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Abstract. Let K be a hypergroup with left Haar measure and (v,)
a sequence of symmetric probability measures on K converging to &,.
We will prove a functional limit theorem in the sense that conver-
gence vir — pe #* (K) implies unique embeddability of g into a sym-
metric convolution semigroup (i,),» o and v¥# — y, holds for all ¢ > 0.
This generalizes the corresponding result for hermitian hypergroups.
Furthermore, by analogy with locally compact groups, it can be shown
that for specific hypergroups similar results are available without sym-
metry assumptions.
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1. INTRODUCTION AND NOTATION

For triangular systems of identically distributed probability measures on
R? it is well known that weak convergence vi» — u implies that the limit
measure g is infinitely divisible, and hence uniquely embeddable into the
continuous convolution semigroup (u');»,. Further, the discrete semigroups

(v, o converge to (i), Which means that

W o, 120,

and the convergence is uniform on compact subsets of R.. This so-called
functional convergence is essential for most nontrivial properties of limit laws
p = lim,_, ,, v¥ including, for example, the concept of (semi) stability (see, e.g.,
[6] or [10]).

However, studying such convolution products on more general algebraic
structures as, for example, hypergroups it is not clear whether the conclusion
that simple convergence leads to functional convergence can be drawn. Fol-
lowing the notation of Nobel and Tel6ken ([15] and [18], see also [6]), who
both treated the case of locally compact groups, statements concerning this
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problem are called functional limit theorems. Nobel was able to prove a func-
tional limit theorem for strongly root compact groups which have no non-
trivial compact subgroups (see [14] and [15]), Teloken generalized it to wider
classes of locally compact groups, particularly to those admitting nontrivial
compact subgroups (cf. [17] and [18]).

The purpose of this paper, which is drawn from the author’s thesis [12], is
to study functional limit theorems for probability measures on hypergroups K,
where for standard definitions and relevant facts we use the notation in [2].
For this, two different approaches are chosen. On the one hand, a result on the
embedding of infinitely divisible measures and a corresponding functional limit
theorem for hermitian hypergroups shown in [12] are generalized to the case of
symmetric probability measures on a hypergroup with left Haar measure. On
the other hand, there are no difficulties in transferring Teloken’s functional
limit theorem from locally compact groups to hypergroups. After doing
so, where a (suitably defined) assumption of root compactness occurs, we
give examples for hypergroups satisfying the requirements of this general
theorem.

Notation. For a locally compact Hausdorff space E let % (E) denote the
Borel o-algebra in E, #* (E) the probability measures, and .#{"(E) the positive
contractive Radon measures on E. If for a sequence (i,),en < AV (E) the kind
of convergence lim,, , 4, = ¢ is not specified, then always weak convergence is
meant. For xeE, ¢, denotes the point measure in x. We write C,(E) for the
vector space of continuous functions on E with compact support and C? (E) for
the vector space of continuous and bounded functions on E. For a bounded
function f: E—-C,||fl|l, is the sup-norm.

In the sequel we will make use of the following notation (see [2]): K al-
ways denotes a hypergroup, e the neutral element, and Ks x> x~ the involu-
tion of K. We always assume K to be second countable; then the vague topolo-
gy of 4V (K) is metrizable. For bounded Radon measures g, v on K we denote
by u*v the convolution of u and v, and by u", ne N, the nfold convolution
product of u. If K is commutative, then let K be the dual of K and j the

“Fourier transform of a bounded Radon measure u on K. We write oy for a left
Haar measure on K. For a nonvoid subset A of K, [4A] denotes the smallest
subhypergroup of K containing A. If (i,),»¢ is a2 continuous convolution semi-
group in #{"(K), that means p,* pt, = pigy, for all s, t > 0 and lim,. oy, = po
(#0) with respect to the weak topology, then necessarily uq = wg, where H is
a compact subhypergroup of K and wy its normed Haar measure ([2], 5.2.3).

For a hypergroup K admitting a left Haar measure wy we define, as usual,
the Hilbert space I (K) = I2(K, wg) with {f, g> = | fgdwx for f, ge 2 (K).
Let L(I*(K)) denote the space of all linear and bounded operators
A: I?(K)— I? (K) endowed with the operator norm. We write R, for the (left)
convolution operator of ue.#{(K), that means R, f = p= f for feI?(K),
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where the convolution of measures and functions is defined by

(e* f)(x) = [ [ fd(e,- *&)du(y), xekK.

