result is a generalization of the i.i.d. case studied in Kruglov and Korolev 
(1991). 

(iii) In the i.i.d. case, assuming that the family ( N o )  converges in probabili- 
ty, the same limit theorem holds for the random vector (BNe, f i ~ ~ 3  (see 
Dacunha-Castelle and D f l o  (1983), p. 228, Proposition 7.4.30). The proof of 
this result relies on the Donsker theorem on functional convergence to a Brow- 
nian motion of the Donsker process (cf. Billingsley (1968)). 

3. NEGATIVE BINOMIAL COMPOUND SUMS 

In this section we consider special cases, widely used in reliability or risk 
theory, for which Theorem 2.1 leads to gamma approximation. 

3.1. Negative binomial distribution. Here we take in stopping time No, with 
a negative binomial distribution, for a 2 1 and 6' €10, I[: 

In the following subsections we shall see some concrete examples of negative 
binomial compound sums. For a, p > 0, y (a, 1/p) denotes the gamma dis- 
tribution of parameters (a, l/p). Recall that the characteristic function of this 
distribution is 

Let Wand Z be two independent random variables both having the distribu- 
tion y (a, 1/p) (a, p > 0). We denote by y"(a, 1/p) the distribution of W-Z. 
Obviously, the corresponding characteristic function is 
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This distribution may also be obtained as a gamma mixture of centered Gaus- 
sian distributions (see the proof below). A very special case is when u = 1; in 
this case the y (1, 1/p) distribution is the exponential law and the y"(ol, l/p) 
distribution is the Laplace distribution (double exponential). We have the fol- 
lowing result: 

COROLLARY 3.1. (i) Assume that ( 5 )  is satisfied. Then 0SN,  converges in 
distribution to the y (a, l/p) law. 

(ii) If(6) is sati@ed, then +,,,%M~. converges in distribution to the distribu- 

tion ?(a, a). 
(iii) (OS,,, f i~ ,~ converges in distribution to n random vector (pU, V )  

having density 

Proof.  To prove the first point, we only have to show that ON, converges 
in law to the y (a, 1) distribution. Let us write the characteristic function of ONB: 

e 1 
1 - (I - 0) exp (i0t) (t E R). 

It converges to the characteristic function of the y (or, 1) distribution. 

To prove the second point, using Theorem 2.1 we obtain the limit charac- 
teristic function of f i ~ ~ . :  

The third point follows directly from Theorem 2.1. The distribution of the 
vector (U, V) is the gamma-Gaussian distribution (see Casalis (1996)). -a 

The following theorem provides the rate of convergence of the first-order 
approximation. 

THEOREM 3.2. Let us denote by y (a, p) the gamma distribution with parame- 
ters ct and p. Assume that there exists a positive real number C such that 

Then the uniform distance between OSN, and y (a, p) is bounded as follows: 
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Proof.  Let (Y,; n 2 1) be i.i.d. random variables with distribution y ( 1 ,  p) 
and assume that .(Ym; n 2 1) are independent of ( E , ;  n B 1). Let us put 

Furthermore, it follows from the divisible property of gamma distributions that 

OSi, y (a, P). 
Now, for 'E > 0: 

Combining (15) and (16), we see that 

The first term is the concentration of the gamma distribution, 

Hence 

supptt < 0S$, < ti-&) < P ( y  (I, p) < &) d &/p. 

Next, from Tchebyshev's inequality, 

Since X,- Y, = E ,  -(Y,-p), (Sf- '; n 2 0) is a martingaIe adapted to 5. Con- 
sequently, using the Wald identity, 

a < (C + Var (Y,)) E [NJ = (C + p2) 5. 

Thus 
0 

P (IOMN,I > E )  d (C+p2) a s ,  

3 - PAMS 24.2 
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and finally 

Minimizing the right term in E, we complete the proof. FA 

3.2. Exponential family. Now we assume that the stopping time belongs to 
a fairly regular exponential model: 

Let x be a probability measure on the set N. Using x, we build the natural 
exponential family TC, by setting 

(17) R, (dt) = exp (zx - $ (TI) (dtj, 

where the red number r is such that the log-partition function 

(1x1 $ (zj = log j exp (zx) n (dt) 

is we1 defined. The distribution of N ,  is K , .  We assume that the exponential 
family K, has a breaking point to > 0 such that 

(19) lim E [ N r ]  = lim $'(z) = +a, 
,+Z& r+z; 

Consequently, the following theorem gives us the behaviour of the stopped 
martingale 

near of the breaking point zo. 

