
PROBABILlTY 
A m  . 

MATHEMATlCAL STATISTICS 

PORTFOLIO DIVERSIFICATION WRH MARROWAN PRICES 

n Y 

Abstract. The problem of constructing impulsive rebalancing of 
portfolios, introduced by Pliska and Suzuki, is solved for models with 
general Markovian prices. Existence of the optimal strategy iu estab- 
lished and its structure described. Quasi-variational inequalities deter- 
mining the value function are deduced for multiplicative prices with 
general Livy noise and the case of Poissonian noise is considered in 
some detail. 

A M S  Subject Classification: 93E20, 91B28. 

Key words and phrases: Impulsive control, portfolios, transaction 
costs, Lkvy processes. 

1. INTRODUCTION 

The present paper is an application of stochastic control theory to finan- 
cial problems. We treat only mathematical aspects of the problem postponing 
numerical investigation to a future paper. 

An important problem for portfolio managers is to respect the diversifica- 
tion requirement, that is to maintain proportions of the capital that should be 
invested in different asset groups, constant. It is impossible to rebalance 
a portfolio continuously, so it usually does not keep exactly to the required 
proportions. Therefore each manager has to come up with some algorithm to 
decide the moments of rebalancing. 

Pliska and Suzuki [7], [8], elaborating the ideas of Leland [5], considered 
a model consisting of d assets, d = 2, whose prices satisfy 

where is an rn-dimensional Brownian motion, oi are vectors, and pi are real 
numbers. A trading strategy was described by a d-dimensional adapted process 
(Nt)rLO denoting the number of units of assets held at each moment. In [7], [8] 
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both proportional and constant transaction costs were introduced. We will 
specify them in detail later. 

In view of constant transaction costs, any trading strategy II can be de- 
scribed by a sequence of transaction times (stopping times) z,, z,, .. . and 
resulting portfolio contents NTI ,  NT2, . . . The process N ,  is constant between 
transaction times, i.e. 

a3 

Let w be a proportion process linked up with the strategy I! by the formula 

where, denoting by ns, n = (nl, . . ., nd), s = (sl, . . ., sd), the scalar product in Rd, 
we have 

ns 

The transaction costs are expressed in terms of proportions: 

for K > 0 and k 2 0. This is a reasonable simplification that enables to incor- 
porate transactions costs into a cost functional. Pliska and Suzuki introduced 
the cost functional 

where f :  Rd --, R is a function measuring quality of the portfolio. They speci- 
fied further that 

f (w) = ~ ( w - w * ) ~ ~ ~ ( w - w * ) - ( w - w * ) ~ ~ ,  . - -  
- 

where cr is a matrix consisting of rows ui, i = 1, . . ., d, p = (pl, . . ., pd)€Rd, 
w* is a target asset mix and AER.  

In Pliska and Suzuki [7], [8], in the two-dimensional case, d = rn = 2, the 
existence of optimal strategy and its characterization in terms of a continuation 
region was established. The results were based on the theory of quasi-variation- 
a1 inequalities (see [I]). Some financial consequences were discussed as well. 

In the present paper we cover general Markovian price processes in all 
dimensions and examine several extensions of the results from [7], [XI. In 
particular, we deal with discontinuous price processes. More specifically we 
consider a market modeled by a general d-dimensional Markov process (St),,,, 
with positive coordinates, representing price movements of different assets. Our 
cost functional, measuring quality of the portfolio at each moment, is deter- 
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mined by a continuous function defined on proportions. We prove in Sec- 
tion 2 (see Theorem 2.1) that under the minimal assumptions on the price 
process S and the function f there exists an optimal trading strategy I;I mini- 
mizing the cost functional J ( m .  In Section 3 we consider the so-called multi- 
plicative price processes, important in applications. Using Dynkin's result on 
Markov processes with transformed state spaces, we show that the optimal 
solution can be expressed in terms of the proportion processes (see Theo- 
rem 3.2). The result is then applied to price processes satisfying an It8 equation 
with LCvy noise. In addition, the precise form of the quasi-variational equality 
for the yalue function is established as well (see Proposition 3.3). More explicit 
cases are treited in Section 4. Here the noise process is assumed to be Pois- 
sonian with linear drift and the proportional cost for impulses is excluded. 
Suficient conditions are given under which the continuation region is of a sim- 
ple form. We use here the technique of quasi-variational inequalities and derive 
a transcendental equation (16). The solution to that equation indicates, under 
additional conditions, a point to which impulses should be performed. Finally 
we show (see Theorem 4.8) that one can construct a cost function f for which 
the optimal continuation region is given in advance. More details on quasi- 
variational inequalities for discontinuous process are given in the Appendix. 