If X is a topological space and M a subset of X, then M is the topological
closure and AP (M) the set of all accumulation points of M.

Throughout this paper, (k,),.y always denotes a sequence of natural num-
bers with k, ~co.

. .. 2. A-FUNCTIONAL LIMIT THEOREM
FOR SYMMETRIC PROBABILITY MEASURES

Remark 2.1. The following facts are known for hermitian hypergroups
([2], 5.3.11 and 5.3.4):

(@) Let (vpuen S #* (K) be infinitesimal, which means v, 5= &.. If (ve),en
converges to a measure uc.#'(K), then u is infinitely divisible.

(b) If ue.#*(K) is infinitely divisible, then there exists a unique continu-
ous convolution semigroup (i), in #*(K) such that p, = pu.

In this situation, that means under the assumptions of (a), the relation
fy = (), t > 0, holds for the Fourier transforms, and using the Lévy continuity
theorem ([2], 4.2.2) one gets functional convergence

vl ——s . uniform on-compact subsets of 10, oo[.

n—*

Note that for hermitian hypergroups the characters, and hence the Fourier
transforms of probability measures are real-valued.

The proof of statement (b) can be done by showing that the functions
fir=(@eC(K),t>0,and f,:= 143> 0y are Fourier transforms of probability
measures u,€.#1(K) ([19], Theorem 4.3, or [2], Theorem 5.3.4). Considering
hypergroups with left Haar measure wy, a similar conclusion can be drawn by
making use of operators, provided the measures u,e.#'(K) with u* = p are
symmetric in the sense that g, = u, holds. The parts of the functions f; are
taken by operators (7)), in I? (K), that can be constructed in an obvious way
from- the convolution operator R, via the spectral theorem for normal opera-
tors in Hilbert spaces. Based on these ideas it is possible to prove a func-
tional limit theorem — in generalization to that in Remark 2.1 — for the,case
when (v,)..ny iS a sequence of symmetric probability measures converging
to ¢,.

Throughout this section let K always denote a hypergroup with left Haar
measure wg and let the convolution operators act on I?(K). If ue.#'(K) is
symmetric, then the corresponding convolution operator R, is self-adjoint.

At first, the symmetric analogue of (b) in Remark 2.1 is proved.

THEOREM 2.2. Let pe.#'(K) be a symmetric infinitely divisible measure,
which means that for every ne N there exists a symmetric measure py,€ M (K)

11 — PAMS 25.1
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with ug,y = p. Then there exists a unique continuous convolution semigroup (i), o
in M (K) such that u, = u and p” = p, for all t > 0.

For the proof of Theorem 2.2 we will need the following lemma which is
known for locally compact groups and can be transferred to hypergroups.
LemMMA 2.3. Let the mapping @: MV (K)— L(I?(K)) be defined by
MP (K)o p— @ () := R,,.

Then @ is injective and continuous with respect to the vague topology, resp. the
weak topology of operators in L(I?(K)). Hence ®(.#"(K)) is compact and
o~ P(MP(K)) > MO (K) is also continuous.

Proof. Theorem 6.21 in [9] yields the injectivity of @. If (i,)sen S AP (K)

is a sequence converging to pe.#"(K) vaguely, then since for ve #{ (K)
and f, geC.(K)

(R.f, 9> = If((f*g”)(J’)dv_ 6y

holds and f*g~ is in C.(K), we have
1) Ry, |o @ 7=z R f, $

for all f, geC.(K). Here g~ denotes the mapping g~ (x) =g (x~) for xeK.
Because C,(K) is dense in I? (K), (1) is valid for all f, geI?(K), and hence & is
continuous. The remaining part of the lemma follows by Theorem 8.12 in
[16]. =

Proof of Theorem 2.2. Choose p) e.#*(K) such that M(z) u and
Hz) = Mz Since RM o 18 self-adjoint, the convolution operator R, is pos1t1ve'
semidefinite (in short: positive), i.e.

R, f, [>=0 for all fe?(K).

