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Abstract. Let E be a separable real Banach space not containing
an isomorphic copy of ¢p. Let 2 be a subset of ¥ (E*, E) with the
property that each Q€2 is the covariance of the centred Gaussian
measure yg on E. We show that the weak operator closure of 2 con-
sists of Gaussian covariances again, provided that

sup | |x]|* dpo (x) < 0.

Qe2 E
If in addition E has type 2, the same conclusion holds for the weak
operator closure of the convex hull of 2. As an application, sufficient
conditions are obtained for the integral of Gaussian covariance opera-
tors to be a Gaussian covariance. Analogues of these results are given
for the class of y-radonifying operators from a separable real Hilbert
space H into E.
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1. INTRODUCTION - -

Let (,) be a sequence of Gaussian Radon measures on a real Banach
space E and let (Q,) = & (E*, E) be the associated sequence of their covariance
operators. Assuming that the weak operator limit lim,_,Q, = Q exists in
£ (E*, E), it is natural to ask under what conditions Q is a Gaussian covar-
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iance again. In this paper we show that this is the case if E does not contain an
isomorphic copy of ¢, and the boundedness condition

sup { [Ixl12 dpn () < o0
n E

is satisfied. For separable E this implies that the weak operator closure of any
family of Gaussian covariances 2 = % (E*, E), which is bounded in second
moment, consists of Gaussian covariances again, and if E has type 2, this result
extends to the weak operator closure of the convex hull of 2. As an application
of this result we show that, in separable spaces with type 2, certain weak
operator mtegrals of Gaussian covariances are Gaussian covariances again.
These results are obtained in Sections 2 and 3. ’

Our motivation for studying these questions comes from the theory of
stochastic equations. Let A be the infinitesimal generator of a Cy-semigroup
{S(#)};>0 on a real Banach space E and let {W(t)},5, be an E-valued Brownian
motion. Denoting the law of W (t) by v,, the following formula holds for the
covariance of W (t) in terms of the covariance operator R, of v,:

E{W (1), x*>? = (R, x*, x*> = t (R x*, x*>, x*, y*eE*,
Extending well-known results for the case where E is a Hilbert space, it is
shown in [3] and [8] that the stochastic differential equation

du(t) = AU(t)dt+dW (), [0, T],
U()=

has a unique weak solution {U (f)},qo,m if and only if the operator Qre
% (E*, E) defined by

(1.1)

T
Qrx*:= [S({t)R, S*(t)x*dt, x*eE*,
0

is a Gaussian covariance operator. Since the operators Q (t):= S(¢) R, S*(t) are
Gaussian covariances, the abstract framework considered above.applies. In this
special situation our results show that if E has type 2, the operator Q is indeed
a Gaussian covariance, and therefore the problem (1.1) has a weak solution.

The class of Gaussian covariance operators is closely related to that of
y-radonifying operators. Indeed, in Sections 4 and 5 we obtain analogues of our
main results for this class of operators. In the final section we establish a con-
verse of the main result of Section 5 for spaces with cotype 2.

2. WEAK LIMITS OF GAUSSIAN COVARIANCES

A Radon measure p on a real Banach space E is called a Gaussian measure
if for all x* € E* the image measure {u, x*)> is Gaussian. For such a measure
uon E there exists a unique vector me E, the mean of u, and a unique bounded
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operator Qe % (E*, E), the covariance of u, such that
(21)  <Qx*, y*> = [{x—m, x*>{x—m, y*>du(x) for all x*, y*eE*.
E

Conversely, m and Q determine p uniquely. A Gaussian measure p is called
centred if m = 0 or, equivalently, if the image measures {(u, x*) are centred for
all x* e E*. In this paper, all Gaussian measures will be centred. A necessary
condition for a bounded operator Q € & (E*, E) to be a Gaussian covariance is
that Q be positive and symmetric, i.e., {(Qx*, x*)> > 0 for all x*€E* and
{Ox*, y*> = {Qy*, x*>-for all x*, y*e E*. If E is a real Hilbert space, a posi-
tive symmetsic operator Q € % (E) (we identify E* with E in the usual way) is
the covariance of a Gaussian measure y on E if and only if Q is of trace
class. Taking u to be centred, we have '

tr(Q) = | lIxll* dp(x).

In general Banach spaces, no simple explicit characterization of Gaussian co-
variances seems to be known. Qur main tool for finding sufficient conditions
on positive symmetric operators to be Gaussian covariances is the following
Fatou type lemma:

LEmMMA 2.1. Let E be a real Banach space not containing an isomorphic
copy of co and let F be a norming subspace of E*. Let (Q,) € % (E*, E) be
a sequence of Gaussian covariances and assume that there exists a bounded
operator Qe % (E*, E) such that

2.2) lim {Q,x*, x*> = {(Qx*, x*> for all x*eF.
If
2.3) N sup | |Ix]|* dpg, (x) < oo,

L

then Q is a Gaussian covariance and

2.4) J 11x11? dpg (x) < lim inf | ||xI* dpg, (x)-
E nsao g

Here, for a given Gaussian covariance operator Qe % (E*, E) we write
pg for the unique centred Gaussian measure with covariance Q.