The paper is a rewritten version of the report 161. 

2. EXISTENCE O F  OPTIMAL STRATEGY 

We approach the problem of finding optimal solution with the impulse 
control method. First we prove the existence of solution to the functional 
equation connected with our problem. Then we show that the obtained solu- 
tion defines the optimal strategy. 

We assume throughout this section that St is a Feller process and the 
function f is continuous. 

To formulate the problem in a formal way we take 

as a controlled process. Certainly impulses change only the first coordinate; the 
second coordinate - representing asset prices - is present only for technical 
reasons. Our goal is to construct a process I; satisfying the following con- 
ditions : 

there exists an increasing sequence of stopping times z,, z,, . .. with 
zi?m such that the first coordinate of I: changes only at moments 
defied by (ziIi=1,2 ,... ; 
the second coordinate of I: is equal to an external price process S t ;  
the trading strategy encoded in is self-financing, i.e. 
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the portfolio wealth is always positive, i.e. N,S,  > 0; 
the number of shares of each stock is non-negative (no borrowing of 
shares allowed), i.e. N ,  2 0, 

and minimizing the functional 

where 

and 

is the proportion function, Yo = (No,  So) is the initial point (So > 0, N o  2 0, 
No So > 0). The cost of impulses is defined as 

Note that between impulses the dynamics of I: is governed by the semi- 
group 

where v E C (RZd, R), and P, is the semigroup for S,. 
To derive a functional equation connected with the problem (1) we recall 

the assumption that P (St  > 0 V t) = 1 and put 

It is obvious that the process (:) starting from any point in E does not exit E. 

For functions v: E -, R we write the equation 

where the switching functional is given as 
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The following theorem contains as a special case a result by Pliska and 
Suzuki [A concerned with the case of St being a two-dimensional Black- 
Scholes process. Their method was based on the theory of quasi-variational 
inequalities (QVI) [I]. We deal directly with the equation (2). 

THEOREM 2.1. Assume that S, is a Feller process and f is a bounded con- 
tinuous function of E. Then there exists exactly one bounded continuous soIu- 
tion v(n,  s) to the equation (2) and the optimal strategy for the problem (1) is 
given by 

- - zl = i n f ( t  2 0 :  M v ( N ~ , S ~ ) = U ( N ~ , S ~ ) } ,  
, 

zi = inf ( t  3 ri - : Mu ( N , ,  St) = v (N, ,  St)], 

P r o  o f. In order to prove the existence of a unique solution to the equa- 
tion (2) we recall a result from [9]; see also [4]. Define 

h (:) = [a -' F (2) dt] 

and let Cb(E)  be the space of bounded continuous functions. 

PROPOSITION 2.2. Assume that (::) is a ~e11er process, P L 0, h s Cb (E),  

yh < M (0) for a positive constant y, and M transfirms Cb(E)  into cb(E) .  Then 
the equation (2) has exactly one solution v€Cb(E).  Moreover, X n h  tends to 
v unformly as n -, oo. 

In our setting we have to weaken conditions of the above theorem. We 
define operators 

for L E R. Thus X0  = X. - 

LEMMA 2.3. There exists a unique solution to the equation v = Xv ifthere 
exists a unique solution to the equation v = X L  v. Moreover, $17 is the solution of 
v = XL U ,  then 17-L/P is the solution of v = X v .  

P r o  of. Let fi be the solution of v = X L  V. Then 
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Thus 
6-L//3 = X(v"-L/fi). 

