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Abstract. The problem of constructing impulsive rebalancing of
portfolios, introduced by Pliska and Suzuki, is solved for models with
general Markovian prices. Existence of the optimal strategy is estab-
lished and its structure described. Quasi-variational inequalities deter-
mining the value function are deduced for multiplicative prices with
general Lévy noise and the case of Poissonian noise is considered in
some detail. :
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1. INTRODUCTION

The present paper is an application of stochastic control theory to finan-
cial problems. We treat only mathematical aspects of the problem postponing
numerical investigation to a future paper.

An important problem for portfolic managers is to respect the diversifica-
tion requirement, that is to maintain proportions of the capital that should be
invested in different asset groups, constant. It is impossible to rebalance
a portfolio continuously, so it usually does not keep exactly to the required
proportions. Therefore each manager has to come up with some algorithm to
decide the moments of rebalancing.

Pliska and Suzuki [7], [8], elaborating the ideas of Leland [5], considered
a model consisting of d assets, d = 2, whose prices satisfy

dsi = Si(dt+o;dW), i=1,...,d,

where W, is an m-dimensional Brownian motion, ¢; are vectors, and y; are real
numbers. A trading strategy was described by a d-dimensional adapted process
(Ny):» o denoting the number of units of assets held at each moment. In [7], [8]
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both proportional and constant transaction costs were introduced. We will
specify them in detail later.

In view of constant transaction costs, any trading strategy IT can be de-
scribed by a sequence of transaction times (stopping times) t,, 75, ... and
resulting portfolio contents N, , N,,, ... The process N, is constant between
transaction times, i.e.

o0
Ni=No Lot 2 Ne, Licgeyny, o1
i=1

Let w be a propoertion process linked up with the strategy IT by the formula

wr(2)
t

where, denoting by ns, n = (n', ..., n), s = (s!, ..., s%), the scalar product in R?,

we have
1.1 d d
o (n n's nts
W = R
s ns ns

The transaction costs are expressed in terms of proportions:

d
cw,v)=K+k > [w—1f

i=1

for K > 0 and k > 0. This is a reasonable simplification that enables to incor-
porate transactions costs into a cost functional. Pliska and Suzuki introduced
the cost functional ' '

J(my = E(OID e P f(w)dt+ i e"’"C(W(N”_>, W<N">> lr,.m),
0 i=1 Sr,- S-:i

where f: R?— R is a function measuring quality of the portfolio. They speci-
fied further that

f(w) = A(w—w*Y o0’ (w—w*)—'(w—w*)’/,z, -

“where ¢ is a matrix consisting of rows a;, i =1,...,d w=(ty, ..., H)eRC,

w* is a target asset mix and AeR.

In Pliska and Suzuki [7], [8], in the two-dimensional case, d = m = 2, the
existence of optimal strategy and its characterization in terms of a continuation
region was established. The results were based on the theory of quasi-variation-
al inequalities (see [1]). Some financial consequences were discussed as well.

In the present paper we cover general Markovian price processes in all
dimensions and examine several extensions of the results from [7], [8]. In
particular, we deal with discontinuous price processes. More specifically we
consider a market modeled by a general d-dimensional Markov process (S,);> ¢,
with positive coordinates, representing price movements of different assets. Our
cost functional, measuring quality of the portfolio at each moment, is deter-
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mined by a continuous function f, defined on proportions. We prove in Sec-
tion 2 (see Theorem 2.1) that under the minimal assumptions on the price
process S and the function f there exists an optimal trading strategy IT mini-

mizing the cost functional J (IT). In Section 3 we consider the so-called multi- -

plicative price processes, important in applications. Using Dynkin’s result on
Markov processes with transformed state spaces, we show that the optimal
solution can be expressed in terms of the proportion processes (see Theo-
rem 3.2). The result is then applied to price processes satisfying an It6 equation
with Lévy noise. In addition, the precise form of the quasi-variational equality
for the value funétion is established as well (see Proposition 3.3). More explicit
cases are tredted in Section 4. Here the noise process is assumed to be Pois-
sonian with linear drift and the proportional cost for impulses is excluded.
Sufficient conditions are given under which the continuation region is of a sim-
ple form. We use here the technique of quasi-variational inequalities and derive
a transcendental equation (16). The solution to that equation indicates, under
additional conditions, a point to which impulses should be performed. Finally
we show (see Theorem 4.8) that one can construct a cost function f for which
the optimal continuation region is given in advance. More details on quasi-
variational inequalities for discontinuous process are given in the Appendix.
The paper is a rewritten version of the report [6].

2. EXISTENCE OF OPTIMAL STRATEGY

We approach the problem of finding optimal solution with the impulse
control method. First we prove the existence of solution to the functional
equation connected with our problem. Then we show that the obtained solu-
tion defines the optimal strategy.