In the proof below we use freely the theory of Gaussian Radon measures
on locally convex spaces presented in [2], Chapter 3, where also unexplained
terminology can be found.

Proof. We begin with observing that (2.1) and (2.3) imply the uniform
boundedness of the sequence (Q,). Hence without loss of generality we may
assume that F is norm closed in E*.
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Let vg := jug, be the image measure under the canonical isometric em-
bedding j: E = F*. Each v, _is a centred Gaussian measure on F*. Let B(0, r)
and By (0, r) denote the closed balls of radius r in E and F*, respectively.
Combining (2.3), the weak*-compactness of By(0, r), and the estimate

Vo, (CBr0, M) <5 | I*Pdvg, 0™ =5 | Ixl?dug, ),
T Bl " o,
we can infer that the family (vp) is uniformly tight as a family.of Radon
measures on (F*, ¢ (F*, F)); cf. [2], Example 3.8.13 (i). Let v be any weak limit
point. Then v is a Gaussian Radon measure on (F*, ¢ (F*, F)). Let R: F — F*
be its covariance operator and let yeF be fixed. By a standard argument
involving characteristic functions, (2.2) implies that joQ = R. In particular,
R takes its values in j(E), and therefore we may identify Q and R as positive
symmetric operators from (F, a (F, E)) to (E, ¢(E, F)). Let H be their common
reproducing kernel Hilbert space. The canonical inclusion mapping i: H—— E
is weakly-to-¢ (E, F) continuous and its adjoint will be denoted by i': F - H;
we have R = io{'. By Theorem 3.2.7 in [2], H is separable, and we may choose
a sequence (y,) in F such that the sequence (h,) := (i’ y,) is an orthonormal basis
for H. For all N and all yeF,
E(Y, gu<ihy, p))" = ¥ iy 9)* <l Yl = <Ry, 1.

n<N n<N

Hence, by Anderson’s inequality [1], for all N we have
P(| Y gnih, ,2,. <1?) = v(Bm(0, 7).

n<N

Since F is norming for E, this implies that the series Z,. g.ih, is bounded in
probability in E. Since E does not contain an isomorphic copy of c,, the
Hoffmann-Jergensen—-Kwapien theorem ([6], Theorem 9.29) implies that
Zn gnih, converges in E almost surely and in I? (Q; E). As a consequence, Q is
the covariance of a Gaussian measure p, on E. Note that from R =joQ we
have v =jopu,.

It remains to prove (2.4). Let E, denote the closure of the linear support of
lig. Since ug is Radon, Ej is a separable closed subspace of E and we may
choose a sequence of norm-one elements (y,) in F such that |x| =
sup, [<{x, y,)| for all xe E,. For every r > 0 and N we have, by weak conver-
gence, :

[ supKx, y)*dug(x) < [ sup<pn, y*)I> Ar*dv(y*)

B(O,r)nEgn<N F*n<N

= lim | sup|{x,, y*)|*> Ar? dvg_(y*) < liminf [ [[y*||2 Ar2dvg, (v¥)
n—*oo F*

RO g N

< lim 1nfj X112 Ar2 dpg (x) < hm 1nfj lIxII* dug, (x).

n—+aow
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By monotone convergence, (2.4) follows from this by first letting N — oo and
then r »o0. m

The following example shows that the lemma fails for E = ¢,:

ExaMPLE 2.2. Let T: 2 — ¢, be the multiplication operator associated

with the sequence I/JE,‘ 1 /Jﬁ, ... For n = 1 let T, denote the multiplica-
tion operator associated with the sequence

1//In2, 1//In3, ..., 1//ln(n+1), 0,0, ...

Then for every n' > 1 thé operator Q, := T, © T,* is the covariance of a centred
Gaussian measure g, on ¢o. With Q := T 0 T* we have lim,_,,, (@, x*, x*> =
{Qx*, x*> for all x* e E*. As is shown in [7], Theorem 11, the assumptions of
the lemma are satisfied but Q fails to be a Gaussian covariance operator.

Let us denote by 4 (E*, E) the collection of all Gaussian covariances in
& (E*, E). A collection 2 = 4 (E*, E) will be called bounded in second moment if

sup { x> dpg (x) < 0.
Q2 E
Lemma 2.1 can be rephrased as follows: if 2 = % (E*, E) is bounded in
second moment, then its sequential weak operator closure is contained in
%(E*, E). For separable spaces E this may be strengthened as follows:

THEOREM 2.3. Let E be a separable real Banach space not containing an
isomorphic copy of co. Let 2 =< 4 (E*, E) be bounded in second moment and let
3% denote the closure of 2 in the weak operator topology of ¥ (E*, E). Then
9% < 4 (E*, E), and for all Re 2 we have

JlIx1? dpg (x) < sup [ [1x]1? dpg (x).
E Qe2 E
-Proof. Since E is separable, we may pick a sequence (x}),5 in E* whose

linear span F is a norming subspace for E. Fix an arbitrary Re 2¥. For each
n>1 let Q,€62 be an operator such that |[((R—Q,)x¥, xf}| < 1/n for
j» k=1, ..., n Then lim,_ , {@,x}, x}> = {Rx¥, xg) for all j, k > 1, and by
polarization this implies lim,_, ., {Q, x*, x*> = (Rx*, x*} for all x*eF. The
result now follows from Lemma 2.1 &

3. WEAK INTEGRALS OF GAUSSIAN COVARIANCES IN SPACES WITH TYPE 2

Recall that a Banach space E is said to have type 2 if there exists a con-
stant C > 0 such that for all finite subsets {x,, ..., xy} of E we have

N N
3.1) E[|Y &x* < C* Y lIxall?,
n=1 n=1
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where (g,))-, are independent Rademacher variables. The least possible con-
stant C in (3.1) is called the type 2 constant of E and is denoted by C,. Examples
of spaces with type 2 are the Hilbert spaces and the I'-spaces for pe[2, o).