A similar reasoning proves the second implication. 

As k corollary to the above results we obtain the following lemma. 

LEMMA 2.4. Assume that (::) is a FeNer process, h s Cfi (E),  and M trans- 

farm Cb ( E )  into Cb (E) .  Let F 'be-a function bounded from below by (-L). If 
there exists a positive constant y such that 

then there exists a unique solution CE Cb (E) of the equation v = XL v. Moreover, 
the funcrion u = fi-L//3 is a unique solution of (2). 

To prove the existence of a solution to the equation (2) for our model 

notice that (::) is a Feller because St is a Feller process and N,  is 

constant. ~ d t i c e  that proportions form a compact set D in Rd: 

Therefore, a continuous function F,  defined on proportions, must be bounded. 
- Thus it is straightforward that h E Cb (E). 

Let L = min (0, - inf,, F (x)). Since M (0) 2 K > 0, one can easily find 
a positive constant y such that y (h + ,510) < M (0). Continuity of  the cost func- 

- 

tion C" and the multifunction mapping into the set of possible impulse 

destinations imply that M transforms the set of continuous functions into itself. 
To show that M transforms Cb (E) into Cb (E) we take any function g E Cb (E)  
with ol = sup Igl. Then 

M g ( : )  < K + d k + a  and Mg(: )  2 K - a ,  

so Mg E Cb (E). Therefore, by Lemma 2.4, there exists a unique continuous and 
bounded function v, that is, the solution to v = X v .  Thus, we have proved the 
first assertion of Theorem 2.1. 
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Now, we characterize an optimal impulse control. Since we know that 
there exists a unique solution v to the functional equation (2), we have to prove 
that the infimum in (2) is attained by some stopping time (this would be the 
moment of the impulse) and that we can find a transaction (change of N,) that 
should be made at this moment. It is well known (see Bensoussan and Lions 
[I], Zabczyk [9]) that the optimal stopping time is given by z = inf(t 2 0: 

E Z ) ,  where Z = {y E RZd: v (y) = Mv (y)}. We only have to prove that for 
each (n, s) E E there exists g E Rd such that (n+ S ,  S) E E, 5s = 0, and 

Fix (n, S)E E. Both functions and u are continuous (v is also bounded). We 
first prove that the infimum is taken over a closed set. In fact, this set can be 
written as 

A = (5: (n+<, s)EE, t s  = 0) = 15: n+5  2 0, 5s = (I)\(-n}. 

The self-financing condition 5s = 0 assures that (- n) 4 A, so A is closed. Now 
I 

! take a sequence Sk E A such that 

If lltkll + co, then c, admits a subsequence converging to some 5 E E .  Otherwise, 
ll<kll + co. From the self-financing condition and the equivalence of all norms 
on Rd we obtain C(n, n + t k ,  S) 2 K+b(ns)-' lltkll for some P E R , .  Hence the 
boundedness of v implies that C (n, n + l,, s) + v (5,) + co, which leads to a con- 
tradiction. For completeness of the proof we shall show that zi -, co as. Notice 
that each impulse adds a cost of size at least K. Since the value function v is 
bounded, an infinite number of transactions in finite time is impossible - its 
discounted transaction costs would sum up to infinity. This completes the 

. I proof of Theorem 2.1. - 

3. MULTIPLICATIVE PRICE PROCESSES 

In this section we assume that the price process is multiplicative, i.e. 

(4) Si(ys,t)=ySi(s,t), y ~ R , s ~ R ~ , s > O , t > O , i = l ,  ..., d, 

where (Si(s, t ) ) ,>,  denotes an i-th coordinate of a price process starting from 
the point s, 
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An important example of a multiplicative positive price process is a solution to 
the It8 equation 

for a LCvy process (Z1, . . ., Zd)  with jumps greater than - 1. 