We assume throughout this section that S, is a Feller process and the
function f is continuous. -

To formulate the problem in a formal way we take

N 7 .
K = ( S:) € R?'_d -

as a controlled process. Certainly impulses change only the first coordinate; the
second coordinate — representing asset prices — is present only for technical
reasons. Our goal is to construct a process Y; satisfying the following con-
ditions:

e there exists an increasing sequence of stopping times 7., 7,, ... with
7;Too such that the first coordinate of Y, changes only at moments
defined by (t3)i=1,2,...;

e the second coordinate of ¥; is equal to an external price process S;;

e the trading strategy encoded in Y; is self-financing, i..

(er-_Nri—)Sri = 0:

6 — PAMS 25.1
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e the portfolio wealth is always positive, ie. N,S, > 0;
e the number of shares of each stock is non-negative (no borrowing of
shares allowed), i.e. N, > 0,
and minimizing the functional

0 JW)= EYo( f e“ﬂtF(f;”) dt+ Y e P C(N,, Ny, S,) 11,.<m>,
o t i=1

where

w(N _(Nist it
St NtSt’..., NtSt
is the proportion function, Y = (Ny, So) is the initial point (So > 0, Ny = 0,
Ny S > 0). The cost of impulses is defined as

~ _ N, N,
cov s o) w(%)

Note that between impulses the dynamics of Y, is governed by the semi-

group
() - (o(")) o

where ve C(R?*%, R), and P, is the semigroup for S,.
To derive a functional equation connected with the problem (1) we recall
‘the assumption that P(S,>0 Vi)=1 and put

E={<:>ER2": nz0,n#0, s>0}. -

t

and

N,
It is obvious that the process < S

t
For functions v: E— R we write the equation

L n\ _ . cpos| (opp (N - N,
) U(s) %’v(s) ltrle l:(j)e F(S,>dt+e My s.) |

where the switching functional is given as

3) M¢><:> - inf{é(n, nté, s)+¢<":5>: <":£>GE, £s = 0}.

) starting from any point in E does not exit E.
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The following theorem contains as a special case a result by Pliska and
Suzuki [7] concerned with the case of S, being a two-dimensional Black—
Scholes process. Their method was based on the theory of quasi-variational
inequalities (QVI) [1]. We deal directly with the equation (2).

THEOREM 2.1. Assume that S, is a Feller process and f is a bounded con-
tinuous function of E. Then there exists exactly one bounded continuous solu-
tion v(n, s) to the equation (2) and the optimal strategy for the problem (1) is
given by o

L -ty =inf{t > 0: Mo(N,, S) = v(N,, S)},
Ty =inf{t > 1;-y: Mo(N,, S)) =v(N,, S},
N,e{neR% (n, S.)eE, Mv(N,,_,, S;)=v(n, S;)+C(N,,_,,n, S.)}.

Proof. In order to prove the existence of a unique solution to the equa-
tion (2) we recall a result from [9]; see also [4]. Define

)=

and let C°(E) be the space of bounded continuous functions.

N
PROPOSITION 2.2. Assume that ( St> is a Feller process, F > 0, he C°(E),

t

yh < M(0) for a positive constant y, and M transforms C°(E) into Cb(E). Then
the equation (2) has exactly one solution ve C°(E). Moreover, A™h tends to
v uniformly as n— o0.

In our setting we have to weaken conditions of the above theorem. We
define operators

:ﬂu(") = inf E™9 [I e“”‘(F (N ')+L) dt+e F Mo (N )}
s T 0 Sr S"’

for LeR. Thus #° = A B}

LeMMA 2.3. There exists a unique solution to the equation v = A'v iff there
exists a unique solution to the equation v = A" v. Moreover, if # is the solution of
v=H"Lv, then —L/B is the solution of v = A'v.

Proof. Let 7 be the solution of v = # Ly, Then

o(5)=ra(3)
S S
= inf E™ l:j e B (F (Nt> + L) dt+e F* My (N’):|
T 0 St S'E

C g
o EERps
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K N L L N
= inf E®9 —pt t == B —ﬂ-cM T
ll;lf |:£e F(S,>dt+ﬁ ﬁe +e U<Sz):|

L : N L\(N
~ Ziuges| feor(¥)arre (o) (V)|
B £ S; B/\S.

o—L/f = A (§—L/B).

Thus

A similar reasoning proves the second implication. m

As'a corollary to the above results we obtain the following lemma.
N .
LEMMA 2.4. Assume that ( St> is a Feller process, he C*(E), and M trans-

t
forms C?(E) into C?(E). Let F be a function bounded from below by (—L). If
there exists a positive constant y such that

y(h+Lafe'ﬁ‘dt) = y(h+%> < M(0),
0

then there exists a unique solution ¥ C®(E) of the equation v = A Lv. Moreover,
the function v = 0—L/B is a unique solution of (2).

