PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 25, Fasc. 1 (2005), pp. 183-195

APPLICATION OF THE EXACT INVERSE
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Abstract. In the paper we study the random walks ZLOX ; on
the interval [0, N] c Z, where X; are iid. random varables with
characteristic function & = (1—cos ))[f|*. Here f is a rational func-
tion. We consider more precisely the case

A
d=(1— cos@)w, O<ax<l,

where the distribution of the random variable X; is characterized.
Using the results of previous works on the inverses of the Toeplitz
matrices with singular symbol of rational regular part, we compute
exact formulas for the expected number of visits and the hitting proba-
bilities on the interval [0, N]. From these exact expressions we deduce
the formula for the asymptotic behavior of the quantities considered as
N goes to infinity.
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1. INTRODUCTION

We consider a random walk on [0, N]. This random walk is defined by
the sequence S, = Xo+ X, + ... +X,, where X;, i > 0, are independent iden-
tically distributed (i.i.d.) copies of an integer-valued random variable X. Denote
by @ the characteristic function of the random variable X. Then we have

D0) =) ¢ ™,

keZ
where ¢, = P({X = k}). For all k, le[0, N] we put, as in [3],
Pk, ) =P({X =1-k}) = cx—1s




2 7R =Y onk, D).
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QO(k: l) = 5(ks Z)s Ql (ka Z) = P(ka I):
N
OQurrk, )= Qu(x, ) P(t, y) = (Qu* P)(k, ]).
=0

Let ty be a stopping time associated with filtration &, = ¢(X,, X4, ..., X,)
defined by
_ fmin{ke[1, +o0]; S, ¢[0, N]} if the minimum exists,
va T ]+ - otherwise.

For k, lé[O, N7, let N(k, I) be the expected number of visits of the process
S, to I before ty and assume that S, = X, = k. We denote by gy(k, ) the
expectation of N(k, ]) defined by

anOQ"(k’l) for k’ lE[O, N:]a
0 otherwise.

(1) gnlk, ) = {

Denote by I, the characteristic function of a set A; then N (k, I) is the
restriction of the following to S, = k:

Nk, I)= ,.Zo Ty x1m, + of (S T)-
Consequently,
E(N(k, D)= HEDP(S,, =lnty>n|So=k) = "gan(k, D).
The expectation gy (k, I) and the probabilities Q,(k, ]) allow us to compute
many interesting probabilistic quantities. For instance, we can consider:

o The expected number of visits in {0, N] of the process when S, =k,
namely, '

o The expected number of visits in [0, N] of the process when S, is a ran-
dom state in [0, N] under the condition that the probability that S, = k is the
same for all k in [0, N]. The expectation is given by

) Y anik, D).

oL
N+143

o The expected number of returns before 7y determined by

@ A= gnlk, k.

k=0
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e We can also study the hitting probability
VI¢[0, N] Hy(k, ) = P(Sy, = InTy < 0| X = k)
given by (see [3])
(5) Hyl, D= 3 gn()P(t, D,

t=0

This allows us to consider now the following two hitting probabilities:

o -1
©® - Hy®)= 3 Hyk.)
and T
™ Hi®= Y Hy(k,D.
I=N+1

Here we will focus on the last examples. It is well known that there exists
a deep connection between these fundamental quantities and truncated Toep-
litz operators. To describe this relationship (see also [4] and [5]) let us consider
matrices Iy, Qy, Gy of order N+1 with entries & (k, [) (identity matrix), and
P(k, 1), gn(k, I), where k and l are in {0, 1, ..., N}. If g is an integrable function
on the one-dimensional torus T, we denote by g, = §(k), ke Z, its Fourier
coefficients:

i .
jk)=— [ f(t)e ™ dt.
309 = 321 f()e
The operator whose matrix in the basis {€"},.z is

Tn(g) = (é (l—k))osk,zszv
will be called a truncated Toeplitz operator associated with g.
Let f=1—¢&. Then

' Tv(f) = In—0Qn,
where Qy is the matrix with entries P (k, [) = P({X = k—1}). First of all let us
see “that g -

Gy(In—Qx) = In.

