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Abstract. In this paper, we calculate the principal eigenvalues for
time changed processes of Brownian motions and symmetric a-stable
processes in one dimension.
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1. INTRODUCTION

Let M* = (X%, P,), 1 <& < 2, be a symmetric a-stable process on R and
denote its Dirichlet form by (£, #%. Let D be an open set and M” the
absorbing a-stable process on D. Let u be a measure in the Kato class and
A¥ the positive continuous additive functional (PCAF) in the Revuz correspon-
dence to u. We now define

A(u; D) = inf {&*(f,f) | fGCS"(D),IIJdeu = 1}.

Then A(u; D) is the principal eigenvalue for the time changed process of M”
by A%. It is difficult in general to obtain principal eigenvalues for symmetric
a-stable processes because of the non-locality. We do not know the principal
eigenvalue even for the absorbing process on an interval; a lower bound es-
timate was obtained in [3] (see also [2] and [10]).
A purpose of this paper is to calculate A (u; D) for special pairs of x4 and D.

For example, let §, be the Dirac measure at a. We can then calculate
A(8,+6_4; R\{0}), a # 0, by using the Green function of the absorbing process
on R\{0}:

I’ (&) cos (no,/2)

(@—2T)jaf!

(Example 3.3). We also calculate principal eigenvalues for time changed proces-
ses of killed Brownian motions in one dimension.

A(6a+6-4; R\{0}) =
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Our motivation lies in the proof of the gaugeability: a measure p is said to
be gaugeable on D if
sup E, [exp(4%,)] < oo,

xeD

where 7, is the exit time from D. It was shown in [5], [11] and [13] that for
a Kato measure p with compact support, u is gaugeable on D if and only if
A(u; D) > 1. Hence, by the calculation of 1(6,+é_,; R\{0}), we can give a ne-
cessary and sufficient condition for 8,+6_, being gaugeab]e in terms of the
index o and the point a.

2. PRELIMINARIES

Let M* = (X7, P,), 1 <o <2, be the symmetric a-stable process on R.
Denote its Dirichlet form by (€%, #%). In case of « = 2, M? is the Brownian
motion and (£2, #2) = (D/2, H' (R)), where H*(R) is the Sobolev space of
order one and

D(f,f) = j(df) dx, feH'(R).

If 1 <« <2, then M*is a pure jump process and its Dirichlet form (&%, #°) is
as follows:

(. f) =5t ),,”,,Mg)ldyd"’

{fELZ(R) | ff (—(E)—yf;—?;))—dydx < oo},
RxR

where

a2* 1 I (14 0)/2)
w2 r(1—aw2) ’
Let v be a smooth measure and A; the PCAF in the Revuz correspondence
to v ([6], Theorem 5.1.4). Let M’ = (X7, P}) be the subprocess of M* with

respect to the multiplicative functional exp (— 4;) (see [6], Appendix A.2, for
details):

o (o) = rx= }Oe”‘t"_ldt.
4]

ELLf (X})] = Ey[exp(— A7) f (X7)].

Then the process M® generates the Dirichlet form (£*, #°):

F'=FnE2R;v), &(fN)=6UN+[dv, feF
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([6], Theorem 6.1.1). Let MP = (XP, P?) be the absorbing a-stable process
on D: denote by tj, the exit time from D, 7, =inf{t > 0| X,¢D}. Let 4 be
the cemetary point. We set

X.tD — X‘tz’ 0 "'-<-. L < Tp,
A’ Tp S ta
and P? satisfies

E2[f(XP)] = E.[f (X7): t < 1p].

Moreovet, the Dirichlet form (62, #°) of MP? is the following:
FP={feF*|f=0 on D},
&°(f.f)

1. [df\2
Ei(a) dx, cx—2,

2
%m’(cx) {f Mdydx+d(a)jf(x)z f 1 e, 1<a<2
D

DxD |x_)’|1+a 1)c|:"_y|1+lz

([6], Theorem 4.4.2, Example 4.4.1).