LemMa 3.1. Let E be a real Banach space of type 2. Let Q = ZL O Qs
where a, >0 and Q,€%(E*, E) for alln=1,..., N. Then Qe % (E*, E) and

N
JlIXI1? dug (x) < €3 3, anlfillxllzdug,(x)-
E

n=1

Proof..Without -loss of generality we may assume that a, > 0 for all
n=-1, ..., N. Let us denote by v, the centred Gaussian measure on E given by

va(B) = pig, (B//an)

for Borel sets B < E. Then Q is the covariance of the centred Gaussian measure
g = vy %...xvy. For any choice of (rq, ..., ry)e{—1, 1}¥ we have, using the
symmetry of each of the v,,

I duo e = { || X X|” dvy (%) - dvy (xy)

n=1

N
2
= [ “ Z r,,x,,” -dvl(xl)...va(xN].
EN n=1
Let (e)n-1 be independent Rademacher variables on a probability space
(Q, P). Putting r, := ¢,(w), taking expectations with respect to weQ and ap-
plying Fubini’s theorem, we obtain :

N
I dug () = § E||'T enxall” dvi(x1)... dvy (x).
E EN n=1 )
Since E has type 2, the right-hand side can be estimated from above by

N
C3 I [1%ull? dvy (x1)... dvy (xy)
ENpn=1
N o - N B :
= C3 Y [P dv(y) =C3 Y an [ Xl dfig, (). =
n=1E n=1 E .
A Banach space E with type 2 cannot contain an isomorphic copy of ¢,.
Hence we may combine Theorem 2.3 and Lemma 3.1 to obtain the following
result, in which co 2 denotes the convex hull of 2:

THEOREM 3.2. Let E be a separable real Banach space with type 2. If
2 < 9 (E*, E) is bounded in second moment, then 0l c¥ (E*, E) and for all
RecoZ we have
§lIxl? dpg (x) < C3sup [ (11| dpg (x).
E

Qe E
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This theorem will be applied next to show that in spaces E with type 2 the
weak operator integral of a function with values in %(E*, E) belongs to
%(E*, E). For this result we need the following elementary lemma.

LemMAa 3.3. Let (X, A) be a probability space and let n > 0 be arbitrary.
Form=1,..., Mlet f,: X > R be bounded. Then there exists a finite partition
P=A,,..., A of X into disjoint measurable sets with the following proper-
ty: for every refinement P’ = By, ..., By and every choice of points &;eB;,
j=1,..., k', we have v

. . koo o -
- A0 Y M) 14,0dAd) <n, m=1,.., M.
X i=1

Proof Let |f,/ <R for m=1,..., M. For N so large that 2R/N <y,
divide [—R, R] into N disjoint intervals I, of length 2R/N and let
Bpn=ful), m=1,..,M, n=1,..., N. Consider the partition P of X
generated by the k= N™ sets By, N ... "By, with 1< n;, ..., nyy <N.
If P’ is a refinement of P and if ;€ B;e P’, then B; = A, for some 4;e P, and
therefore for all e B; and all m we have

|fm(€)—fm (&) < 2R/N < 1.

By integrating, we see that P has the required properties. m

THEOREM 3.4. Let E be a separable real Banach space with type 2, let (X, A)
be a probability space, and let Q: X — # (E*, E) be a function with the fol-
lowing properties:

(1) Q(&)e%(E*, E) for A-almost all (€ X and we have

[T IIxI1? dugey () dA(8) < oo;

XE

(2) E—>Q(E)x* is Pettis integrable for all x* e E*.
Then the operator Qye L (E*, E) defined by

Qxx*:= [ Q(E)x*dA(l), x*eE*,
X
belorigs to % (E*, E) and we have
§lixli? dug, (x) < C3 § [ I1xl? dpge (x) dA.(9).
E XE

Remark 3.5. It is implicit in the formulation of the theorem that the
function

4 '—’_f lIxI|? dig ()
E
is measurable. That this is indeed the case can be checked by an argument
using approximation of x — ||x||?> by cylindrical functions. The details are some-

what tedious and are left to the reader.

5 — PAMS 25.1
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Proof. Let X, be a set of full :-measure in X with the property that Q (£)
is a Gaussian covariance for all £ X,. Without loss of generality we may
assume that X, = X.

