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Abstract. In this paper we approximate risk process by an 
a-stable U v y  motion (1 < a < 2). We consider two conditions im- 
posed on the value of the premium rate. The first one assumes that the 
premiums exceed only slightly the expected claims (heavy traffic) and 
the second one assumes that the premiums are much larger than the 
average claims (light tr&c). We consider the distribution of claim sues 
belonging to the domain of attraction 01 an a-stable law and the pro- 
cess counting claims is a renewal process constructed from random 
variables belonging to the domain of attraction of an ol'-stable law. 
Comparing rr and a' we obtain three different asymptotic risk proces- 
ses. In the classical model we get a Brownian diffusion approximation 
which fits fist two moments. If a' > a, we get Mittag-Lemer distribu- 
tion for the in f i t e  time ruin probability, and if a '< a, we obtain 
exponential distribution for the infinite time ruin probability. 
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Collective risk theory is concerned with random fluctuations of the to- 
tal net assets - the capital of an insurance company. Consider a company 
which only writes ordinary insurance policies such as accident, disability, 
health and whole life. The policyhoIders pay premiums regularly and at certain 
random times make claims to the company. A policyholder's premium, the 
gross risk premium, is a positive amount composed of two components. The 
net risk premium is the component calculated to cover the payments of claims 
on the average, while the security risk premium, or safety loading, is the com- 
ponent which protects the company from large deviations of claims from the 
average and also allows an accumulation of capital. So the risk process has the 
Cramk-Lundberg form R ( t)  = u + p t  -I::, &, where u > 0 is the initial risk 
12 - PAMS 25.1 
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reserve of the company and the policyholders pay a gross risk premium of 
p > 0 per a unit time. The successive claims (5) are assumed to form a sequence 
of i.i.d. random variables with mean EY1 = p and claims occur at jumps of 
a renewal counting process N t ,  t 2 0. 

The ruin time T is defined as the first time the company has a negative risk 
reserve and one of the key problems of collective risk theory concerns cal- 
culating the ultimate ruin probability 'Y = P ( T  < oo ( R(0) = u), i.e. the proba- 
bility that the risk process ever becomes negative. On the other hand, an 
insurance company will typically be interested in the probability that ruin 
occursbefore time <i.e. Y (t) = P (T < t I R (0) = u). Many of the results are in 
the forrd of complicated analytic expressions. For a comprehensive treatment 
of the theory the reader should consult Asmussen [I], Embrechts et al. [5] or 
Rolski et al. [15]. 

Diffusion approximation of random walks via Donsker's theorem is a clas- 
sical topic of probability theory. The first application in risk theory is the paper 
by Iglehart [lo], and two further standard references in the area are Grandell 
[8] and [9]. For claims with infinite variance the paper by Furrer et al. [7 ]  
suggested an approximation by an a-stable L6vy motion. The idea is to let the 
number of claims grow in a unit time interval and to make the claim sizes 
smaller in such a way that the risk process converges weakly to an a-stable 
Lkvy motion with a linear drift. 

In this paper we consider two settings of the premium with respect to the 
average claims, that is heavy and light tr&c. The terms 'light' and 'heavy 
traffic' come from queueing theory and have an obvious interpretation. Light 
trafic means that the premium is much larger than the average amount of 
claims per unit time and heauy tra& describes the case when the premium rate 
exceeds only slightly the average amount of claims per unit time. Thus we 
approximate a risk process with renewal arrivals by an a-stable LCvy motion in 
these two settings. The stability parameter a depends on the tails of the arrival 

-and claim distributions and the scale parameter depends on the expected values 
of claims and arrivals. This work extends the results of Furrer et al. 17). The 
classical risk process is approximated by a Brownian diffusion which - fits first 
two moments. 

For a similar treatment in the theory of queueing systems see Szczotka 
and Woycz ynski [19]. 

2. WEAK CONVERGENCE OF STOCHASTIC PROCESSES 

Let us consider the claim surplus process 
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where {K) are i.i.d. random variables, EYl = p, N ,  is a renewal process con- 
structed from the sequence of i.i.d. random variables (Tk) with ET, = l/A > 0. 
Moreover, we assume that p-Ap > 0 and, in general, the process N ,  which 
counts claims does not have to be independent of the sequence of the claim 
sizes (E;,) as assumed in many risk modeIs. Then 

R It) = u - StP) ( t )  

is a risk process. If N,  is Poisson process independent of the sequence of the 
claim sizes-(&),- we get--the classical risk model. 