Now we review the notion of time changes. In general, let X be a locally
compact separable metric space and m a positive Radon measure on X with full
support. Let M = (X, P,, {) be an m-symmetric transient Hunt process on X,
where ( is the lifetime of M, { = inf{t > 0 | X, = A}. We denote by G(x, y) the
Green function of M and by G,(x, y) the a-resolvent density.

DEerINITION 2.1. (i) A positive Radon measure y on X is said to be in the
Kato class A (G) if

lim sup | G, (x, y)u(dy) = 0.

a— 0 xeX x

(ii) A measure ue X (G) is said to be in A, (G) if for any & > O there exists
a compact set K and a constant 6 > 0 such that

sup [ G(x, y)u(dy) <e,

xeX Kec

and for all measurable sets B < K with u(B)<é

sup | G(x, y)u(dy) <.

xeX B

Note that any finite measures in ) (G) belong to X, (G) (see [5]). Let
ne A (G). Then there exists a unique PCAF A¥ in the Revuz correspondence
to u (see [1] and [6]).

10 — PAMS 242



358 Y. Shiozawa

Let ueX (G) and 7, be the right continuous inverse of AY, t, =
inf{s > 0| A%.; > t}. Put X, = X,,. Then M = (X,, P,) is said to be the time
changed process of M by A¥. Denote by Y the topological support of x and by
Y the quasi-support of s Then M is a y-symmetric Markov process on ¥ and
its lifetime is Af ([6], §6). Set

Hyu(x) = E,[u(X,,): 6y < ],

where oy is the hitting time of Y, oy =inf{t > 0| X,e Y}. Let (£, &) be the
regular Dirichlet form of M. Then M also generates the regular Dirichlet form
(€, #) on I?(Y; y) ([6], Theorem 6.2.1):

F ={yel(Y:p) |y =u pae. on Y for some ucsk,},
EW, ¥) = & (Hyu, Hyu),

where (#,, &) is the extended Dirichlet space of (%, &) ([6], p. 35). Moreover,
(&, F) satisfies

(2.1) &(u, u)=inf{& (v, v) | veF, 7 =i qe. on Y},

where # is a quasi-continuous version of u, and g.e. is the abbreviation for
quasi-everywhere. The equation (2.1) is the so-called Dirichlet principle.

3. EXAMPLES

3.1. In case of « = 2. First we shall study the principal eigenvalues for time
changed processes of killed Brownian motions in one dimension. Let u be
a Kato class measure with respect to M". Define

Alp;v) = inf{%D(f,ij”fzdv | fed, ‘{ﬁdu = 1}.

Then the equation (2.1) implies that 4 (u; v) coincides with the principal eigen-
value for the time changed process of M* by Af.

ExampLE 3.1. Let M? = (B,, P,) be the one-dimensional Brownian mo-
tion. Set v(dX) = Y5 (x)dx for a <b. Then A} = ocj:) Kap (By)ds for o > 0.
Denote by M* = (B, P¥") the killed Brownian motion with respect to
exp(—A). Then M® generates the Dirichlet form (6*, H'(R)):

&2 f) = 3D N)+affPdx, feH®).

By definition,
(3.1) A(BS; oxa) = nf {8 (f, 1) | feH' (R), Bf*(z) = 1}.
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Let Cap be the 0-order capacity with respect to M*'. Since the right-hand side
of (3.1) coincides with Cap({z})/B, its infinum is attained by

1 1 7=
—=P? (0. < 0) = —=E,[exp(—a | ¥ (By)ds)].
J/B VB o
Suppose first that z < a. Then we can see from [4], p. 167, 2.7.1, that

E.[exp(—a 1: X (Bs)ds)]

(1, ' x <z,
\/2a(a—x)sinh(,/2(b—a))+cosh (/2u(b—a) ____
/20(a—2z)sinh (/20 (b —a)) +cosh (/2z (b —a))’ =