Step 1. We first prove the theorem under the additional assumption that
the function Q is bounded in the operator norm of & (E*, E). Let # be the set
of all operators Reco2 of the form R = Z, ,4;Q (), where

(3.2) a;=p(4) and ¢&ed; foralj=1,...,k

for some partition P = A4, ..., 4, of X.
- For,8 > 0 arbitrary and ﬁxed let Z; denote the collectlon of all Re Z for
which P and the £;€A; in (3.2) satisfy the additional requlrement

(3.3) IHIIXIIZdMQ@)(X)dl(E) § Z 14,(9) f I1xI1* g (%) dA(&)] < 6.

Xj=1

Note that every partition P = Ay, ..., A; has a refinement P’ = Bl, ..., By
such that (3.3) holds for P’ and a suitable choice of points &; e B;.

We claim that Qxe%w. Suppose the contrary. Then some weakly open
subset of # (E*, E) containing Qy is disjoint from %;. It follows that there exist
an integer M > 1, elements x¥, ..., xi, ¥f, ..., yiy€ E*, and an ¢ > 0 such that
for all Re#; we have

[<(Qx—R)x}¥, y*> > ¢ for some I, me{l, ..., M}.

In particular, for all partitions P of X and all choices £;€ A; subject to the
condition (3.3) we have

k
[§<Q&)xF, y£> dA(©)—1 ¥ 14, (OQE) xF, yhydA(®)| = ¢
X Xj=1

for some I, me{l1, ..., M}. But this is impossible in view of Lemma 3.3. This

-proves the claim.

By Lemma 3.1 and (3.3), for any Re%; we have

k

h fllxllzdﬂx(x) <Ci ) ajI 11 dgge,) (%)

i=1
=C3f Z L4, (é)]I|X||2dﬂg<:,)(x)di(§) C3(1+6) § [l dpg (x) dA(E).
Xj=1 XE
Moreover, by the claim and Theorem 3.2,
§lIxl1? dpo, (x) < sup | [Ix]1? dug (x).
E Re®;E

The theorem (for bounded Q) now follows by combining these estimates and
noting that § > 0 was arbitrary. ‘
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Step 2. For general functions Q, let Q®:= Lol <m@ Then Q™ is
bounded and satisfies the conditions (1) and (2). Hence, by Step 1, the opera-
tor Q,e Z(E*, E) defined by

QP x*:= [ QW () x*dA(l), x*eE*,

is a Gaussian covariance. Clearly, we have {(QP x*, x*>1<{Qxx*, x*> as
n — oo for all x* € E*. Therefore the condition (2.2) in Lemma 2.1 is satisfied
and, by Anderson’s inequality, the condition (2.3) is satisfied as well. The proof
is concluded by an application of this lemma and noting that for x*€E* we
have '

(Qxx*, x*> = lim (QPx*, x*

= lim {<Q™(&)x*, x*) dA (&) = [<Q (&) x*, x*>di (%),
X

B0 X
where the last equality follows by monotone convergence. am

COROLLARY 3.6. Let E be a separable real Banach space with type 2 and let
(X, A) be a probability space. Let Q € % (E*, E) be fixed and let S: X — ¥ (E) be
a strongly measurable function satisfying

(3.4) [ IS dA®) < .

Then the operator Qxe ¥ (E*, E) defined by
Ox x* 1= [ 5(&)0S* (&) x*dA(9)
X

belongs to %(E*, E) and we have
Jlxl? dpg, (x) < C3 (Jfrlls(f)ll2 A€ (§ lIxl1* dug (x))
E E

" Proof. For all x* e E*, the function & S (&) QS*(£) x* is strongly measu-
rable by Pettis’s measurability theorem, and therefore Bochner integrable by
(3.4). For all £e X, S(&)QS* (&) is the covariance operator of the image measure
S(&) pg =: pg, and therefore

X1 dpg, (x) < C3 [ [ llxll® dps (x) dA. ()
E XE

= C%iills(@y”z dpg (y)di(8) < C3(JISE* dAQ)( IVI1* dug(y)). =

X E

An application of this result to stochastic evolution equations has been
discussed in the Introduction.
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4. WEAK LIMITS OF y-RADONIFYING OPERATORS

Let H be a separable real Banach space. A bounded operator Te % (H, E)
is said to be y-radonifying if TT* € % (E*, E). Here we identify H and its dual in
the usual way, which permits us to view T'T* as a bounded operator from E*
into E. It is well known that

”T”;Z:(H,E) = I 1X11? dprre(x)
E

defines a- norm ||'||,@ z on the vector space y(H, E) of all y-radonifying opera-
tors from'H to E, and that y (H, E) is a Banach space with respect to this norm.
If (h,) is an orthonormal basis for H and (g,) is a sequence of independent
standard Gaussian variables, then

||T||3(H,E) = E”Zgn ThnHZ-

An overview of the theory of y-radonifying operators is presented in [2]. We
shall need the following ideal property, which is implied by Anderson’s in-
equality: if S;: Hy - H and S,: E — E, are bounded and T: H — E is y-rado-
nifying, then S, TS;: H; —» E, is y-radonifying and

1S2TS 1llyar,. 20 < NIS2lH I Ty, 1S4l

As an application of Lemma 2.1 we obtain the following Fatou lemma for

y-radonifying operators.