“The spectral theorem for normal operators in Hilbert spaces (e.g. [11], Theo-
rem 18.10) implies the existence of a unique spectral measure E on the spectrum
- o(R,) =10, 17 such that B
R,=[zdE,
where z denotes the identical mapping on o(R,). Defining, for ¢ >0,
h:o(R,)— Ry by h(x):=x" and ho by ho := lixeo(r,y:x#0)» WE see that the
functions h, are Borel-measurable and bounded, and they satisfy A, = h,h, for
5,t=0. If T; for t >0 is the operator

) T,:= | h,dE,

then (T));»0 = L(I?(K)) is a family of positive operétors such that T, =R,
Tl <1 for all ¢ 30,

3) T4 =TT, for all s,t>0,
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and that R, at+— T, is continuous with respect to the weak topology of opera-

tors. For ne N, Ty, is the unique positive n-th root of the positive operator R,,

and the family (T,),», is uniquely determined by the above properties.
Given ne N there exists pioq, € 4" (K) such that u,, = p and puG.y = pam.

But then R,z = is positive, and hence coincides with Ty,. With the definition

= 1ty
for re@%, r = p/q, where p, ge N, we obtain

- o Ri=(R #(zq)) =(Ty)’ =Ty =T,

and thus (u,)e* is a (symmetric) rational convolution semigroup.

Let now t be an element of R, and (r,) = Q% a sequence converging to t.
Then (g, )nen has a vague accumulation point 4, #{"(K). Lemma 2.3 together
with the continuity of t+—T; and R, = T, for all re Q% implies

(T f,g>=<R,, f,g> for all f, ge?(K),

and hence T; = R;,. In particular, 4, is the only vague accumulation point of
(v Jnen» 8O that p, — 4, =:pu, holds with respect to the vague topology.

(#)s= 0 is a convolution semigroup, and since for each »€ Q% the measure
4, is a probability measure, (4),», is contained in .#(K). The convolution
semigroup is continuous by construction. =

The applied methods of functional analysis can also be used to prove the
following functional limit theorem.

THEOREM 2.4. Let (V,),en S #* (K) be a sequence of symmetric probability
measures with v, ——=> .. If (vi"),.n converges to pe #* (K), then p is uniquely
embeddable into a continuous convolution semigroup (u),>o S #*(K) with the
property u, =, for all t =0 and we have functional convergence

vl — sy, uniform on compact subsets of 0, oof.

n— o

The proof will be performed in several steps. In one of them the following
lemma, which is a special case of Theorem 2 in Section X.7 in [4], is needed.

LemMA 2.5. Let T and (T,)..n be positive operators in a Hilbert space
H with |ITII<1 and ||TJI<1 for all neN. Then T, T implies

NT, —== YT for every NeN, convergence in each case with respect to the
strong topology of operators, where \/ T and \/ i':,, neN, denote the unique
positive operators with (YT = T, resp. QT =

Proof of Theorem 24. Step 1. R, is a positive operator.
Since (vkn) converges to p and (v,) to ¢,, we have

) ], 5 w2 lux f, )
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and
&) Vet ta f, ) s= ux f, f

for all feI? (K). If (k,),en admits a subsequence (ky, );en such that ky, is even for
all IeN, then the self-adjointness of R"n; and (4) imply :

(6) ux f, f>=0 for all fel?(K).

If there is no such subsequence, then (k,),.y admits a subsequence with odd
members only and (6) follows from (5).

Step 2. Let (T)s» 0 be the family of positive operators constructed in the
proof of Theorem 2.2; in particular, for each NeN, T,y is the unique positive
N-th root of R,. Deﬁmng for NeN

(7) A = 2N nf2N] e N

we can prove that the convolution operators (R;m),.y converge to Tyy in the
strong topology of operators. Indeed, write for neN

- [2kN]+ J{?-kN]Jr8

v
2N summands

with ¢,€{0, 1 ., 2N—1}. Since v, —¢,, we first obtain v%» —¢,, and then
because of vk — u and the shift-compactness theorem ([2], Theorem 5.1 4)
we get

(AGMN =,15,""/2N]* *vE,""/?N]Jmu.

Y,
2N factors

Ry and R are positive operators so that Lemma 2.5 gives the above
statement.

Step 3. For every NeN there exists a symmemc uyneM"(K) such that
: TII/N Ill/N
Indeed, for Ne N fixed and a vague accumulatlon point Qe,//l(”(K) of
(AMen Step 2 implies R, = Tyy. In particular, ¢ is the only accumulation

point. Since R, = Ry~, pqy:= ¢ is a probability measure.