= 4 cosh (/2 (b — x)) a<x<h
/24 (a—2z)sinh (/22 (b —a)) + cosh (/20 (b — a))’ S
1
, b<x.
| /20 (a—2)sinh (\/2a (b—a)) + cosh (/20 (b — a)) =

Hence a direct calculation yields

2(85.; o any) = %fs’“ (P (0, < ), P* (6, < o))

1 /20 sinh (/20 (b —a))
2B cosh (\/20(b— ) ++/20 (a—z)sinh (/2 (b—a))

Next we assume that a < z < b. Then we can also see from [4], p. 167, 2.7.1,
that r

x<a,

1
cosh(\/20(z—a))’
cosh (\/5; (x—a))

T » a<x<z,
B [oxp(—a | fun (B d9] = { B (/22E=0)
0

cosh (\/Z_a (b—x))
cosh (\/2a(b—z))’
1

cosh (/20 (b—2z))°
and thereby . ( (b=2)

A(BS,; otan) = \/& {Sinh(2\/2_oc(z—a))+sinh(Zﬂ(b_z))}
z> %X (a,b) —4\/53 COShz(\/z_cx-(z—a)) COShz(\/Z_(Z(b_Z)) .

z<x<b,

b<x,
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ExampLE 3.2. For neN, let {a;};_, and {b;}_, be sequences which satisfy
ap<by <a; <b,<..<b,<a, Here we take v=3_ 08, for a;>0.
Then A} = ZL o % la, (), where (¢) is the local time of the one-dimensional
Brownian motion at a. Let M” = (B}, P%) be the killed Brownian motion with
respect to exp(—A4;}). Then its Dirichlet form (6*, #) is the following:

F = {feH'®| Y uf@ <o},

6N =5DUN+ Y wf@P, e

Put p=Y,_, Bid, for ;> 0. Then

MY, Bidui 3 oub) = int (£ 1)1 fe 2, 3 BSOF = 1)

i=0

Note that the infimum above is attained by the harmonic function u, which
satisfies

u(x) = E, [exp(—A4z;) u(B,y)]

(4(b1) E, [exp (— 0 kg (61))], x < by,

_J u(b) E, [CXP(—“i lai(ai)): 0; < Gi41 Ju(bis ) Ex [eXP(—“i Lo, (G'i+1)): i1 <07,
b; < x <b+1,

u(b) E, [exp(—0a 1y, (o)), | b, < x,

where B = {b;};_, and o; is the hitting time of b;. Then we see from [4], p. 164,
2.3.1, that

_ 14205(x—ay)
T 1+2a0(by—ao)’
_ 1420, (a,—x)

 142a,(a,—b,)’

E, [exp(—aols(01))] o < x < by,

E.[exp(—anl,, (0,)] b, < x < a,.

We also see from [4], p. 174, 3.3.5, that
E lexp(—a:l,(0)): 6:<0i41]
bit1—x+20;(biy 1 —a;)(a;—x)
bis1—bi+20;(bir 1 —a;) (@ —by)

bi+1—x
bis1—bi+20;(biy —a)(@;—by)

b;<x<a,

a; < x < by,
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and

E, [eXP(—““t lai(0'1+1))5 Opr1 < O'i]
x—-b,-
bi+1—bi+20;(bir 1 —a;)(ai—by)’
x—b;+2a;(a;— b)) (x — ay)
bi+1—bi+20; (b1 —a;) (@i —by)’

bi<x$ai,

G<x< bi+1'
Thus we have

(3.2) %D(u, u)+ i o u (a)?
i=0
_ 1t (1+2ai(bi+1_ai))u(bi)z_zu(bi)u(bi+ 1)+(1+2ai(ai'—bi))u(bi+ 1)?
h 5:21 b,-+1—b,-+20¢i(bl-+1—a,-)(a,-—b,-)

0o

L
O
1+ 20 (by —ao)

1420, (a,—by) " (b)*.