THEOREM 4.1. Let H be a separable real Hilbert space, E a real Banach
space not containing an isomorphic copy of co, and F a norming subspace of E*.
Let (T,) be a bounded sequence in y(H, E) and let Te ¥ (H, E) be such that

@.1) lim (T,h, x*> = (Th, x*>  for all he H, x*eF.

Then Tey(H, E) and
" (4.2) T llym,5 < hmmf”T”y(HE) -

Proof. Since the operators T, and T have separable ranges, there is no
loss of generality by assuming that E is separable.

Fix a sequence (x¥) of norm-one vectors in F such that ||x|| = sup;[{x, x})I
for all xeE. Also fix an integer k> 1. Noting that by (4.1) we have
lim,, , T x¥ = T*x¥ weakly in H for all j> 1, we choose a sequence of
convex combinations of the form

N
43) | S =Y al,T,

m=n
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such that
4.4 lim [|S%* x;F—T* xfl=0 forallj=1,..,k.

By (4.3), the inequality ||| < ||'ll,,r), and the boundedness of (T,) in y (H, E),
4.5) sup |ISP| < SUP 15¥ 1.y < sup (Sup | Tl 5y) < 00.

m=n

From the estimates
N(k)

ﬂl-((Sﬁ"’ T)T*x* x| < Z a®, |(T,—T) T* x¥, x¥|

< sup (T —T) T*x}, xF)l

and (4.1) it follows that
4.6) lim (S§ T*x¥, x¥) = (TT* x;!‘,' xfy forallj=1,..., k.

n2wo

Therefore, by (4.4)H4.6) we obtain
(47)  lim (SE SE* x¥, x¥

n—w

= lim ¢S$ T*x¥, x}>+ lim (S (SP* x¥ —T*x¥), x¥> = (TT*x}, x}

o
n— o n—w

for all j=1,..., k.
For every k> 1 we use (4.7) to choose an index n, such that

|<S$,’2 Sﬁ,’;’* x¥, xfy—(TT* x¥, xfyl<1/k forall j=1,... k.
Then
4.8) klirg(Sﬁ,’f" Sf,',‘j* x¥, x¥y=(TT*x},x}f) forallj>1

By polarization we infer from (4.8) that '
49) Lm{S®SWxk x*y = (TT*x*, x*) for all x*eF,,
k— w0

where F denotes the linear span of the sequence (x*) It follows from (4.5), (4.9),
and Lemma 2.1 that Tey(H, E) and

(4.10) 1Tl ya,5 < hm sup 1 Toallyar, £y -

By applying (4.10) to suitable subsequences of (T;,) the estimate (4.2) follows. =

Under the stronger assumption that lim, .., T,h = Th for all ke H this
result is contained in [5], Proposition 4.10, where it is proved with the fol-
lowing concise argument. Fix an orthonormal basis (k;) of H and an integer k.
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Then, by the Fatou lemma,
E||X o, Th] <liminfE| Y. ¢; T " < lim inf I Tl

i<k i<k
Hence

(4.11) supE||Y. g; Thy||* < liminf || T;}|2a,5-
k gk n—o

This means that T is almost summing in the sense of [4], Chapter 12. Since
E does fiot contain c,, the Hoffmann-Jorgensen—K wapien theorem implies that
Tey(H, E)} and (4.2) follows from (4.11).

Let (X, A) be a separable o-finite measure space. We-call an operator
Tey(I?(X), E) representable if there exists a function ¢: X — E such that for
all x*eE* we have T*x* = (¢, x*). Here (¢, x*>eI?(X) is defined by
{p, x*> (&) := (P (&), x*> for £ X. In this situation we say that ¢ represents T.
We write y(X; E) for the vector space of all functions ¢: X — E representing
an element T of y(I?(X), E). For such a function we write ||@|l,x;r) :=
1Tl

Our interest in the class y(X; E) is explained by the following result
from [8]:

If ¢: (0, T)— E is a function such that {¢, x*>eI?(0, T) for all x*e E*
and if W= {W(t)};»o is a real-valued Brownian motion, then ¢ is stochastically
integrable with respect to Wif and only if ¢€y((0, T); E), and in this case we
have '

E||£ ¢ @dWw @ = 1912 0.1:5)-

Theorem 4.1 implies a Fatou lemma for functions in y (X; E). It generalizes
Proposition 4.11 in [5], where stronger measurability and convergence assump-
tions were imposed. As in [5] the proof is based on Egoroff’s theorem, but the
details are more intricate. By the result from [8] just quoted, for X = (0, T) it

“provides a sufficient condition for stochastic integrability of certain E-valued
functions.

THEOREM 4.2. Let (X, A) be a separable o-finite measure space and let E be
a real Banach space not containing an isomorphic copy of c¢o. Let (¢,) be a se-
quence of functions in y(X; E) satisfying

sup [|@ullyx;my < 00
n

and let ¢: X - E be a function such that

lim {¢,, x*> = (¢, x*)> u-almost everywhere
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for all x*eE*. If ¢ is Pettis integrable, then ¢pey(X; E) and

”¢|ly(X;E) < hm inf“¢n”y(](;£)-
n—w

Proof. For all n and all x*e E* we have ||[{¢,, x*>|l2 < |9all,x:5 [IX*]].
Hence, by Fatow’s lemma, (¢, x*)>eI?(X) and

K¢, x*>Il; < lim inf|[<@n, x*>l2 < llx*|[ im inf || pullyriey  for all x*eE*.