Indeed, for all k, Ie[0, N]nN

gn(k, ) =00k, D+ 3 Qu(k, 1)
n=1

o N N ©
= 5(k: l)+ Z Z Qn—l(xa t)Q(t’ y) = 5(k= l)+ z Q(t, l) Z Qn—l(xa t)
] t=0 n=1

n=1t=0

B

=48k, D+ _ZogN(k, Q@ 0,

S



9) gnk, ) = ay—
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and we can conclude our equality. Consequently, instead of the computation of
the sum in (1) we can perform the computation of the inverse of a Toeplitz
matrix.

We see in the following sections that a lot of random walks are related to
the truncated Toeplitz operator of symbol

t) f=1-e21Q/P|*.

For such a type of symbol in this paper we determine exact exﬁressions of
the expectation gy(k, I) given in (1) and we obtain exact formulas for the
quantitiey defined in (2), (3), (6) and (7) with particular random walks. By these
exact expressions, known asymptotic expansions can be found again, particular-
ly for (6) and (7) (see [3], p. 254). However, we are mainly interested in the
expressions to obtain exact results for intervals [0, N], even if N is small.

THEOREM 1. Let a random walk be generated by the random variable

X whose characteristic function is

@ = 1—[1—e"?|P/QP,

where P and Q are two trigonometric polynomials without zero on the torus T,
with degree n; and n,, respectively. We assume that Q has all its zeros outside of
a closed disc centered at O with radius R > 1 such that the analytic series

P/Q = ;O Buz*

has a convergence radius greater than 1. Let

108
S == g

Then for 0<k<I<N+1, k=[Nx], I=[Nyl, 0<x<y<1,

d(k)d ()
N+2+ (P, Q)

where
1 k

=Y, Y Bi-sB-smin(s+1,s+1),

s’=0s5=0
P() PM)(P() Q1)
10 =-C+Dgm* Q(1)<P(1) Q(l)>+O<R”>’
_Le(2M) _PQ)
(10) (P =Q)‘25“<Q(1) P(l))'
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If n, = 0, that is, if Q is a constant polynomial, then we obtain a more
intrinsic formula, even if it restricts the domain of k and [. That is the idea of
the following corollary.

COROLLARY 1. For a symbol of type

|1 _ ei0|2
0)=——>F
O =50
and for ny Sk S N—ny,. the term d (k) of Theorem 1 can be expressed in the
Sfollowing ma(mer
' P (I)F 1)

dk)= —(k+1)P(1)+ P()

The theorem shows that when the initial value k of the random walk is far
from the border of the interval, we have an exact expression for gy (k, I) given
by (9), and for the same case the corollary gives us a precise asymptotic expan-
sion. A proof of this result can be found in [2], and some extensions are treated
~in [1]. The remaining of the paper will be concerned with application of the
theorem to particular random walks. Now we state two propositions. We see in
the following one that if Q is the constant polynomial s, the formula for the
term Ty(f)rsl1i+1 is slightly different from the equality (9) when k and [ are
greater than N—ny: )

ProrosiTiOoN 1. If k,1> N—n,, then

A Q)
N+2+(P, Q)

(TN(f))Ic_-i-ll,l+ 1 =8u—

where ¢, = c(k, [) = 0(1).

Notice that Proposition 1 determines the behavior of the border terms of
the transition matrix gy (k, I). The terms ¢, ; are useful for some precrse asymp-
totic computatlons We can write

k l
(11) Cp1 = Z Z —k—s.Bl—s
s=0s5"=0

s+1 s'+1

x Z Z Tp-w+2) Y —v+2yinf (s—p+1, 5 —p'+1),

p=N+2-m p’=N+2-m
where g, = s/P, and ¢,/g, = Z:o:_my,, z¥ is the Laurent expansion on a ring
centered at the origin.

We have to keep in mind that in the two summations on p and p’ in
the formula (11) the terms exist if and only if N+2—m<s+1 and

S

it
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N+2—m < §'+1. The formula (11) shows also that the equality in Proposi-
tion 1 is exact.

In the following proposition we give formulas for computing the trace and
the sum of the entries of the inverse of the Toeplitz matrices. It is well known
that these two quantities have a probabilistic meaning in the case of a random
walk.