Step 4. Using Theorem 2.2 we obtain a unique continuous convolution
semigroup ()0 S A (K) with p, = pu and p; =y, for all ¢t >0, where
T; = R,, holds for each t > 0.

Step 5. It remains to show that vi*J — y, for all ¢ > 0 is satisfied. This is
done by proving convergence of the corresponding convolution operators. In
this step we assume that for each ne N the operator R, is positive, which also
implies positivity of R,xn.
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For fixed t > 0 define the sequence (r,) = Q% by r,:= [k, t]/k, for n suf-
ficiently large. Let E™ denote the spectral measure of the positive operator
R,x.. Then we have

(8) j h.-,, dE® = (j‘ h 1k, d E(n))[k,.t] = Rv“)[k,,t] — Rvg‘nt]

for ne N, where the functions (k,);. o are defined as in the proof of Theorem 2.2,
and so we have to verify that the operators (| #, dE™) converge to R, =[h,dE.

Let f eLz(K) and ¢ > 0 be given. Since (h ) converges to h, umformly on
[o, 11, there exists noeN such that ik, —h,, |lo <& for all n>n, and
(17, —hil < & Because of properties of the spgctral measure and integrals
with respect to it the estimations

f b, dE® f—§ b, dE@ |, <ellfll,  for all n>n

and

| b, dEf~[hdEf|2 <ellfl,

hold true. For r = M/N e Q% with M, N e N convergence R,x - R, and Lem-
ma 2.5 imply

j.h,dE(") = (5 hl/NdE(")) n— o (JhllNdE) == jhrdE
in the strong topology of operators. Thus we can find n, € N with n, > n, such

that
“jh,"udE("’f—jh,nndEf”z e foralluzn,

The following inequality, valid for all ne N, completes the proof:
I§ v, E® f—§ b dEf 2 < |[f br, dE® S~ by, dE S
+||f h,, dE®f—{h, dEf|,+ IIf b, dEf—{hdE -

With the same methods we can prove that the convergence is uniform on
compact subsets of ]0, co[. In fact, let ¢ > 0; then defining (r,) € Q% by
tn:= [knt,)/k, for a sequence (t,) = R% converging to t, we conclude that

‘v[k'ltYI] — H‘t .

n—+w

Step 6. Let 6,:=v,*v,forne N and g := pu* p. Then (R; ),y are positive
operators and Steps 1-5 imply that ¢ is uniquely embeddable into a continuous
convolution semigroup (g,);>, With ¢ = g, for all ¢t > 0 and that functional
convergence

) ol ——— o, uniform on compact subsets of 0, o[

holds true. Defining p,:= Q2 for t > 0, we infer that (u,),», is the unique
continuous convolution semigroup in " (K) satisfying p; = pand y, = p, for
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all t > 0. For fixed t > 0 and for a sequence (t,) = R% converging to t, (9)
yields :

YWkt = Yl /214 len /21 F o — Gl /2]y y0 00 = 1,

where ¢,€{0, 1}. m

Remark 2.6. (a) Theorem 2.2 was formulated and proved first because the
result on embedding is itself interesting, and furthermore, transferring the proof
from the corresponding result for hermitian hypergroups in [12] to the level of
operatots, stresses the motivation for this functional analytic approach.

(b) Steps 1--3 yield the symmetric analogue to statement (a) in Remark 2.1
for hermitian hypergroups.

(c) With the methods used in this section we can also prove that for each
symmetric convolution semigroup (i)>o in .#*(K) the limit lim,. o g, exists
with respect to the weak topology, and so (i;);» o is continuous. We only have
to assume the existence of a left Haar measure on K. This generalizes the result
in [2] (Proposition 5.2.7 (a)) for commutative hypergroups, which is verified by
methods of Fourier transform.

3. A GENERAL FUNCTIONAL LIMIT THEOREM

In Section 2 a functional limit theorem was proved by making use of
methods of functional analysis, which we were able to apply to the convolution
operators because of symmetry of the probability measures (v,). We will now
drop this assumption and prove a functional limit theorem that can be transfer-
red almost verbatim from the case of locally compact groups treated in [17]
and [18]. By analogy with this, the notion of infinitesimality is replaced by
a more general concept.

DEFINITION 3.1. Let K be a hypergroup. A sequence (v,,),,eN c #'(K) is
called infinitesimal if
~ (i) (Vn)uen converges, v, —s=> ve M (K), and

(11) H := [supp (v)] is compact and v is not supported on a coset {x} * G of
any proper supernormal subhypergroup G of H.