To prove the existence of a solution to the equation (2) for our model
t

t
constant. Notice that proportions form a compact set D in R?:

N . .
notice that < S > is a Feller process because S, is a Feller process and N, is

d
D ={w',..., w)eR% w'el0,1], ) w =1}

i=1

Therefore, a continuous function F, defined on proportions, must be bounded.

-Thus it is straightforward that he C?(E).

Let L =min(0, —inf,z F (x)). Since M(0) > K > 0, one can easily find

a positive constant y such that y (k+ L/f) < M (0). Continuity of the cost func-

tion C and the multifunction mapping into the set of possible impulse
s

destinations imply that M transforms the set of continuous functions into itself.
To show that M transforms C°(E) into C®(E) we take any function ge C*(E)
with o = sup|g|. Then

Mg<z> < K+dk+a and Mg(?) > K—a,

so Mge C?(E). Therefore, by Lemma 2.4, there exists a unique continuous and
bounded function v, that is, the solution to v = J'v. Thus, we have proved the
first assertion of Theorem 2.1.
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Now, we characterize an optimal impulse control. Since we know that
there exists a unique solution v to the functional equation (2), we have to prove
that the infimum in (2) is attained by some stopping time (this would be the
moment of the impulse) and that we can find a transaction (change of N,) that
should be made at this moment. It is well known (see Bensoussan and Lions
[1], Zabczyk [9]) that the optimal stopping time is given by = =inf{t = 0:
Y,eZ}, where Z = {yeR*: v(y) = Mv(y)}. We only have to prove that for
each (n, s)eE there exists £€R? such that (n+¢, s)€E, & =0, and |, .

- Mv.(‘n)=("f(n,n+£,s)+v<n+é).
s s

Fix (n, s)e E. Both functions € and v are continuous (v is also bounded). We
first prove that the infimum is taken over a closed set. In fact, this set can be
written as

A={& (n+& s)eE, Es=0} = {&: n+&2 0, & = 0)\{—n}.

The self-financing condition &s = 0 assures that (—n)¢A, so A is closed. Now
take a sequence & eA such that

é(n’ n+€k: S)+U<n_:£k) - Mv (:)

If||&,]] + oo, then &, admits a subsequence converging to some & € E. Otherwise,
€|l = co. From the self-financing condition and the equivalence of all norms
on R? we obtain C(n, n+&, s) > K+ f(ns)~ 1 ||&| for some feR. . Hence the

boundedness of v implies that C(n, n+ &, s)+v(&) — oo, which leads to a con-

tradiction. For completeness of the proof we shall show that 7; — oo a.s. Notice
that each impulse adds a cost of size at least K. Since the value function v is
bounded, an infinite number of transactions in finite time is impossible — its
discounted transaction costs would sum up to mﬁmty This completes the
proof of Theorem 2.1. m :

3. MULTIPLICATIVE PRICE PROCESSES

In this section we assume that the price process is multiplicative, i.e.
@ Si(ys, t) = yS'(s, t), 7v€R, seR% s>0,t>0,i=1,...,d,

where (S*(s, #));>0 denotes an i-th coordinate of a price process starting from
the point s,

S(s, 0)=s.
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An important example of a multiplicative positive price process is a solution to
the Itd equation

(5) dSi(s, ty = S'(s, dZi(t), i=1,...,d,
S(s,0)=s, seR, 5>0,
for a Lévy process (Z%, ..., Z% with jumps greater than —1.

3.1. General case. We will show that the proportion process linked up
with S, is Markovian and argue that the control problem (1) formulated in
terths of proportions has an optimal solution. Let D be a simplex of propor-
tions defined as in Section 2:

d
D ={w, ..., w)e[0, 1]%: > w' =1}.
i=1

The process N (¢) is constant, so, intuitively, we can incorporate it into S (s, 1)
using (4). We define T: R4 — D by

Sl

Sd
+8T T8+ L +S")'
Then w(t) = T(S (S, ¢)), where § = (N1(0)S*(0), ..., N*(0) §%(0)), and obviously
w(t) is indifferent to scaling of the initial condition §,

(6) T(S@3, 9))=T(S($, 1)) for scalar y #0.

We introduce an operator T* acting on functions f: D — R in the fol-
lowing way:

T®) = (S1+

(T*f)s) = f(T(s)), seR%.

THEOREM 3.1. Let o/ be a generator for the positive price process S, i.e.

“almost all trajectories of (S(s, O)>o are positive for a positive initial condition s.

Then the proportion process is Markov with the generator o given by
(Af)w) = (o (T*f))(w), weD.