PROPOSITION 2 (Trace theorem). With the same notation and under the
assumptions of Theorem 1 we obtain the following asymptotic.expansion of the

trace of, Ty(f)~1:
2 (P,0)
V(G- el

+w towo

C(P, Q)= 3 Y Bupumax(u,uw),

u#=0u"=0

T (LN ) =—|5

cV(P, Q))+0(N),

where

and o is given by (1'0).

ProPOSITION 3 (Sum of terms). Under the assumptions of Theorem 1 we

have
N2< o (P, Q)) Lo

N N
T X (0 ;

- Jgof

The proofs of all these results can be found in [2].

2. APPLICATIONS

. 2.1. Integer-valued random variable of symfnetrised geometric type.

DerFiniTION 1. Let X be an integer-valued random variable. We say that
X is of symmetrised geometric type if there exist three positive real numbers
a, o, A such that for all ke Z*

(12) P(X = k)= Aa™,
(13) PX=0)=
with
1—a

O(<1, a/l<1, A=m
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ProrosiTION 4. A random variable X has a characteristic function of type
Il 18|2

1- )
PP

where degP =1,

if and only if its law is of symmetrised geometric type. More prec:sely, if its law
is given by the equations (12) and (13), then

_ Jja(l—a)+2a _
I Y e (1=ax).
Proof. "We have
. l1—a
i0 ik ik@
Q(e)————ac(1 a)+2(2ae +Zae +oz)

_ 1—a 1 + 1 ta—2
T a(l—a)+2a\1—ae® 1—ae " * )

Indeed, by direct calculations we obtain

. . l—a
oy 1_ iy _
fe) =1=2E) = g
g a(l—a)+2a 1—ae ®+1—ae+(a—2)(1—ae *)(1—ae”)
1—a |1 —ae®)?
l—a 1 l14a

= . 1—e¥)?,
ac(l——a)+2a|1—ae“’|za1—al el

Hence
(1+a)a |1—€"?

id — y _ .
» | T = =0 +2all— e
Conversely, if the random variable has a characteristic function of the form
. |1 '_eislz -
B =1-Ad— 2> -
(e ) 1 ll_aezBIZ’
we can write
a(l+a) ) a(l4+a) —2a4
asl—a+2a O *T T 41—
Then
() = 1—a a(l—a)+2a a(l+a)|1—e“?
T a(l—a)+2a\ 1-—a 1—a |1—ae"?

a(l—a)+2a a —i . d . d _,
= - —e 9421+ Y d*e™+ ) ate
l1—a (1 - a)z ( )( kgl kgl )

13 — PAMS 25.1
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_a(l—a)+2a
- l—a

1__2 1_2m '01_200 .
(1 a)2(2(1_) ( aa) _( aa) kglakelk( aa) Zake lk0>

K=1
=—i—(a+ Z kgikd 4 Z ake—iko)_
a(l—a)+2a" = k=1

Hencefor all ke Z ¥ we get
l—a a(l—a)
—— = gM PX=0)=—
a(2—oc)+ma ’ ( ) a2—o)+a
which completes the proof. m
ProrosiTION 5. Let X,, X,, ..., X, be n independent geometric random
variables. Then X = X+ X,+ ... + X, has a characteristic function of type

2
P

P(X =k) =

2

l_ll_ei()lz

2

where Q and P are polynomials of degree n—1 and n, respectively, and without
zeros in the closed unit disk.

For the proof of the proposition we need the following

LEMMA 1. If P is a real polynomial of degree n, then there exist n complex
numbers Xq, ..., X, with modulus greater than 1 and a positive number A such
that

|P(e“)? = Ale®—xy] ... |e¥~x,|.
Proof of Lemma 1. If P=Z._ a;x', then

(14 |P () = i ay e"'"—IZ - e’

i=—n

We notice that if z is a root of the polynomial P(X) = ZZ" )u— 1y X, then 1/z

is also a root of this polynomial. Consequently, we obtam the followmg fac-

torisation:
l"[ (exe —x ) 1
k. xk

where the family {x};c;
greater than 1. =

2
1P () = |a,l?

n
l__[ —‘kuZ,
k=1

. 18 the set of roots of the polynomial P of modulus

.....