The theorem of Kawada-It6 for compact hypergroups (Theorem 5.1.17 in
[2]) gives the following characterization of infinitesimality.

PropPOSITION 3.2. Let K be a hypergroup.
@ If (Vp)new S A (K) is infinitesimal, then V' == O
(b) For (vVp)wen < M (K) assume that v, —— ve #*(K) and V' == O

where H is a compact subhypergroup of K. Then (v,),n is infi mteszmal and
[supp (v)] = H holds true.

Proof. (a) is clear by the Kawada-Itd theorem.
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For (b) it has to be shown first that [supp(v)] is compact, and then the
assertion also follows from the Kawada-It6 theorem. But the assumption
vl - wy, which leads to v ¥ wy = wy, and Theorems 1.6.9 and 1.6.3 in [2] imply
compactness. &

Remark 3.3. (@) (Vpneny E A1 (K) with v, — g, is infinitesimal, and so is
(Vadnen € A1 (K) with v, - wg, where H is a compact subhypergroup of K.

(b) If K admits no nontrivial compact subhypergroups, then (vy)un is
infinitesimal iff (v,) converges to ..

(c) It suffices to demand the existence of ¢:=lim,.,v' in Proposi-
tion 3.2 (b). |

(d) The result in Remark 2.1 (a) remains valid if the sequence is infinitesi-
mal in the sense of the new definition and thus a functional limit theorem can
easily be proved under this condition.

By analogy with the case of locally compact groups we define:

DEeFINITION 3.4. A hypergroup K is called aperiodic if {e} is its only com-
pact subhypergroup.

THEOREM 3.5. Let K be a hypergroup and (v,)uen < #* (K) be infinitesimal
with v and H as in Definition 3.1. Assume that

A:={v: neN,0<I<k,}

is compact. If (v¥),.n converges to a probability measure pe .#* (K), then there

exist a subsequence N = N and a rational convolution semigroup (it,),eqg+ Such
that

vl sy,  neN,

and p, %Oy = Og* U, = WU, h*v =y, =y, hold for all re Q% . If further- |
more C = K is a compact subhypergroup such that

(10) | AP {vi»: neN} = M (C)

holds for every sequence (r,),.n & N with r,/k, ——=0 as well a;

(1) Wy * ¢ = Oc*p, = p,  for all reQ%,

then (l,)repv has a unique extension to a continuous convolution semigroup (i), o
with o = wc, and it follows that

vElknt] = Uy, nEN, for all t > 0.

Moreover, the convergence is uniform on compact subsets of 10, o[ and uniform
on compact subsets of R, iff v, —— w¢ (where V0 := w¢).

Proof. We sketch the proof only in a very brief form because it can be
directly transferred from that of Theorem 2.3 in [18].
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If LeN, then compactness of #, the Tykhonov theorem and the con-
tinuity of the mapping .#* (K) x 4" (K)3 (u, v)+> u * v with respect to the weak
topology guarantee that %= ... *x# (L factors) is compact. Since

Ry:={l: neN,0<I<k,L}

is contained in # * ... = %, it is also compact. The latter property is important
for the whole proof, which makes essentially use of subsequence arguments.
The first part of the theorem can be verified analogously to Steps 1-3 in
Theorem 2.3 in [18]. Since (.#*(K), *) is a topological semigroup, we can
apply Lemma 3.44 and Theorem 3.4.6 in [8] in order to show that the semi-
group homomorphism @ 37> y,, where g := ¢, has a unique continuation
to a continuous convolution semigroup (i), o. Using the methods of Step 4 in
[18] we can prove that Q, 37+ y, is continuous at 0. Note that at this point
we make use of the fact that the weak topology on .#*(K) is metrizable (since
K is second countable) and that the assumptions (10) and (11) are needed. The
remaining parts of the theorem can be proved analogously to Steps 5-7 in [18],
where again subsequence arguments are used and the conditions (10) and (11)
are applied. =

Remark 3.6. (a) For the subhypergroups H and C the inclusion H < C
holds.