Assume that the sequence {Y,) satisfies 

when n + m, where EY, = p and Z,(1) is an a-stable random variable with 
1 < ac: < 2, scale parameter a (for ac: = 2 we put a2 = Var Yl), skewness parame- 
ter P and #(n) = nl/" L(n), where L(n) is a slowly varying function at infinity. 
Then 

when c -+ 03 in the Skorokhod J1 topology (see Prokhorov [14]). Moreover, 
we assume that the i.i.d. random variables {T,) fulfill 

when n -+ oo, where ET, = 1/d > 0 and Zb,(l) is an a'-stable random variable 
with 1 < a' < 2, scale parameter d (for a' = 2 we put gr2 = Var TI), skewness 
parameter p' and & (n) = nila' E (n), where L: (n) is a slowly varying function at 
infinity. Then 

when c -+ cc in the Skorokhod MI topology (see Bingham [4] or Michna 
C131)- 

PROPOSITION 1. Assume that the sequences {Y,) and (5) sutiSfY (1) and (3) 
and that a < a'. Then 

1 Nc* 

- ( C I$ - Apct) * Z,  (At) 
4 ( c )  k = l  

when c -, co in the Skorokhod J1 topology. 
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Proof.  We have 
1 Net 1 Net . N,, - k t  ---(z &-APct) = - 

4(c) k = l  
C ( Y , - P ) + P  $(c) 

# (~ )k=1  
* 2, Cat) 

because 

(note that N,/c 3 At as c + CQ and use Theorem 3.1 of Whitt [22]) and more- 
over - . - 

in the Skorokhod M1 topology, and 4'(c)/# (c) + 0 when c + co, which implies 

N,, - Act 
-0. E i  

4 (c) 

Similarly we can show the following proposition. 

PROPOSZTION 2. Assume that the sequences I&) and {x) satisfY (1) and (3) 
and that a' < a. Then 

when c -, co in the Skorokhod MI topology. 

In the case a = a' the problem is more complicated but it can be solved. 

PROPOSITION 3. Assume that the sequences {&) and (z) satiSfy (1) and (3) 
with 4 (n) = #(n) a d  me independent. Then 

when c + m in the Skorokhod M1 topology. 

P r o  of. The assumption 4 (n) #' (n) implies that ol = a', and thus 

N,, - Act 

# ( 4  

,Illa z, (t) - p l l  + 11" Z& (t) 

because 
1 N C t  

--- C (%-p)=s-ZZ,(At) and Na-Act_ - ~ I + I I ~ Z  t 
4 (~ )k=1  dJ (c) 

a( 1 

when c + co in the Skorokhod M1 topology. Thus, using Theorem 5.1 of Whitt 
[22], we complete the proof. 



Risk ~rocess with renewal arrivals 177 

3. WEAK APPROXIMATION OF C L A M  SURPLUS' PROCTSS 

In this section we wiU approximate the claim surplus process by an 
a-stable Levy motion in two settings: heavy and light traffic. Now we are in 
a position to rewrite Propositions 1, 2 and 3 in terms of the claim surplus 
process. For the clear presentation let us introduce the following notation: 

(5)  c, ( p )  = Ip - ;IC1)-a1(apl)  

and similarly 
d 

.- - 

(6) - L car Y (p - J p )  -a'/(=* - 1) 

We first consider heavy traffic approximation, that is, the p r e ~ u m s  exceed 
only slightly the expected claims on the average. 

THEOREM 4. Assume that the sequences {&) and (G} belong to the domain 
ofnorm1 attraction of a stable Jaw, that is, #(n)  = nl/" and # ( n )  = nl/"'. Let the 
functions ca(p) and c , ( p )  be deJined in (5)  and (6), respectively. Then, as p l lp ,  

(c. ( p ) )  - ' l a  S"' (tc. ( p ) )  * ,I1" 2. ( I )  - t 

in the Skorokhod J1 topology when a <a', and 

(c@* (p ) )  - lla' S l P )  (tc.. (p)) - - fil + l"' 2' a, (tl- t 

in the Skorokhod M I  topology when a' < a, and 

(Ca(p) ) -  lIa S ( P )  (tea ( p ) )  * A'" Z, ( t)  - ,d l  + liaZ' a(t)-t 

in the Skorokhod MI topology when a' = a and the sequences {&) and {T,) are 
independent. 

P r o  of. Using the identity 

5 Y ,  -Apct = S(P) (ct) +ct (p-rlp) 
k = l  

and substituting c = ca(p) = ( ~ - I , U ) - " / ( " - ~ )  in Proposition 1 for a _< a', we get 
the desired convergence. Similarly, using Propositions 2 and 3 we show - the 
convergence for a' < a and or = a'. rn 

In the light traffic approximation we assume that the premiums are much 
larger than the expected claims on the average. 

T ~ R E M  5. Assume that the sequences {G) and {G) belong to* the domain 
of normal attraction o fa  stable law, that is, # (n) = nl/" and @(n) = nlja'. Let the 
functions ca(p) and c,, ( p )  be deJined in (5) and (6), respectively. Then, as p + co, 

(c. (p))lC S(P) (t/c. ( p ) )  + ( p  - Apl2 t * A"' Z.  ( t )  

in the Skorokhod J 1  topology when u < or', and 

(c., (p))'" b) (tica, (p ) )  + ( p  - 1 ~ ) ~  t * - pA1 + liar Z h, 0) 
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in the Skorokhod M I  topology when a' < a, and 

(c. (P ) ) l lu  S ( P )  ( t /c.  (p)) + (p - ip)= t = Ilia Za ( t )  -pL1 + l@ & ( t )  

in the Skorokhod M 1  topology when a' = ol and the sequences (&} and {G) are 
independent. 