Step 1. The. separability of (X, /) implies that I?(X) is separable. Let
T,: I?(X) > E and T: I?(X) — E be the operators represented by ¢, and ¢,
respectively. Note that T is well defined since ¢ is Pettis integrable. That the
operators T, are well defined follows immediately from the assumption that
dney(X; E).

Let E, be a separable closed subspace of E containing the ranges of the
operators T, and T. Let (x}) be a sequence of norm-one vectors in E* such that
lIx]| = sup;|<x, x}>| for all xeE,.

We construct a sequence of measurable subsets (X®) of X with the fol-
lowing properties:

(1) A(X®) < oo for all k;

) A(X\J, X¥) = 0;

(3) lim,-, o, (¢, xF> = (¢, x}> uniformly on X® for all j and k.

We start by selecting a sequence of measurable subsets (4%} of X with
A(A®) < o0 and X = [ J, AW; this is possible since (X, 4) is o-finite. Next we
use Egoroff’s theorem to choose measurable subsets A% < A® such that
A(AMN\AP) < 27™ and lim, ., , {¢,, x}> = (¢, x}> uniformly on 4% for all
j=1,...,m Let

(k) . _ Q)
B[ m20+1 A'" .
Then B® < A®, A(A®\B®) < 27, and lim,, , {$, x*> = (¢, x*) uniformly
on B® for all j> 1. The sets -
. _
X® . B®
i,lL-2 1 :
have the desired properties. :

Step 2. Put ¢Slk) = lx(k) (b,, and ¢(k) = lx(k) ¢ Let T,,(k): .LZ(X) - E and
T®: I?(X) > E be the operators represented by ¢® and ¢®, respectively.
From T® f = T,(1x0 f) and T®f = T,(1xw f) it follows that T,® and T®
take their values in E,.

Let felI?(X) be fixed. From the estimate

KR f=TOf, X < § 1f<bu—, I d2 < lILxo0 1111300 {Pn—, X} llco

X&)




68 : J. M. A. M. van Neerven and L. Weis

it follows that lim,_ ., {T,® f—-T® f, x¥> =0 for all j and k. Theorem 4.1,
applied to the Banach space E; and the norming subspace of E§ spanned by
the restrictions of the x¥ to E,, implies that ¢®ey(X; E) and

6Pl < liminf (|Gl x;e < lim inf (|l
n— o n—w©

where the second inequality is a consequence of Anderson’s inequality. Next,
for all felI?(X) we have, by Fatou’s lemma,

IT® f = Tf]l = supKT® f = T, x})|

J

<sup [ |f <@, xFHldA < [llexao fll2lIK, Xl

j Cxt

< [exao Sl Bminf[[<@s, x7HIl2 < 1exeo fll2 Kminf {|dallycx;z)-
n— oo n—w )

»

By dominated convergence it follows that lim, . ||T® f— Tf|| = 0. Another
application of Theorem 4.1 (or its special case discussed after the proof) implies
that ¢ey(X; E) and

Py < ﬁﬂ%ﬂl@””wmm

< lim inf(lim lnf”(b"”,),(X’E)) = llm inf”gb,,”Nx;E). B
k= n—w n— o

5. WEAK INTEGRALS OF y-RADONIFYING OPERATORS IN SPACES WITH TYPE 2

In this section we will prove an analogue of Theorem 3.4 for functions
with values in y(H, E). Throughout we assume E to be separable.

Let (X, A) be a probability space and let T: X — &% (H, E) be a function
such that T(&)ey(H, E) for A-almost all £€ X, and for all he H the function
& T (é)h is strongly measurable. A standard argument involving the Pettis
measurability theorem and the separability of y (H, E) (which follows from the

-'separability of H and E) shows that T is strongly measurable as a y(H, E)-
valued function. If

j”T(é)”-;zr(H,E] dA(&) < oo,

% ,
then for all felI?(X; H) the integral

Ipf:=§T(Q)f()dA()

converges as a Bochner integral, and the resulting operator I;: I?(X; H) — E is
bounded. To see this, note that from the inequality ||T (6|l < [|IT E)llyam.p it
follows that &+ T (&) f (&) is strongly measurable, and the Cauchy—Schwarz
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inequality then gives
§IT ) f N dAQE) < NTNe2gesyem,en 1 Lzesm < .
X
It follows that the function &+— T (&) f(€) is Bochner integrable. Hence the

operator Iy is well defined and satisfies ||I7|| < ||Tlr2x.ym.5y- For later con-
siderations we note that Ifx* = T*()x* for all x*eE*.

THEOREM 5.1. If E has type 2, then under the above assumptions the opera-
tor Iy: I(X; H)— E is_y-radonifying and

d W rll52cem.8 < C3 _f T (O3, 2y 44 (£)-
X

Proof. Since T: X — y(H, E) is strongly measurable, there exists a se-
quence (T;) of y(H, E)-valued step functions with the following properties:

(i) for all n>1 we have [ |IT|3u5dm < §, | T3q.x5dA;
(11) llmn—ma IX ”T T”)J(H E) di=0.