Proof. The proof uses Theorem 10.13 in Dynkin [3]. We have to show
a few properties of the map T with respect to the transition function of S (s, ?).
We denote by & the Borel o-field in R% and by & the Borel o-field in D. Let
P(t, s, I') be a transition function for the process S(t), I' € #. We have to ver1fy
the following condltlons

i) T(RY) =
(i) T < 33’
(iii) for all s, s’eR? such that Ts = Ts' and I'e# we have

P(t, s, T 'I)=P(t, s, T1I).
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The properties (i) and (ii) are straightforward; only the third one requires
some consideration., If Ts = Ts', then there exists a scalar y # 0 such that
s = ps’. Therefore, T (S (s, 1)) = T(S (s, £)) by (6). Hence, Theorem 10.13 in Dyn-
kin [3] implies that

T* of = A T*.
Take f: D - R, seR? s> 0, and notice that

(T* (&?f )@ = (£ (T*)(s), (FNH(T ) = (L (T*)) ),

: (Zf) (W) = (o (T*ONT ™' w),

where w=T(s) and T 'w is any element of the counterimage of w, for
example s. We can simplify the formula further by noting that we T ! w.
Hence (f)(w) = (o (T*f))(w). =

We can reformulate our problem solely in the language of the proportion
process. Our trading strategy IT consists of a sequence of stopping times
Ty, T3, ... and changes of the proportion process at these times Wy, W,, ...
Since the proportion process must be defined on R, almost everywhere, we
take on the following interpretation of the trading strategy which would allow
us to write clearly the cost functional: w(t) = w(W;, t—1;) for telr;, 1,411

We do not have to limit possible impulses (as in the previous case) to
satisfy the self-financing condition. It is possible to reach any proportion start-
ing from an arbitrary one and satisfying the self-financing condition. Hence, the
functional takes the form

() J(n) = E(z e B f (w(t)de + _i e i (w(z), W) L <o)-

We can use a similar approach to that in Section 2 to prove a counterpart of
Theorem 2.1.

THEOREM 3.2. Assume that w is a Feller process and f is .a-continuous
Sfunction on D. Then there exists exactly orie bounded continuous solution v(w) to
the equation

v(x) = infE(fe-i"f(w(x, 0)dt+ e~ Mo (w(x, 7)),
®) Ce i

My (x) = inli;(v(y)+0(x, )
ye
and the optimal strategy for the problem (1) is given by
7, = inf {t > 0: Mo(w,) = v(w,)},
7, =inf{t > t;_y: Mov(w,) = v(w)}.
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The size of the impulse at the moment t; is any number from the set
{weD: Mv(w,) = v(w)+c(w,, w)}.

Notice that if S is a Feller process, then so is w. Take ge C* (D) t =0, and
consider §(x) = Eg(w(x, t)), xe D. The function § can be written in terms of the
price process

g0 = Eg(T(S(x, 1)).

Moreover, go TeC?(E), so ge C*(E), where E = [0, wo[*\{0} and D cE
-To find explicit solutions to the equatlon (8) it is convenient to rewrite it in
a differential form as a suitable quasi-variational inequality (QVI). We change
the state space in order to have a non-empty interior. We remove the last
coordinate and take -

D={w',..,wtef0, 174 L Zw<1}

d—1 d—1

c(u,w)=K+k Y ['—wi+k|Y @—w) for K>0,k>=0.
i=1 i=1

We denote by 7 the generator for the proportion process in the new state space
and make obvious modifications to the function f. We introduce a switch-
ing functional :

©9) Mv(w) = in11: (v () +c(w, u)

for any function v: D — R. The QVI related to the cost functional (7) takes the
form
(10) min (v (w)— Bo(w)+f (W), Mv(w)—v(w)) =0, weD.

3.2. Lévy noise models. Let the price process be two-dimensional with the
second coordinate being always 1 and the first satisfying the It6 equation

ds(s, ) = H(S(s, t—)) dl (1), _
S(,00=s, seR,s>0.

(11)

Here ((t) is a Lévy process with the Fourier ‘transform
Eexp(—is((t)) = exp(—ty (s)),
Y (s) =305 —ius— [ (e —1—1} <1 isy)v(dy),
R

where 6eR,, ueR and v is a o-finite measure satisfying

@AY v(dy) < 0.

R
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We assume that H is chosen in such a way that (11) has a unique weak solution
for any initial condition s = 0. It can be easily verified that S(s, ) is a multi-
plicative process (cf. (4)) only if H is a linear function. Therefore, without any
loss of generality we assume that H(x) = x.

PROPOSITION 3.3. The generator <Z for the proportion process for the price
process (11) has the form:

Lu(w) =20 wu” (w) (L—w)® —2u’ (W) (1 — w)?)+ pwu’ (W) (1 —w)

—-P;E(u (‘;j__:”;)—u(w)—hﬂsl wyu’(w)(l—w))v(dy)’, uehjb, 1[,
Au(0)= Lu(l) =0,

for ue C*(R).