3.1. General case. We will show that the proportion process linked up 
with &-is Markovia-n and argue that the control problem (1) formulated in 
ter~jns ofbproportions has an optimal solution. Let D be a simplex of propor- 
tions defined as in Section 2: 

d 

D = ((wl, .. ., wd)€ [0, lld: wi = I]. 
i =  1 

The process N (t) is constant, so, intuitively, we can incorporate it into S(s, t) 
using (4). We define T: Rd, + D by 

Then w (t) = T(S(s', t)), where s" = (N1 (0) S1 (O), . . ., Nd (0) Sd (O)), and obviously 
w(t) is indifferent to scaling of the initial condition g7 

(6) T ( S  (f, t)) = T ( S  (yf, t)) for scalar y # 0. 

We introduce an operator T* acting on functions f :  D + R in the fol- 
lowing way: 

THEOREM 3.1. Let at be a generator for the positive price process S, i.e. 
almost ail trajectories of (S(s, t))t20 are positive for a positive initial condition s. 
Then the proportion process is Markov with the generator 2 given by 

Proof.  The proof uses Theorem 10.13 in Dynkin [3]. We have to show 
a few properties of the map T with respect to the transition function of S (s, t). 
We denote by 93 the Borel a-field in Rd, and by a the Borel a-field in D. Let 
P (t, s, r) be a transition function for the process S (t), r E B. We have to verify 
the following conditions: 

(i) T (Rd,) = D, 
(ii) T (g) G a, 
(iii) for all s, s t€  Rd such that Ts = Ts' and T E d we have 
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The properties (i) and (ii) are straightforward; only the third one requires 
some consideration. If Ts = Tsf, then there exists a scalar y # 0 such that 
s = ys'. Therefore, T(S (s, t)) = T(S (sf, t)) by (6). Hence, Theorem 10.13 in Dyn- 
kin [3] implies that 

Take f :  D - R ,  s € R d ,  s 2 0, and notice that 

where w = T(s)  and T-I w is any element of the counterimage of w, for 
example s. We can simplify the formula further by noting that W E  T-I  W. 

Hence (Jf) (w) = (A' (T*f ) )  (w). H 

We can reformulate our problem solely in the language of the proportion 
process. Our trading strategy II consists of a sequence of stopping times 
r,, r,, . . . and changes of the proportion process at these times 65, G2, . . . 
Since the proportion process must be defined on W +  almost everywhere, we 
take on the following interpretation of the trading strategy which would allow 
us to write clearly the cost functional: w(t) = w(fi i ,  t-ti) for t€]ri, ti+1]. 

We do not have to limit possible impulses (as in the previous case) to 
satisfy the self-financing condition. It  is possible to reach any proportion start- 
ing from an arbitrary one and satisfying the self-financing condition. Hence, the 
functional takes the form 

m m 

(7) 3 (m = E (1 e-@f (w (t)) dt + C e-@" e (W (ri) , fi i)  lZi < 3. 
0 i = l  

We can use a similar approach to that in Section 2 to prove a counterpart of 
Theorem 2.1. 

THEOREM 3.2. Assume that w is a Feller process and f is a-continuous 
function on D. Then there exists exactiy one bounded continuous solution ~ ( w )  to 
the equation 

r 

v(x) = i n f ~ ( j e - @ f  (w(x, t))dt+e-B'i@v(w(x, t))), 

(8) 
' 0 

fiv(x) = inf(u(y)+c(x, Y)), 
FD 

and the optimal strategy for the problem (1) is given by 

21 = inf (t 2 0: &fv (w,) = v (wJ) , 

ti = inf (t > T~ -, : @U (w,) = v (w,)). 
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The size of the impulse at the moment ti is any number from the set 

Notice that if S is a Feller process, then so is w. Take g E Cb (D), t 2 0, and 
consider g ( x )  = E g  (w (x', t)), x E D .  The function g" can be written in terms of the 
price process 

Q(x) = EQ ( T ( s ( ~ :  0)). 
Moreover, g ? T E cb.(E), so $E Cb (E), where E" = [ O ,  mCd\{O) and D G E. 

- Tofind kxplicit solutions to the equation (8) it is convenient to rewrite it in 
a differential form as a suitable quasi-variational inequality (QVI). We change 
the state space in order to have a non-empty interior. We remove the last 
coordinate and take 

a- 1 a- 1 
c ( u ,  W )  = K + k  C lui-wil+kl C (ui-wi)l for K > 0, k 3 0. 