Let us write T, = Z 1s,,®T;, with the By, measurable and disjoint
and with T, ,ey(H, E). For each n =1 let

= Z A(Bin) Qi ns
k=1
where Q, , = T;,,© T;*,. Let i,: H, = E denote the reproducing kernel Hilbert

space associated with Q,. Then Q, =i,0i}. By Lemma 3.1, i, is y-radonifying
and

N"
(5.1) ”in”%(H,,,E) < C3 Z A(Bic) | Till2e 5y
=C3 j ”T”y(H 5ydA < C3 [T a.5) dA.
X

Let Q:=I;0I% and note that

LQx*, y*> = [T x*, It y*l2xm -
= J[T*(©)x*, T*(©)y*1adi(§) for all x*, y*cE*.
H .

Therefore for all x*, y*e E* we have

(52) [KQux*, y*>—<Qx*, y*)I < JI[T* (€) x* —T* () x*, T* (&) y*1ul dA ()
X
+JILT* ) x*, T (&) y* = T* () y*1ul dA (),
X

which tends to 0 as n — oo by (i), (ii), the Cauchy-Schwarz inequality, and the
inequality ||| < |llly.5)-
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By (5.1) and (5.2) we may apply Theorem 3.2 to the operators Q, and
Q and infer that I; is y-radonifying with

||IT||y(L2(X sH)L,E) CZIHT”y(H,E) di. m

COROLLARY 5.2. Under the assumptions of Theorem 5.1, the operator
T: H— E defined by

Th:= [ T (E)hdA(£)

X

is y-Tad_;)nifyilng and
1T 1.5 < CZIIIT N, 42 (E)-

Proof. This follows by restricting the operator Iy of Theorem 5.1 to the
closed subspace of I?(X; H) consisting of all functions of the form 1®# with
heH and noting that ||T||,m,g < | 1lly@5. ®

6. THE SPACES I2(X; y(H, E)) AND y(I2(X; H), E)

In this section we take an operator-theoretical look at Theorem 5.1. With
the notation of the previous section, for simple functions T: X —y(H, E) we
have

(6.1) Irf = )f{ T(0) f(£)dA(9),

where the right-hand side can be defined in an elementary way. We claim that
the operators I belong to y(I?(X; H), E) regardless whether E has type 2 or
not. By linearity it is enough to prove this for simple functions of the form
T = 13®S, where B = X has finite measure and Sey(H, E). But then we have
Iy = Soig, where ig: I?(X; H — H is defined by

isf:= [ 15(0) f(§)dA ().

¥ . -
Hence Iy is y-radonifying by the right ideal property. The contents of Theorem
5.1 may be summarized by saying that if E has type 2, the mapping I: T+ I
has a unique extension to a bounded operator

I: B(X; y(H, E)) < y(E(X; H), E)

of norm ||I7]| <€ C,. In line with the development so far, we derived this result
from the Fatou lemma for Gaussian covariances. We proceed with an indepen-
dent and considerably more elementary proof of this result. The reason for
including this argument will become apparent in the sequel when we prove
a converse for spaces with cotype 2.

¢
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LemMMA 6.1. If E has type 2, the mapping I: T 11 defined by (6.1) has
a unique extension to a continuous embedding

I: 2(X; y(H, E)) =~ y(F(X; H), E)

of norm [|I|| € C

Proof. Consider a simple function T = Zf: 18, ®T,, where the B,, = X
are disjoint and have finite positive measure, and T,ey(H, E) for all
m=1, ..., M. Choose an orthonormal basis (h,),; for H. By the separability
of (X, A), the space I?(X)-is separable and we may choose an orthonormal
basis (f)ms1 for I2(X), the first M elements of which are given by f, :=
1/\/,1 (B) 15,,. Then the doubly indexed sequence (f® #y)m,n>1 is an orthonor-
mal basis in I?(X; H). Finally, choose a doubly indexed orthogaussian se-
quence (Gmm)man>1 and an independent Rademacher sequence (&,)M_,. Then,
using orthogonality, the symmetry of the g,,,, Fubini’s theorem, and the type 2
property, we estimate:

2

(62) M rlbazosme =El| Y GunIr(fa®h)|

mnz21

—E[| Y G| Su(® T@mdAQ|

mnz1

=E| Y o 2 [ fnl®) 15,0 Tehyda(d)’

mnz1 k=1X

m=

=EE ||§ EnGm/2Bm) Y. Tuh®

m nz1

-

3E Y. 2B 3, g Tl

nz1
M
Z ”Tm”y(H E) CZ ”T”L?-(X 1Y(H,E))*

This proves that I: T+ I is bounded of norm ||I|| < C, on the dense subspace
of all simple functions in I?(X; y(H, E)), and the unique extendability fol-
lows.