Proof. Following Bichteler [2], we write the generator .« for S(s, t). Let
ueC?(0, 1). Then

Au(s) = $o? su"(5)+ pswl (5)+  (wls+59)—u(5)— Lyy<1 syu (5) v (dy).

Let
s

As the price of the second instrument is equal to 1, the proportion process is
identical with T(S(s, t)). We apply Theorem 3.1 and observe that

L L VY SN R
ds'\s+1) s+ 1) s+ 1)®

vd_zu S Y (8 1 oS 1
a2 \s11) =" s+1)s+F s+1/(s+1)*"-

Moreover, T~ ! (w) = w/(1—w), s+1 = 1/(1 —w), which implies our result for
we (0, 1).

We extend the generator to the points 0, 1 in an obvious way. These points
are stable for the process, i.e. the process cannot move away from them, so
Fu0) = Zu(1) =0. =

On this stage we can write a QVI for the problem of optimal asset al-
location:
min (7o (w)— Bo(w)+f (W), Mo(w)—v(w)) =0, we]0, 1[,

(12) .
min (f (w)—pv(w), Mv(w)—o(W)) =0, w=0,1,

S
e

HE
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where
Mv(w) = K+ inf (klu—w|+v(u)), K>0, k=0.
ue[0,1]
Hence, we conclude that the optimal strategy is described by an impulse region
{Mv—v = 0}.

4. MULTIPLICATIVE POISSONIAN PRICES

_For furthér considerations we restrict ourselves to the case where prices
are driven by a Poisson process. We specify

() = N(®)—yt,
where N (t) is a Poisson process with intensity A and yeR. The characteris-
tics (u, o,v) of this Lévy process is the following: u=41—y, ¢ =0,

v({1}) = v(R) = A. By Proposition 3.3 the generator for the proportion process
is given by '

Au(w) = }{(u (wz_:_‘)l)-—u(w)) —yu' (W)w(1—w).

We write a QVI for the problem of optimal asset allocation:

el o259

— 0’ (w)yw (1l —w)— o (w)+f (w), Mv(w)-—u(w)) =0, wel0,1[,.

(13)
min (f (w)—fv(w), Mo(w)—v(w)) =0, w=0,1,

where

Mv(w)= K+ iof (klu—w|+v(w), K>0, k>0.
o uel[0,1] ; _
Moreover, the optimal strategy is described by an impulse region {Mv—v = 0}.
However, we have to prove that the QVI (13) has an appropriately smooth
bounded solution and that this solution satisfies the functional equation

(14) v(x) = infE(}e"’sf(w(x, s))ds+e~# Mu(w(x, 1))).

The function v(x) defines an optimal strategy as stated in Theorem 3.2.
The following theorem could be deduced from general results of Bensous-

san and Lions [1], chapter 3, although a non-degenerate diffusion term is

required there. We present here a direct proof. '
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THEOREM 4.1. Assume that y # 0. Let v be a bounded continuous function
defined on [0, 1], piecewise C* and with finite left- and right-hand derivatives. If
v satisfies (13) at 0 and 1 and almost everywhere in 10, 1[, then v solves (14).

Proof We shall use Theorem 5.2 in the Appendix. First observe that
9 () o C'. Moreover, there exists a sequence v, of C*-functions converging to
v in sup-norm such that v, = v, v}, = v/ everywhere but intervals of Lebesgue
measure converging to 0. We introduce

- *h(w) =~—1'(u (Wz_:—vl)_v(w))-—yv' ww(l—w)

for we[0, 1] such that v’ is defined and continuous in w. The process w(x, )
has a non-zero drift, so P (¢, x, {v, # v, v, # v'}) >0 as n - oo for any t > 0,
which proves condition (iii) of Theorem 5.2. Moreover, a similar argument
shows that every set of Lebesgue measure zero in ]O, 1[ is of s7/-measure zero,
so (iv) is satisfied. Therefore

Y(x,t)= j‘e“"“‘f(w(x, s)ds+e Fo(w(x, 1)
0

is a submartingale, so EY (x, 6) > EY (x, 0) = v(x) for any stopping time ¢
(f is bounded). The process

Z(w, )= ie"’sf(w(x, s))ds+e~F Mv(w(x, 1))
0

satisfies Z (x, t) = Y (x, t) since Mv(x)—uv(x) = 0. This leads to the conclusion
that EZ (x, ¢) = v(x) for any stopping time ¢. To complete the proof it suf-
fices to show that there exists an optimal stopping time t*(x) such
that EZ(x, t*(x)) = v(x). It is true for *(x)=inf{t >0: Mv(w(x, ) =
v(w(x, 1)} =

Previous considerations imply the following -

COROLLARY 4.2. v(w) is a unique bounded continuous solution to (14) and it
is the value function for the problem of minimizing (7). Theorem 3.2 shows how to
construct the optimal strategy.