(b) In [18] (Remark 2.4) examples on the torus are constructed, which
show that the functional limit theorem is not valid if conditions (10) and (11)
are dropped and that H ZC is possible. '

4. A FUNCTIONAL LIMIT THEOREM
FOR APERIODIC AND STRONGLY ROOT COMPACT HYPERGROUPS

In the functional limit Theorem 3.5, the compactness of % and the con-
ditions (10) and (11) are — beside the infinitesimality of the sequence (v,) — the

_essential assumptions. In this section we will first introduce the notion of

a strongly root compact hypergroup for which convergence v~ — y immediate-
ly implies that # is compact. Further, it is shown that conditions (10} and (11)
are fulfilled for hypergroups which are aperiodic. Theorem 4.8 is an application
of Theorem 3.5 for hypergroups satisfying the two properties just mentioned
and corresponds to the functional limit theorem proved by Nobel for locally
compact groups ([15], Theorem 1).

DsriNTION 4.1. A hypergroup K is called strongly root compact if for every
relatively compact subset 4" < .#*(K) the root set

A= 2w

pet

-
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is also relatively compact, where

A= {v: ve#'(K) with v" =p, 1 <m<n}
neN

is the root set of u.

Remark 4.2. If we define B-strongly root compact hypergroups by analo-
gy with the case of locally compact groups ([8], Definition 3.1.10) strengthening
the notion of root compactness in [1], these hypergroups are also strongly
root compact in. the sense-of Definition 4.1. This can be shown. in the same
way as ‘the implication (i)=(ii) in Theorem 4.4 in [1] is proved. (For the
corresponding result for locally compact groups compare Theorem 3.1.13
in [8]) ‘

A hypergroup K is called B-strongly root compact if for every compact
subset C of K there exists a compact subset Co, = K with the property that for
every neN the finite sequences {x,, ..., x,} of K with x, = e satisfying

{x}+Cx{xj}xCn{x;1}xC# O

for all i+j < n are contained in C,.

Since B-strong root compactness is a strong property that is difficult to
handle and since for the fo]lowing proposition only strong root compactness in
the sense of Definition 4.1 is needed, we will use the latter notion, not only for
hypergroups but also for locally compact groups.

ProrosITION 4.3. Let K be a hypergroup that is strongly root compact and
(Vahmen S M (K). Assume Vir —=o> pe M (K). Then

R ={v;: neN, 0 <I<k,}
is compact.
- Proof . The assertion follows immediately from Definition 4.1. =

In order to prove that for aperiodic hypergroups the conditions (10) and
(11) in the general functional limit Theorem 3.5 are satisfied we need thc fol-
lowing proposition.

PROPOSITION 4.4. Let K be an aperiodic hypergroup. If for ge #*(K) the
set {o*: ke N} is relatively compact, then g = ¢, holds true.

Remark 4.5. The corresponding result for locally compact groups can be
shown by using Theorem 2 in [13] (compare Lemma 2 in [15]). Since it is not
known whether this theorem can be transferred to hypergroups, Proposi-
tion 4.4 is proved by applying a result on compact affine semigroups in [3].

Proof of Proposition 4.4. By assumption it follows that

o = {g*: keN}
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is a compact semigroup with respect to . We will show that the closure co (=)

of the convex hull of < is also compact. If this is the case, then (co (=), *) is
a compact affine semigroup in the sense of the definition in [3]. For

1 n
==-% ¢* for neN
Ry=y .

the sequence (J,) converges to an idempotent measure weco(sf) satisfying
w*p = *®w = w by Theorem 1 in [3]. Then the assumptlon on K 1mp11es
w = &, and. hence ¢ = s,.

" The* following lemma shows that co (.gi) is compact, which will complete
the proof. =

LEMMA 4.6. Let E be a (second countable) locally compact Hausdorff space
and s/ < M (E) be compact. Then co(sf) is compact.

Proof. Defining for le.#! (/)
o: C(E)a f [ | faudi(p),
< E

we have oe.#1(E), and for feCt(E)
{fdo = || fdudi(u).

Then the mapping
&: M (A)—> M (E),

A [ pdiw)

is continuous (with respect to the weak topologies), and since .#! () is com-
pact, so is @ (A" ()).

Now, to prove the assertion it is enough to show that the inclusion
co(f) < ®(M' (o)) holds true. If vesos, then ved (A 1(.91)) because of
di(av) =v. For .