COROLLARY 2. If P, ..., P, are r polynomials of degree n, P, # P, for
k # 1, then there exist n complex numbers x4, ..., X, of modulus greater than 1

S
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and a positive number A such that

¥

Y &lP(@)> = Ale®—x4| ... |e®—x,|, where g = t1.

k=1

Proof of Corollary 2. Indeed, the sum ), _, &|Py(¢)|* has the same
structure as the right-hand side of the equation (14). &

Proof of Proposition 5. By Proposition 4 it is sufficient to obtain the
result for two random variables whose characteristic functions are of type

L oez| Q-0 P 0.0,
1—et0]2 and  |1—e®?
= e Py N, P,

2

where the polynomials Q;, Qj, P., P, have degree 1 and roots of modulus
greater than 1. After a direct computation we observe that the sum of these two
random variables has a characteristic function @ of the form

|l_e,~(,|2I13QI2+IQPI2 —11°100°
|P|? IP|2 ’

B’ =1

where P = Pl r+1a Q Ql Qr’ P Pl . s+1: Q Ql Qs Hence
deg PQ = deg QP = deg(1—~X) QQ = 1+r+s Thus, using Corollary 2, we
complete the proof. m

Remark. With the notation of Proposition 4, the roots of P and Q are
complex numbers of modulus greater than 1.

When X is the sum of two independent random variables with characteris-
tic functions of type

1
[H (D>

where H is a polynorma.l the polynomials Q and P have only real roots. When
X = X+ X,, where the characteristic function of Xi is :

1—[1—e"?

1
with P,=——,0<p, <1, ke{l, 2},

11— ——
1P () 1—pix

from Corollary 2 we infer that X has a characteristic function of the form

2
P

142

2

T—|t—eP with ()2 = P ()2 +1P3 () —|1—e"2.

Hence

. B .
|Q|2 — Ae—za(l_i_zeze_}_enzo)’
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where
~3—p1—Dp2+p1P2
A= <0,
(1+p) (X +p2)
B= 2p1p2(P1p2—1)+2p (14+p1)+2p,(1+p)) >0
P1p2(1+p1)(1+p2)

The discriminant of 1+(B/A) x +x? has the same sign as a = B+2A4 and, after
some computations, we obtain ‘

T o= pl@pi—2p,+ D +p1 (— 203 8P, +2)+ 203+ 2p,.
Then we can put
oa(T) = T?(4p3 —2p2+2)+ T (—2p3 —8p, +2)+2p3 +2p,,

and we can conclude that the discriminant A of a(T) is

44 = —T(p,—1y (P2+5+4\/2)(P2—4\/2 —5)-

7 7

It follows that either p2>(4\/_2_—5)/7 and a(T)>0 for all T or p, <
{4 \/2—5)/7 and the sum and the product of the roots are

p}+4p,—1 (P2+2—/5) (P2 +2+,/5)
~—5—— and 3
2p;—pa+1 2p3—p2+1

b

respectively. As p,+2—./5 <0 when p, < (4\/E~—5)/7, the sign of a(T) is
nonnegative on ]0, 1[, which completes the considerations in the Remark.

2.2. One example. Let p and g be two positive real numbers such that
p+q = 1. We consider the random variable X with law of type determined in
Deﬁnitio'n 1 with a=1—¢ and « = 2. Hence we have for all ke Z*

PUX =k)=20-g¥, P{X=0D=4q.-

Then the characteristic function @ of X is defined by

. 1—pcosd
D) =qg——0rs.
(e ) 4q |1_pe1.0]2
Consequently, we obtain
|1—pe®
0)=1-00)=———
f( ) ( ) IP(ele)lz 2
where
P(e®) = (1—pé).

p(p+1)
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Using the notation of Theorem 1, we obtain the following terms:

> .
= —_—, = . .= O th i .
Bo ’p(p+ ) B1 pBo B otherwise

It is a direct consequence of the formula (9) that

15 gl ) =—— (1+kq)(q—J~’q—_) if k<1,

p(p+1) N+2+2pq~1
. (1—kg)?
1 . k, k)= 1 2)_ )
(16) gnik, k) P +1 (( +kq*) N+2+2p0 "

Since the difference of degrees of the two polynomials is 1, the formulas (15)
and (16) are valid if k, [€ {0, 1, ..., N—1}. For k = N or I = N we have to add
to the previous terms a quantity c(k, [) = O(1) as in Proposition 1.