From now on we assume, without any loss of generality (see Lemma 2.3),
that f(w) is a positive function. We derive two results.

LemMA 4.3. If f is non-decreasing on [0, 1], then v is non-decreasing. If
f is non-increasing on [0, 1], then v is non-increasing.

Proof. We sketch the proof of the first fact. The proof of the second
one is analogous. Observe that if x > x/, the proportion process satisfies
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w(x, t) = w(x', t). Denote by v, the potential deﬁned by
vo (%) = Eze‘ﬂsf(w(x, s)ds, xe[0,1].
Hence v, is a non-decreasing function. Let
U, (%) = infE(jr'e_”sf(w(x, s))ds+e™ " Mv,_; (w(x, r))), xe[0, 1].
T 0

We can-show by induction that v, is a non-decreasing function. By Proposi-
tion 2.2, v, converges uniformly to the value function v, so v is non-decreasing. =

LeMMA 4.4. If the difference between minimum and maximum of f is smal-
ler than BK, the continuation region spans the whole interval [0, 17.

Proof. Let f =min,go, 1 (), f = maX,g ;f(#), The value function
v has trivial bounds f<Br(x) < f, xe[0, 1]. Hence Mv(x) > v(x) for all
x€e[0, 1], which implies that the optimal strategy prevents any impulses. =

Assume now that there are no proportional costs, i.e. k = 0. In this case all
impulses aim at the same target point u* [0, 1] at which the function v attains
its minimum. Hence, if f is non-decreasing, impulses can only occur in some
interval [by, 1] and they aim at w = 0 (minimum of v). We know, by a direct
calculation, that v(0) = f(0)/B. The potential of f at 1 equals f(1)/f. Hence,
the impulse interval is non-empty if and only if v(1) > »(0)}+ fK. The same
reasoning applies to the case of non-increasing f.

4.1. Recursive formulae. We derive a solution to (13) for a specific case of
a non-empty impulse region around 1 and the absence of proportional transac-
tion costs k = 0. We do not require monotonicity of f. However, we assume
that f > 0, which is no restriction (see Lemma 2.3).

We construct an iterative procedure to find the solution to the QVI (13).
We set vo(w) = H, HeR, for we[b,, 1]. The function v, is undefined outside of
the interval [bo, 1]. A pair H, boe R x [0, 1] is used as an index for the set of

- -solutions. -

To formulate the lemma we need to define a sequence

b,
2—b,

n= 0, 1,‘--...,

bn+1 =

and introduce the following equation being a differential part of (13):

(15) A(u( 2w )—v(w))—yv'(w)w(l—w)—ﬂv(w)+f(w) = 0.
w41

We note that the sequence b, is strictly decreasing with the limit equal to 0.
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LEmMMA 4.5. Assume that v, is defined on [b,, 1] and satisfies (15) for
we[b,, bo]. We define v,+1 on [by,1(, 1] by the formula

On(bn) "¢ A0a 2/ (u+ 1)) +f ()
v{bn) ,{ v @u(l—u)

Dyt (W) = v(w)( du), we[byt1, bal,

Un+1(W) = U,,(W), We[bm 1]>

. & =M and v(w)= (I;Mi)é
J— =" ’y W

Then v, .;atisjfies (15) for welb,+1, bo]. ‘
Proof We can easily see that :

1— w>‘5 ( u(bo) _"" Av, (2u/(u+1))+f (u)
w ) \(1=bo)/bo)* w y((1—u)u) u(l—u)

We solve first the following equation:

where

Unt+1 (W) = ( du)a We[bn+13 bO[

,10( 2w >+f(w)—}tv(w)—?v’(w)w(1—W)—ﬁv(w) =0, welbas 1, bul,
w1

U(W) = TJ,,(W), We[bm 1]
Its homogeneous version is of the form
—(A+Bvw)—yw W w(l—w) =0,
which we simplify to
—fow)=vwWyw(l—w) for &= (A+p)y.
We obtain the solution
1— -&
v(w) = c( w>
w

By setting ¢ = c(w) and plugging into the generic-" equation we obtain ‘

_ W @w/w 1)) +f (w)
y((1 —w)/w)é w(l —w). _

Remark. The function v(w) is unbounded on [0, 17]. It converges to oo as
w—0 and to 0 as w— 1.

c’ (w)

We formulate conditions under which the optimal control is determined
by the numbers 0 < a < ¢ < b < 1 and consists of making impulses to ¢ when
the proportion process exits from the interval [a, b]. Such strategies will be
denoted by II,,,.
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Let v, 5(w) be the limit of v, with the initial condition v,(w) = H,
we[by, 1], in the sense that v, g(w) = v,(w), we[b,, 1]. Define
b;,ko,g = sup {W < bol vbo,H(W) = H}