To check that I is an embedding, suppose that Iy = Iy, for cer-
tain T;,T,e?(X; y(H, E)). Then from {Ip, f, x*> = (g, f, x*) for all fe
I?(X; H) and x* € E* it follows that T* x* = T3 x* in I? (X ; H) for all x*e E*,
and hence (T} h, x*)» = (T, h, x*) in I? (X) for all he H and x* e E*. By strong
measurability this implies T, h = T, h in I? (X ; E) for all he H. Since H is sepa-
rable, we obtain T; = T, i-almost everywhere. &
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We proceed with an analogue of Lemma 6.1 for spaces with cotype 2.
Recalling that I: T+ I is injective on the simple functions, we can infer that
the inverse mapping I ':I;+T is well defined on the subspace
vo(L? (X; H), E) of all operators Iey(I?(X; H), E) of the form I = I, with
T simple.

LemMa 6.2. If E has cotype 2, the mapping I~ ' has a unique extension to
a continuous embedding
| Iy (BXGH),E) s B(X; y(H, E) - -

of norm"||I™|| < c,, where c, is the cotype 2 constant of E.

Proof. By reversing the estimates in (6.2) we see that the operator I~ is
bounded from vy, (I? (X; H), E) into I?(X; y (H, E)) of norm |[I%|| < ¢, (E). By
an easy approximation argument, yo (I (X; H), E) is dense in y(I*(X; H), E)
and the unique extendability follows.

To see that ™! is injective, define J: I?(X; y(H, E)) > &£ (I?(X; H), E) by

JT)f :=)I(T(€)f(é)d/1(€)

and let j: y (I (X; H), E) = % (I?(X; H), E) be the natural inclusion mapping.
On y, (¥ (X; H), E) we have JoI~! = j and by continuity this identity extends
to all of y(I*(X; H), E). Hence if I"'S; =1"'S, for certain S, S,¢€
y(I (X; H), E), then jS; = jS, as elements of ¢ (I?(X; H), E), and therefore
§$;,=8,. 8

By Theorems 6.1 and 6.2 one expects that the inclusion

E(X;y(H, E) = y(E(X; H), E)

is proper when E is a space with type 2 but not with cotype 2, and similarly
that the .inclusion

y(E(X; H), E) = B(X; y(H, E))

“is proper when E is a space with cotype 2 but not with type 2. The fol-
lowing examples confirm this for the spaces /P in the appropriate ranges
of p.

In fact, the first example shows that in case of type 2 it may even happen
that Iy is y-radonifying while none of the integrated operators T (&) has this
property.

ExaMPIE 6.3. Let H=Pand E=Pwith2<p< w.Fork=1,2,...we
choose sets A4, = [0, 1] of Lebesgue measure 1/k in such a way that for all
tef0, 1] we have

(6.3) #{k=1:te A} = 0.
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Define the operators T (f): [ —» I? as coordinatewise multiplication with the
sequence (a4 (t), a (1), ...), where

‘ 1 1if teAd,
6.4 t) =
(6:4) (1) {0 otherwise.

Then ||T(¢)|] = 1 for all te[0, 1] and none of the operators T (t) is y-radonify-
ing. Indeed, by Theorem V.5.6 in [9], Q(t):= T (t)o T*(¢) is a Gaussian co-
variance operator if and only if

— TS Q@ug Y <,

»
k=1

where uf denotes the k-th unit vector of I (I/p+1/g=1). From
Q) uf = af (t) u,, where u, is the k-th unit vector of /%, and from (6.3) and (6.4)
we see that this sum diverges for all t€[0, 1].

The operator I: I2([0, 1]; X)) =P, I f: —jo (t) f (t)dt, is well defined
and bounded. Putting Q;:= Iy 0I%, we have

1 1
(6.5) Qruf, ufy = [(Q@)uf, uf> dt = [ af (t)dt = |4 = 1/k.
0 0
Consequently,
1
Y Qruf, wHPr =y oz <
k=1 k=1

It follows that Qr is a Gaussian covariance operator and I is y-radonifying.
Note that by the first identity in (6.5) and polarization we have

QTu* = }Q(t)u*dt
0

for all u*el, ie., Qr is the integral of the function t— @ ().
The next example shows that in case of cotype 2 there exist functions in
L* ([0, 1]; y(?, I7)) which do not represent an element of y(L* ([0, 11; %), I*):
" EXAMPLE 64. Let H=Pand E=IPwithl <p<2 Fork=1,2,...we

now choose sets A, < [0, 1] of Lebesgue measure 1/k?/” in such a way that for
all te[0, 1] we have .

#{k=1lted4} <N

where N is an arbitrary fixed integer greater than Zk; . 1/k?®. As before we
define the operators T (t): I —»IP as coordinatewise multiplication with the se-
quence (a4 (t), a, ®, ) defined as in (6.4). For all t€[0, 1], T (¢) is y-radonify-
ing and

T @)Mlyg2.00) < C, N?2,
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where the constant C, depends on p only. For each he [? the function t+— T (t) h
is strongly measurable, and by the separability of y(I?, I?) this easily implies
the strong measurability of t+— T (). Consequently we obtain TeL* ([0, 1];
7 (I, I?). However, the corresponding operator I+ % (IZ ([0, 11; I2), I?) fails to
be y-radonifying. Indeed, with the notation of the previous example we have

2 {Quf, Pt = Z (k2/p)p/2 Z k

k=1
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