V= Z oc,-v,-eco(d),

i=1

where meN, v,e s, o; =0 and E:":la,- =1, define
= > o8, €M (H).
i=1

Then @(A) =v is fulfilled, and hence ve & (4" ()). =

COROLLARY 4.7. Let K be an aperiodic hypergroup and (vp)en < #* (K).
Assume that

& ={v;: neN,0<I<k,}
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is compact. Then Vi ——>¢, holds for every sequence (ry)en S N with
lim,,, , r,/k, = 0.

Proof. If ¢ = lim, 5 vi» is an accumulation point of the relatively compact
sequence (vi), then {¢*: ke N} = Z is relatively compact, and Proposition 4.4
gives ¢ =¢&,. B

Theorem 3.5 implies the following functional limit theorem.

THEOREM 4.8. Let K be a hypergroup that is strongly root compact and
aperiodic and (V,)uen < A2 (K). If (Vir)uen converges to a probability measure
pe M1 (K), then there exist a subsequence N = N and a continuous convolution
semigroup (U)so S M (K) such that

vt s . ne N, uniformly on compact subsets of 10, oof.
He y

Proof. Using Proposition 4.3 and Corollary 4.7, which in particular im-
plies that (v,) is infinitesimal (that means v, — ¢, since {e} is the only compact
subhypergroup of K), we see that the assumptions of Theorem 3.5 are satis-
fied. =m

5. EXAMPLES

In this section we give examples for hypergroups satisfying the assump-
tions of the general functional limit theorem.

Remark 5.1. Note that for the requirement of “root compactness” in the
functional limit Theorem 3.5 we only need the following condition:

(%) Vin —— u=a#, ({v,: neN}) relatively compact,

n n—ow

where we define
R, ({Ay: neN}):={2: neN,0<I<k,} = Z({A;: neN})

for a fixed sequence (k,),.y < N with k, 700 and a sequence (Anhen < A (K) of
probability measures.

The condition (%) is satisfied for hermitian Godement hypergroups (see
[2], 2.5.3 for the definition) provided that (v,),n is relatively compact. This can
easily be shown by using Proposition 5.1.10 in [2]. But since there already
exists a functional limit theorem for hermitian hypergroups (cf. Remark 2.1),
the example just mentioned is of less interest in this context.

We will now show that examples for strongly root compact and aperiodic
hypergroups are given by orbit hypergroups G¥ (see the following definition)
arising from locally compact groups satisfying these two properties.

DEFINITION 5.2. Let G be a locally compact Hausdorff group, Aut(G) the
group of topological automorphisms of G furnished with the topology de-
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scribed in Definition 26.3 in [7], and H = Aut(G) a compact subgroup with
normed Haar measure wy. If for xe G

x# = {x": heH} = {a(x): acH}
denotes the orbit of x under H, then the orbit space
GE = {x": xeG}

is. a hypergroup with the convolution

— * Exu¥gu = jl E(a(x)yp)H d(DH (a) = I E(xpy))H dCUH (b) )
H H

.

for x#, y¥ e G¥. In fact, the orbit space G¥ is a decomposition of G into com-
pact subsets and a locally compact Hausdorff space with respect to the quotient
topology. The neutral element of this hypergroup is e = {e}, and the involu-
tion is given by (x7)” =(x")¥ for xeG.

Remark 5.3. If (GZ, ) is an orbit hypergroup and
M (G):= {uéﬂl(G): p is t-invariant for all te H},
then the mapping
qu: Mg (G) —> M*(G¥),
B> gy ()= py,

where p, e #*(G"¥) denotes the image measure of u under the canonical map-
ping g: G — G¥, has the following properties (see the proof of Theorem 1.1.7
in [2]): qg is bijective and for u, ve #3(G)

pxve#i(G) and  qu(u*v)=gu(W*gu()

1

hold. Further, gy and gg' are continuous.

PROPOSITION 5.4. Let K = G be an orbit hypergroup, where G is strongly
root compact. Then K is also strongly root compact.
~_Proof Suppose that A4 < .#*(G¥) is relatively compact. Since gz! is
continuous, g5 * (") is also relatively compact, and strong root compactness of
G implies that the root set #(gz*(4") is relatively compact. gz ! is a homo-
morphism with respect to convolution, and thus the inclusion

aa" (R (N)) € R(qr*(N))

holds. Therefore g;z'(2#(A") is relatively compact, and so is Z(A4). =

PROPOSITION 5.5. Let K = G” be an orbit hypergroup, where G is aperi-
odic. Then K is also aperiodic.