The following theorem might be useful for numerical treatment of the
problem:

THEOREM 4.6. Assume that the following conditions hold:
(@) infwe[bf,O,H,I] Ubo,H (w)=H—-K;
(i) §UP:vé[b‘;0.H,ii‘ﬁ£D,H (w) = H;
(iii) f(w) = BH, we[bo, 17; .
@v) S W)+ Avpom 2w/(1+w)) = (A+ B) H, we[b, u/2—b3 x), by ul;
(v) f(w) = BH, wel0, by, x/2— bz, m)).
Then .
v(W) = lpuopy o Vsom (W) + Low<ss o H

is a solution to (13). Moreover, Iy . bo.cr Where

¢ = arg infwe[b’,',o,ﬂ,u Upo,H (w),
is an optimal strategy.

Proof The conditions guarantee that v is piecewise C! with finite left-
and right-hand derivatives and satisfies (13) at all points but (b,),cy. By Theo-
rem 4.1, v is a value function for the control problem of minimizing (7). &

Remark. If f(bo) > BH, then v'(bp—) < 0 and condition (ii) is satisfied.
4.2, Transcendental equation. If we know a priori that the function » attains
its minimum in the first interval [b,, by], then the target point u* can be
characterized by the following transcendental equation:
1 AH+f@w*) H _b° AH+f(w) v -
v(*) A+p v(bo) myv@u(l—u) -

(16)

To obtain the above equation we observe that v’ (u*) = 0. From (15) we have

AH —(B+ ) v@*)+f(u*)=0.

Hence AH 45 ()

A+pB

and we take the formula for v(u*) from Lemma 4.5.
If we assume that

v(u*) =

1 AHAf ()
viw) A+p
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is decreasing in u, then the equation (16) has at most one solution. We recall
that f > 0, which makes the expression under integrand non-negative.

Similar but more complicated equations can be obtained if [by, by] is
replaced by [bi+1, bil-

4.3. Models with given impulse regions. In this section we will show that for
any region J in [0, 1] there exists a cost functional (1) such that the optimal
control impulse region is exactly J.

We introduce a family of functions:

2 0 6) =0,

¢ @ hron © 100, 1D, g lonela 1), g B) =1, —

® (gf,zr).a)oslqs 1,2eR, & C' ([0, 17), gg,%'{a o € La, 1),
d d
2) — 2 — 42 - ‘4 @ —
gs,l‘.ﬁ (l) gs.r.a (r) 15 dW gg,f,ll (l) 0’ dW gg,l‘,d (r) a’
® (95‘32)0 <r<1,0eR ;. = Cl ([09 1])7 gl(',3C2 l[O,r)e [ay 1)5 gS',aa) (T) = 1:

d
Egﬂ () =ua
for some ae(0, 1).

Now, we proceed with the construction of the function f starting from the
right end. We assume that in the impulse region the value function v is equal to 1.
We will guarantee that the value function is bounded by 1. Hence, by setting
the impulse cost K = 1 —min v, we obtain the solution to the QVI. In the fol-
lowing lemma we show how to extend the function f so as to keep to the
required impulse region. First we introduce the notation: [a, b] < cifa < c and
b < c. Analogously, [a, b] <[c, d] if [a, b] <c and [a, b] <d.

LEMMA 4.7. Assume that f and the value function v are defined on [b, 1]
and v|p 5 = 1 for some b > b. For any interval 0=X[l, r] < b there exists an
extension of f to [1, 1] such that v is a solution to the QVI on [1, 1] with [1, r]
being a part of the impulse region and Jr, b[ being a part of a continuation region:

2- -
ad );0, well, r].

Ve <1, vlpa=1, f(W)—(ﬁ+/1)+/lv<1+w

Proof We set
_ ,1+/3—lv(2b/(1 +b)) —f(b)
*e 7b(1—D) '

We extend f on [r, b) in such a way that v|,z = g3, |rs)» i

f(w)=yu’(w)wa—w)+ﬁu(w)+,1<u(w)—v(12w )) welr, b).
+w

< .
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The function f is continuous on [r, b). Moreover, the condition for the deriva-
tive v'(b) = o implies the continuity in b.

To define f on [l, r) we have to assure that
2w
14+w

17 f(w)—(ﬁ+,1)+,u;< )zo, well, r].

We check that
2r

since v'(¥) = 0. We extend f to [/, r) in any way that guarantees that the
inequality (17) is satisfied and the continuity of f holds. =

THEOREM 4.8. Let (I,),=1,..x be a family of closed intervals in [0, 1] with
non-void interior satisfying I,y <1I,. Then there exists a function f and the
impulse cost K > 0 such that | ),=1,_x1, is the impulse region of the optimal
strategy.