u(by)*+

We shall find the minimum of the right-hand side of (3.2) under the assumption
Yoo Biu(b)? = 1. Put

ub)=x; and A;= {bi+1—bi+2“i(bi+1—ai)(ai“bi)}_l-
Set

n—1

1
F(xy,.., Xp) = 3 A; {(1+2°‘i(bi+1—ai))xi2—2xixi+1 +(1 +2ai(ai_bi))xi2+1}
1

i=

+ %o x3+ %n x2
1+2a0(b1—ao) ' 1424, (a,—b,) "

and

G(K, Xgy «euy X) = F (1, ..., x)—K (Y, Bix?—1).

n
i=1
As a direct calculation yields

n

1 G
Ekgl xka—xk =F(x1,..., Xg)—K =0,

it follows that

n

l(i Bi6s; Y. 0;6,) = min {x | det A (x) = 0},
i=1

i=0
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where
(B, -4, 0 0 )
—A, B, —A4,
—A
ap=| 0 ~H B l,
—An—z Bn—l _An—l
e 0 —4,; B, |
2“0

B, +A4; (1420 (b—ay))—2xp;,

- 1+2a0(b1_a0)
By = Aj—1 (14205 1 (@ s — b— 1)) + A (14 204 (br+ 1 — @) — 2%,
' 2<k<gn—1,

20
Bn 2 b)+An—1(1+2‘xn—1(an—1_bn—l))_2’€ﬁn-

‘ - 14 2a,(a,—
When =1, we get
oo +0tq + 2009 0ty (@4 — ao)

A(B1 b5 0o gy +0t1 Oay) = .
@ %0 e+ 8100 B1(1+2a0 (by—ao)) (1 +20; (@ —by))

In particular, if b; —ay = a; —b; =r, then

_ a0+d1+4a0a1r
- ﬁl (1 +2a0 r)(]. +20(1 r).

When n =2 and oy = o, =0, we obtain
B1 (1 + 204 (a4 —b1))+ﬁ2 (1 +2a4 (b, “01))
4B; B2 {by—b1+20; (b —ay)(a; —by)}

B (1+2a (as —by) — Ba (14201 (b2 — 1))} +4B1 B2
4B, B, {b;—by+2a; (by—ay)(a; —by)} '

Assume in addition that §, = 8, =f and b,—a; = a;—b; =r. Then

A (ﬂl 5b1; 0o 6ao + oy 5!11)

A(ﬁl 5b1 +BZ 6112; oy 601) =

T 2B(1+oy 1)
3.2. In case of 1 < o < 2. Next we shall consider the principal eigenvalues

for time changed processes of absorbing a-stable processes with 1 < o < 2. Let
A(u; D) be the principal eigenvalue for MP>:

A (ﬂ (5b1 + 51’2); 1131 6411)

A(u; D) = inf {€°(f, f)| feCT D), | f*du=1}.
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ExAMPLE 3.3. Let M° be the absorbing a-stable process on R\{0} and G°
its Green function. Then Getoor [7] showed that

G(x, y) = (xl* Iy = x—y* Y

" I'(«)cos (me/2)
(see also [9], p. 379). By definition,
(3.3) A (8a; R\{0}) = inf{&*(f, f) | f€CT (R\{0}), f(a) = 1}.

Then we see in a similar way to Example 3.1 that the infimum of (3.3) is
attained by G°(:, a)/G°(a, a). Hence

1 r (o) cos (nee/2)
G%a,a) 2lafp~t
The following are three graphs of A(3,; R\{0}) with respect to ae(1, 2]. If |a] is
small, then A(5,; R\{0}) is increasing monotonously. However, 1(d,; R\{0})

takes the maximal value for large |a|. We can guess that A(d,; R\{0}) takes the
maximal value for la| > 1.5.