THEOREM 3.3. If  the exponential model is fairly regular, namely if there 
exist positive constants A and a such that 

(20) n ( ] t ,  +m[) -- Aexp(-zot)t"-l as t + + a ,  

then when z approaches zo, either the following (i) or (ii) holds: 
(i) the Xn are centered; then ,/=sr converges in distribution to the 

Laplace law; 
(ii) (zo-z)S, converges in distribution to a gamma law. 

Using Theorem 3.2 and Corollary 3.1, we obtain this theorem directly 
from the following lemma: 

LEMMA 3.4. (zo - z) N ,  converges in distribution to the gamma law y (a, 1). 

Proof  of Lemma 3.4. Let z < zO. We may write 

E [exp (s (zo - z) N,)] = j exp (z t  - $ (z)) exp (s (7, - z) t) x (dt) 

= exp ($ (7 + s (70 - 4) - $ (4). 
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Let us recall that exp(~(z)) denotes the Laplace transform of n: evaluated 
at s. Integrating by parts we obtain 

+ m 

exp ($ (7)) = 1 + T S exp (tt) Q,  (t) dt. 
0 

From Theorem 34.4, p. 233, of Doetsch (19741, under the assumption (20) the 
last integral is equivalent to AT (a) (zo - T ) - ~ ;  this allows us to conclude that 

Since the last expression is the Laplace transform of the gamma law, we may 
conclude the lemma. EW 

4. SOME APPLICATIONS 

In this section we give some applications. 

4.1. Reliability examples. Random sums are widely used in reliability theo- 
ry; actually, the behaviour of a reparable system of components can be de- 
scribed as a succession of operating periods following by periods with main- 
tenance procedures. Maintenance procedures are achieved by a complete repair 
of the system and a new operating period starts again. But, few and far be- 
tween, system failure takes place before a complete repair. More formally, let 
the operating period start at To = 0 < TI < . . ., and denote by No the number 
of operating periods before system failure: 

if X, = T,,- T,-I is the length of the nth operating period, then the 
compound sum SNo is the system lifetime and P(S,, > t)  the reliability of the 
system; 

if Xn = +,(To, . . ., T,) is a reward (positive or negative) during the nth 
operating period, then the compound sum SN, is the total return before system 
failure. 

As a concrete example, let us consider a machine that operators as long as 
a crucial part is operational. At the nth use, the machine produces a market 
value X, = p + ~ , ,  where (E,) are fluctuations. During the nth use, the part has 
a probability 0 of failure; if the part failed, it is replaced by a spare part for the 
next use. The system fails when a parts have failed: No,  the number of ope- 
rating periods before the system failure, is a "shifted" negative binomial random 
variable. For highly reliable parts, failures are rare events, so we assume that 
13 vanishes. Then we want to evaluate the distribution of S,,, the total amount 
produced until system failure. In the framework of the first-order approxima- 
tion, i.e. (E,) i.i.d. and a = 1, accurate approximations have been given in Kalash- 
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nikov (1997). More generally, in the framework of the second-order approxi- 
mation: 

4.2. Randomized Paisson process. Compound Poisson process is another 
class of random sums widely used in reliability or risk theory. A compound 
Poisson process is defined as follows: 

where (N(t), t 2 0) is a Poisson process with intensity A and X, = p f ~ , .  For 
example: 

N(t) is the number of shocks that have occurred in a system up to times t, 
Xn the damage caused by the nth shock. Then S ( t )  is the cumulative damage 
up to t. 

a N(t) is the number of share capital traded up to times t, X, the financial 
profit obtained in the nth transaction. Then S (t) is the total profit up to t . 