Proof If Il = [b, 1], we set Ul[b,l]=1) f'l[b,l] = ﬁ. OtherWise, Il = [l, T]
< 1. We put

Vlp,y = g, v lun=1.
taking appropriate f as in Lemma 4.7. For next intervals, excluding the last,
we apply the lemma. Let Iy = [I, r] be the last interval. If [ = 0, then we apply
the lemma. Otherwise, we proceed as follows. We take

A+B—Av (201 -
U|10,1)=95;°;’, o = +B 1;1((1/(_;—0) f(l)

We define f appropriately, as in Lemma 4.7. For v to be a solution to the QVI,
we have to specify the impulse cost K. We put K = 1 —min v. Now, we observe
that f is a continuous function on [0, 1], ve[a, 1], and v is a solution to the
QVL m -

Theorem 4.8 can be generalized to the case of an infinite-number of dis-
. joint intervals with non-empty interior converging to 0. -

5. APPENDIX A

We state and prove here an auxiliary result needed in the proof of Theo-
rem 4.1,

Let X (¢, x) be a Markov process on the space (E, &) with respect to the
filtration (%) and a semigroup (P,). By («/, 2 («/)) we denote its generator. We
formulate and prove a general result giving the probabilistic interpretation of
the solution (in some sense, specified later) to the equation

Av(w)—Po(w)+f(w)=0 (=0, <0).

Tofn




Portfolio diversification with Markovian prices 93

DEFINITION 5.1. A set Be& is of null of-measure if
VYxeE Vt>0 P, 15(x) =

TueoREM 5.2. Let v: E — R be a continuous function such that there exists
a sequence of functions v,€ 9D (/) and a function h satisfying

(1) v, —» v in sup-norm;

(ii) h is defmed o-a.s.,

(111) Eje‘”sdv (X (s, x))ds—»Ej'e_ﬂs (X (s, x)) ds; '
(iv)’ h(x)-— v (x) +f(x) =20 f-as., for a continuous function f: E—>R.
Then

Y(t, x):=e Po(X(, x))—v(x)+}e"’sf(X(x, s))ds
0

is a submartingale (if it is well-defined and integrable).
For the proof of the theorem we will need the well-known lemma:

LemMmA 5.3. Let Z(t), t > 0, be an adapted and measurable process in R°.
For any Borel function f: R, xR - R,

E(f f(u, Zw)du|F,) = [E(f (u, Z(W)| %) du

if the left- or right-hand side exists.

Proof of Theorem 5.2. The proof consists of two parts. First we show
that EY (¢, x) > 0. Then we use the Markov property of X (¢, x) to show that it
is a submartingale. We have

d
;{l‘_PrU" = PIMU,,,
since v, is in the domain of /. Hence o
d — Bt —pt —ﬂt.;- .

ae P,v, = e PP, Av,— Pe”F' P,v,.
We integrate the above equation and we obtain

t t

e BPv,—v,=fe ¥ P, ofv,ds—Bfe P P v,ds.

0 0

Changing the order of integration we get

E(e?v,(X (¢, x))—vn(x)—ie_ﬂs(dvn(X(S, x)—Bon (X (5, x))) ds) = 0.

7 — PAMS 251
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We let n— oo and by (i) and (iii) we get
E(e "o(X (. x))—v(x)—}e—ﬂs(h(X(s, x))—Bv(X (s, x)))ds) = 0.
Using the condition (iv) we ha(:/e —(h—Pv) < f, so
EY(t, x)= E(e " o(X (¢, x))—v(x)+ie_ﬂsf(X(x, s))ds) = 0,

which can be written equivalently:

(18) e“”‘P,v(x)—v(x)+ie"’“P,,f(x)du =0..
: 0

We shall show that Y (¢, x) is a submartingale. We take 0 < s <t and
write ‘ ’

E(Y(x, )= Y(x, 5)| %)

=E(e ™o(X(t, x))—e P v (X (s, x))+jfe“ﬁ“f(X(u, x)) du | %)

=E(e *u(X(, x))|F)—E(e *v(X (s, x))[%)+E(j'e“ﬂ“f(X(u, X)) du| ).
From the Markov property of X (¢, x) we get ’
E(e?o(X(t, x)|F) = e P P,_,v(X (s, x)).

Lemma 5.3 implies
E(jt'e‘”"f(X(u, x))du | F;) = fe—ﬂ"P,,_sf(X(s, x)) du.

.Combining the above results and using (18) we obtain

E(Y(x, )—Y(x, 5)| %)
e (e'ﬁ("s)P,_sv(X(s, x))—v(X (s, x))+j‘e"-‘”"P,,_sf(X(s, x))ciu) >0,

which completes the proof. =

COROLLARY 5.4. Under the assumptions of Theorem 5.2, if h(x)—Bv(x)+
+f(x) <0 (=0) of-as., then Y(t, x) is a supermartingale (martingale).
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