Proof.  As before, using the identity 

b - t c t  = (ct)  + ct ( p  - Ap) 
k = l  

-. . . - 

and su&tituting c = l /c ,  ( p )  = ( p  -Ap)"i(a-l) in Proposition 1 for a < u', we get 
the desired co&ergence. ~ i r n i l ~ r l ~ ,  using Propositions 2 and 3 we show the 
convergence for or' < a and a = a'. PP 

Now we want to take advantage of the above results, and therefore we 
present the crucial theorems. For the finite time ruin probability we need the 
foIIowing result. 

THEOREM 6. Under the assumptions of Theorem 4, us ppllp, 

P (sup (ca ( p #  - '" a'] (sea (p) )  > u) + P (sup ( X  (s) - s) > u) 
s < t  s d t  

for every t > 0 when a <  a' and 

if E < a', x (s) = ( : : ~ 2 ~ ~ - m 1 + 1 1 a z 6 ( 3  q a = d .  

Similarly, as pplllp, 

P (sup (ca# (p ) )  - lia' s(" (sc.. ( p ) )  > u) + P (SUP (x (s) - s) > u) 
s 6 t  s d i  

for every t > 0 when a' < a and . - 

(8) x (3) = - pJ1 + lIa' Z' a , (s) - - 

Proof.  In the Gaussian case, that is, ol = a' = 2, the assertion follows from 
Proposition 5 of Michna 1121, and in other cases from Theorem 2 of Furrer 
et al. En. 

The convergence of infinite time ruin probabilities is much more cumber- 
some because the functional sup,,, x (s) is not continuous in Skorokhod to- 
pologies. 

THEOREM 7 .  Under the assumptions of Theorem 4,  as pJA,u, 
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when a < E' and the process X is  dejned in (7). Similarly, as pJAp, 

P (sup (c., ( p)) - liU' s(p) (scar (P)) > U) P (sup (x (s )  - s) > U) 
s r o s=-o 

when a' < a and the process X i s  dejined in (8). 

P r o  of. In the Gaussian case, that is, a = d = 2 the assertion follows from 
Theorem 7.1 in Asmussen [2] and in the ol-stable case, that is, 1 < a < 2, from 
Theorem 3 in Szczotka and Woyczynski [I81 (using duality of ruin probability 
and distribution bf statiihiry waiting time for G/G/l queues, see e.g. Aimussen 
C11). la 

Thus let us consider heavy traffic approximation of a claim surplus pro- 
cess and approximate ruin probability. For a < a' and pJlp we obtain 

Y ( t)  = P (sup S'P) (s) > 4 = P ( sup SIP) (su, (p))  > u) 
s s t  s ~ I c ~ P )  

where the process X is defined in (7), in the second last equality we have used 
Theorem 6 and in the last equality the self-similarity property of the process X. 
Similarly we proceed for a' < ol and for infinite time ruin probabilities using 
Theorem 7. Thus the infinite time ruin probability for pJhp can be approxima- 
ted in the following way: 

Y = P (sup S(P' (3) > u) w P (sup (X (s) - (p - Ap) s) > u) 
s > o  s > o  

and the finite time ruin probability as 

Y (t) = ~(supS@)(s)  > u) x P(SUP(X(S)-(p-I&) > u), 
s St s<r 

where the process X is defined in (7) and (8). 
Now let us focus on the case a' = a = 2 which includes the classical risk 

model. Then the infinite time ruin probability can be approximated in the 
following way: 
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where B (sj is the standard Brownian motion, o2 = V~ar Y, and ar2 = Var TI. 
For the finite time horizon we get 

Y ( t )  = P (sup S(P) (s) > u) W 1 - @ - 
s < t  {d(;c::p-- y:'2) ] 

where -@ (x) is the standard normal distribution. In the classical case, when N ,  is 
a ~oissGn process with intensity L (Var Ti = a'' = l/A2), we obtain 

and 

Y (t) = P (sup SIP' (s) > 24) 
s 4 1  

Interesting results can be obtained in the case a' < a. We do not assume 
that the interarrivals {T,) are positive random variables, only their expectation 
has to be positive. But if we assume that (T,) are positive random variables, 
then the limit process has the skewness parameter equal to - 1. Thus, as pJAp, 
the infinite time ruin probability has the following form: 

where a = (p -Rpj (pa')-a'R-"'-i cos 171: (a' - 2)/2). 
In the case a < a', if the claim sizes {&I are positive random variables, as 

-p lAp ,  we obtain the following approximation for the infinite time-ruin prob- 
ability: 

where a = (p -2p) a-" A-1 cos {x (a - 21/21 (see Furrer [6] or Szczotka and 
Woyczy6ski [18]). 

In the case ar= a' and 1 < a < 2 it is possible to obtain in the limit symmet- 
ric a-stable Lkvy motion, and the exact form of the Laplace-Stieltjes transform 
of the infinite time ruin distribution (G(u) = 1 -Y (u)) is given in Szczotka 
and Woyczyriski [18j. 
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