A (6a; R\{O}) =

0.3
0.25
0.2
0.16
0.1
0.05

12 14 16 18 2 12 14 16 18 2 12 14 16 18 2

N OB OO

FiG. 1. (5, 45; R\{0}) Fic. 2. (5, . R\{O}) FiG. 3. 1(5,,; R\{0})

We can also show that

1 _ I' (o) cos (ma/2)
G°(a, A)+G°(a, —a)  (4—2*"V)|aP ¥

ExaMPLE 3.4. Let M? be the absorbing a-stable process on R\{—p, p}.
Denote by G?(x, y) the Green function of M?. Then we see from (2.9) of [9] that

Gp(xa y) = Lp(x)+Px(ap < a'—p)a(y_p)‘l'Px(o'—p < a,,)a(y+p)—a(y—x),

where

A(8a+6-4; R\{0}) =

a(x) = Ixl*~*,

T (o) cos (ma/2)
and L, is some function. Noting that G?(x, p) = G*(x, —p) = 0, we obtain

I (x) = 3(a(x—p)+a(x+p)—a2p)).
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Since it follows from Theorem 6.5 of [7] that

Pilos, <03y = %+§E:2—p)(a(xip)—a(x$p)),

we get

G (x, 3) = 3(a(v—p)+ale+p)+aly~p)+a0+p)—a(2p)

1
2a(2p)

(alx—p)—a(x+p)(a(y—p)—a(y+p)—alx—y).
Let g # p. Then we have

1
AGg; R\{—p. P} = @D
_ — 2T (&) cos (na/2) |2p|* 1
4lp—gl p+gl* ' —(p—al*~ " +lp+q* T =120

In particular,

] _ TI'(w)cos(ma/2)
1(60’ R\{ D, p}) - (2_2u~—2) lpluhl‘
We can also prove the following:
-1
A0, +0-;; R\{—p,P}) =
Cat0-g: RN{=P. P}) G*(q, 9+G"(q, —9)
— I' (o) cos (n/2)

C2lp—glt +20p gt =120 —2g
See [10], Section 3, and [13], Example 4.1, for more examples of principal
eigenvalues for time changed processes of symmetric a-stable processes.

4. APPLICATION
In this section, we apply the results in the preceding section to the gauge-

ability. Recall first that (£, &) is the regular Dirichlet form associated with an
m-symmetric transient Hunt process on X. Let us define

A(w =il {&(f. 1) feZ, JI‘rfzdu =1}, pei(G).

Then Chen [5], Takeda [11] and Takeda and Uemura [13] proved the fol-
lowing:
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THeEOREM 4.1 ([5], Theorem 5.1; [11], Theorem 2.4; {13], Theorem 3.1).
For ue A, (G) with compact support it follows that

4.1) sup E, [exp (4%)] < o

xeX
if and only if A(u) > 1.

A measure ue X, (G) is said to be gaugeable if (4.1) holds. Applying Theo-
rem 4.1 to the results in the preceding section, we can give conditions for some
measures being gaugeable. For instance, let us consider Example 3.3. Denote
by @, the hitting time of 0. Since the strong Markov property implies

sup Ex [ﬁXp (la (00))] = Ea [exp (la (60))] ]
xeR\{0}

we have

(42 E.[exp(l(co)] < 0«0 <ol < (._M)/

2

Let us make observations on (4.2). Fix ae(1, 2]. We first suppose that
a is small. If a particle hits a, then it will hit 0 soon. We next suppose that a is
large. Once a particle hits g, it will stay near a for a while and hit @ many times
by the time it arrives at 0.

Remark 4.2. Consider branching diffusion processes on a metric space.
Then it is known that the expectation of the number of branches hitting a closed
set coincides with the expectation of the Feynman—Kac functional (see [8]).
Moreover, this relation also holds for branching symmetric «-stable processes
on R? ([12], Theorem 1.2). Combining this with Theorem 4.1 and our cal-
culations of A(u, D), we can give a necessary and sufficient condition for the
expectation of the number of branches hitting a closed set being finite.
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