For concrete applications, a stochastic intensity A is a more adequate 
model rather than a homogeneous intensity; when (X,) is an i.i.d. sequence of 
random variables, the general compound Poisson process S (t) has been studied 
in Grandell (1997). 

If A is a random variable gamma distributed with parameters a and I, 
then N ( t )  is a negative binomial random variable with parameters o: and 
,?,/(A+ t )  (cf. Engel and Zijlstra (1980)). Therefore, if (E,) are martingale diffe- 
rences, then from Theorem 3.2 when t/A + + rn we obtain 

Furthermore, when A has any distribution, under the assumption of Corolla- 
ry 2.3, we get the conditional law of N (t)/t, given S (t)/t, when t -, + co . 

5. NUMERICAL EXPERIMENTS 

Here we consider a production facility with several operating machines 
and three others on standby. During an operating period, machines are subject 
to breakdown; the maintenance policy consists in the replacement for a faulty 
machine a standby machine if the one is available, either the production is 
haited. Various types of random sums and their approximations have been 
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studied: with the notation of the previous sections, let us denote by No the 
number of production periods, 

Weibull: The random variables (X, ;  n 2 1) are nonnegative and inde- 
pendent, with common Weibull distribution 

Here X, is a running time between two renewal procedures and W is the 
reliability of the system. 

(N.A.: 0 = 0.01, a = 3, a = 1 ,  b = 0.5; see Figure 1.) 

FIGURE 1. Weibull distribution 

Normal: (X,; n 2 1) is i.i.d. with common distribution 

X, = ,USE, with E, N ( 0 ,  a2) (c > 0). 

Here (EJ are Gaussian fluctuations. Typically, X, is the performance of the 
machines between two renewal procedures. Then SN, is the cumulated perform- 
ance before halt. 

(N.A.: 0 =0.01, a =3,  p =  2, a=@; see Figure 2.) 

Martingale: Let (5,) be independent random variables having the com- 
mon distribution N ( 0 ,  b2) (b > O), and la1 < 1. We set Yo = 0 and, for n 2 1, 
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FIGURE 2. Normal distribution 

Here, the perturbation sequence (E,) is defined by an autoregressive sequence (I.',), 
(E,) are square martingale differences, satisfying the assumption of Theo- 
rem 2.1. 

I (N.A.: B=0.01, a =  3, p =  2, a =  0.5, s = @ ;  see Figure 3.) 

FIGURE 3. Martingale 

Exact evaluations of R are obtained empirically by the Monte Carlo simu- 
lations. Numerical integration is used for the second-order approximation. In 
every case, E [SNJ = 600. 

Re m a r k s. Analytical expansion of the rate of convergence of the second- 
order approximation will be done in a forthcoming paper. Nevertheless, from 
numerical calculations some conjectures may be done: The second-order ap- 
proximation R, seems to be better for x < E [SN,] (useful times of the system in 
concrete applications). Actually, in the first-order approximation, invoking the 
law of large numbers, the summands are replaced by their "mean". Consequent- 
ly, the first-order approximation is enough for x of the order of E [ S N J .  
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However, for small x, the law of large numbers has few effects. In the second- 
order approximation, the variance of the summands has been taken into ac- 
count. That is why it is better for x on that scale. 

Furthermore, for the first-order approximation, the uniform distance 
is maximum for small t. Thus the second-order approximation R2 is better 
for the uniform distance, even for the classical scheme of positive and i.i.d. 
summands. 

6. CONCLUSIONS 

In conclusions, we show that exponential approximations, as Theorem 1.1, 
can be generalized for random sums with summands which are neither 
nonnegative nor i.i.d. and a random index which is a stopping time. Those 
approximations appear as the first-order ones. Consequently, we propose 
a second-order approximation for random sums with independent index. In 
this paper we have chosen a martingale frame for the summands, but another 
kind of dependence (Markovian or mixing) will be studied in a forthcoming 
paper. 

Further, in our numerical experiments, the uniform error of the second- 
order approximation is possibly overestimated. Indeed, the numerical eval- 
uation of the integral involved in the second-order approximation is bad for 
large values. In a forthcoming paper we will give some expansions of this 
integral. 
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