Proof. Let C be a compact subhypergroup of G¥. Then .#* (C), regarded
as a subspace of .#'(K), is compact, and so is qg* (#'(C)) = M1 (G). If
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g€ #*(C), then {(gx’ (Q))kl ke N} is relatively compact because it is contained
in gz'(#*(C)). This yields gg'(¢) = &, which implies ¢ = ¢.«, and hence
C= {eH}. B

Remark 5.6. Applying methods similar to those used in the proofs of
Propositions 5.4 and 5.5 we can show the following statements:

(a) If K is a strongly root compact hypergroup and H = K a compact
subhypergroup, then the corresponding double coset hypergroup K//H (see
1.5.13 in [2] for the definition) is also strongly root compact. :

(b) If K; and K, are-strongly root compact hypergroups, then the product
hypergroup K, x K, (defined as in 1.5.28 in [2]) is strongly root compact.

(¢) If K, and K, are aperiodic hypergroups, then the product hypergroup
K x K, is also aperiodic.

Concrete examples for — nonhermitian — hypergroups which are strong-
ly root compact and aperiodic, and hence satisfy the assumptions of the func-
tional limit Theorem 4.8, can be constructed as orbit hypergroups G¥, where
the underlying locally compact group G is the Heisenberg group.

ExampLE 5.7. (a) Let G=H, be the (2n+1)-dimensional Heisenberg
group (neN), that means H, = C"x R with the composition

(z, 0, t)Y=(@z+7, t+1 —%Im<z, 2'))

for (z, t), (z', t'Ye H,. f U(n) denotes the group of unitary n x n-matrices, then
for AeU (n) the mapping

FA: Hn —’Hm
(z, )—(Az, 1)

is an automorphism of H,, and H:= {F 4: Ae U (n)} is a compact subgroup of
Aut(H,). Since the Heisenberg group is simply connected and nilpotent, it is
strongly root compact and aperiodic. By Propositions 5.4 and 5.5 the corre-
sponding properties hold for the — nonhermitian — orbit hypergroup G¥.

- -(b)-In particular, for the 3-dimensional Heisenberg group G =H, =
R?>x R with

(x, »), s)((d, b), ) = ((x+a, y+b), s+t+%(xb—ya))

for ((x, ¥), s), (@, b), t)e Hy, SO(2) = {AeR**?: ATA=1,detd =1} ~U(1),
H={F,: AeSO(2)} < Aut(H;), and F, defined as above, the orbit hyper-
group G7 has the desired properties.

The spaces G¥ and R, x R are homeomorphic by the mappings

@: R, xR—- GH,
(x, 1) ((x, 0), )"
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and
¢—1: GH_>R+ XR,

e, = (Ixll2, 1)
(well-defined and continuous). Carrying the convolution structure from G¥ to
R, X R one gets
1 2n
E(x,5) ¥ E(y,t) = n £ 8 (VXTI T 2xpcosd,s +1+(1/2)xysing) d¢

for: (x?s), (y, )eR; xR, and with this convolution the group R, xR is the
so-called Laguerre hypergroup (with parameter 0). _

(c) A further example of a (nonhermitian) hypergroup having the two
properties is the orbit hypergroup G®, where G = H, and H = {F: Ae M}
with -

w-f D6 D M)

Remark 5.8. For Gelfand pairs (G, H) the corresponding space G//H of
double cosets is a commutative hypergroup. In the paper [5] conditions on
Gelfand pairs are given such that K = G//H has certain root compactness
properties. For example (compare [5], Proposition 5.2), if (G, H) is a symmetric
pair and G is 2-root compact (see [8] for the definition), then for any compact
set C = #'(K) the factor set

FO=UFw= {ves'(K): 3he M (K), p=v*1}
peC ueC
is also compact. Since
R1({va: neN}) < | F (i),

neN

"the condition (*) in Remark 5.1 is satisfied.

Concluding Remark 5.9. The hypergroups above are all aperiodic,

-and therefore the results correspond to those of Nobel for locally compact

groups. But since there are many examples of non-aperiodic locally compact
groups for which the generalized functional limit theorem of Teloken can be
applied (see [17] and [18]), more general examples fulfilling the assumptions of
the general functional limit Theorem 3.5 can be constructed also within the
framework of hypergroups.
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