Remark. Put limy., k/N = x and limy.,, /N =y. Then

1 2q
Zaulk. ) = —
where R(x, y) = min(x, y)—xy is the Green kernel associated with the dif-

ferential equation y”+ uy = 0 with the boundary conditions y(0) = y(1) = 0.

R(x, y),

2.2.1. Expectation of the number of visits.

PROPOSITION 6. For an integer k in [0, N] the expected number of visits
v (k) in [0, N] of the process when S, =k is

2 _ 1+kg k(k+1) 2
V(k)_p(p+l)<q N+2+2p/q><k+q 2 >+P(p+1)(1+kq)

1 N(N+1)—(k+ 1) (k+2)
X (q(N_k)_N+2+2p/q<N'k+q< 2 »)

(1—kg)?
p(p+1)< * q2'N+2+2p/q)'

Proof Using the formula (2) and Proposition 1 we have

- (q 1+kg )i(1+lq‘)

-+

p(p+)\" N+2+2p/q) 5o

2 N 1+1lg ))
+ 1+k 4 V4
p(p+1)( q)<z=kz+1<q N +2+2p/q N

o+

(1—kq)*
p(p+1)< * qz_N+2+2p/q>'



194 . P. Rambour and J-M. Rinkel

From (11) we can easily conclude that ¢, y = 0. Now to obtain the result it is
sufficient to make the remaining elementary computations. s

ProrosiTiON 7. The expected number of visits ¥ in [0, N1, if the process
So is a random state in [0, N] for the uniform case, is given by

1 q> N?* N?
=— —+—|4+0Q).
N+1p(1+p)(6+q +0(1)

Proof. The proposition is a direct consequence of (12). m

~ CoROLLARY 3. Let x be a real number in [0, 1. If lim;.}_,m k/N = x, then
the expécted number of visits ¥ (k) in [0, N] of the process when S, =k is

2

Y k)= —1 _x(1—x)N>+0(N?.

p(p+1)
The expected number of visits ¥~ for the uniform case is equal to

_ 4 ., 465+D)
6p(1+p) 6(1+p)p
2.2.2. The hitting probability.
ProrosiTioN 8. For ke[0, N] we have

N+0().

Hy (k) = gor (),

where o~ (k) is given by (17) in the sequel.

Proof For I <0 we can write

k—1
nk, )= Z gnk, ) P(t, D+ Z gnk, ) P(t, h+gn(k, k) P(t, k).
t=k+1
‘Since
q 1+kq k-
Hy(k, )= 14tq)p¢=b
wlk. b p(p+1)( N+2+2p/q> 2 (+1p
1+1q >(1_,)
+ — -
p(p+1)( q)z kzn( N+2+2p/q)”
q (1—kq)* ) _
14+kg?)——— "% Ypk-b
+p(,,+1)(( TR N 2t 200a)”
we obtain

—n 1 1+kq p+1
R (G e G G )
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q(1+qk) , _ 1 _

+———pf| 1-p" kq+pg+1—p* *(gN+1—¢*p) )
o1 P p qu(N+2+2p/q)(q pg+1—p"*(gN+1—-4%p))
4 -1 2 (1_kq)2)

2 14kg?——— 2 ),

o ( T " NI2+2p/q

which is the desired expression. =
The following corollary is a direct consequence of (17):
COROLILARY :4. Let x&[0, 1]. Assume that k/N — x when N — + co. . Then

Hyk)=1—x+0(1), Nlim o(1)=0.
=+ a0

Remark. For a right hitting probability we have also a formula analo-
gous to that in Proposition 8:
N+1

p
1—p

Consequently, we obtain the asymptotic expression: Hy (k) = x+o/(1).

Hf () =2—at (k).
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