We denote by 2 the generator for the proportion process in the new state space 
and make obvious modifications to the function 5 We introduce a switch- 
ing functional 

(9) av (w) = i d  (v (u) + c (w , u)) 
UED 

for any function v: D + R. The QVI related to the cost functional (7) takes the 
form 

- 3.2. Lkvy noise models. Let the price process be two-dimensional with the 
second coordinate being always 1 and the first satisfying the It8 equation 

Here [ (t) is a Lkvy process with the Fourier 'transform 

E exp ( - isi ( t ))  = exp (- t$ (s)), 

$ (s) = 4 o2 sz - ips- 1 (eisy - 1 - 1 lyl isy) v (dy) ,  
R 

where a E R+ , ,u E R and v is a a-finite measure satisfying 
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We assume that H is chosen in such a way that (11) has a unique weak solution 
for any initial condition s  2 0. It can be easily verified that S ( s ,  t) is a multi- 
plicative process (cf. (4)) only if H is a linear function. Therefore, without any 
loss of generality we assume that H ( x )  = x. 

PROPOSITION 3.3. The generator 2 for the proportion process for the price 
process (11) has the form: 

for u E C 2  (R). 

Proof.  Following Bichteler [2], we write the generator at for S(S,  t). Let 
u s  C2 (0, 1 ) .  Then 

d u ( s )  = ~ ~ 2 s s u " ( ~ ) + p ~ ~ ' ( s ) +  J (u(s+sy) -u(s ) -  l l y t < l  syul(s))v(dy).  
R 

Let 

As the price of the second instrument is equal to 1, the proportion process is 
identical with T(S(s, t)). We apply Theorem 3.1 and observe that 

- 
Moreover, T -  (w) = w/( l  - w), s  + 1 = 1/(1- w), which implies our result for 
w ~ ( 0 ,  1). 

We extend the generator to the points 0, 1 in an obvious way. These points 
are stable for the process, i.e. the process cannot move away from them, so 
Ju (0) = Ju (1) = 0. 

On this stage we can write a QVI for the problem of optimal asset al- 
location: 

min(Jv (w) - /3u(w)+f (w) ,Mv(w) -v (w) )=O,  w ~ ] 0 , 1 [ ,  
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where 

Hence, we conclude that the optimal strategy is described by an impulse region 
{ M U - v  = 0). 

4. MULTIPLICATIVE POISSONTAN PRICES 

-Fur furtker coriiiderations we restrict ourselves to the case whkre prices 
are drivin by a Poisson process. We specify 

where N ( t )  is a Poisson process with intensity 1 and y ER.  The characteris- 
tics (p,  cr, v) of this Lkvy process is the following: p = 1 - y ,  a = 0, 
v({I)) = v (R)  = A. By Proposition 3.3 the generator for the proportion process 
is given by 

We write a QVI for the problem of optimal asset allocation: 

- y u r ( w ) w ( l - w ) - B v ( w ) + f  (w) ,  M v ( w ) - v ( w )  = 0, ~ ~ 1 0 ,  I [ ,  
(13) ) 

min(f(w)-f lv(w),~v(w)-v(w))=o,  w = 0 , 1 ,  

where 
M v ( w ) = K +  id (klu-wl+v(u)) ,  K > O ,  k > - 0 .  

UEI'J,~] 

Moreover, the optimal strategy is described by an impulse region { M v -  v  = 0 ) .  
However, we have to prove that the QVI (13) has an appropriately smooth 
bounded solution and that this solution satisfies the functional equation 

z 

(14) v ( x )  = inf ~ ( j e - ~ ' f  ( w ( x ,  s ) ) d s + e - 8 T ~ v ( w ( x ,  z))). 
0 

The function v ( x )  defines an optimal strategy as stated in Theorem 3.2. 
The following theorem could be deduced from generaJ results of Bensous- 

san and Lions [I], chapter 3, although a non-degenerate diffusion term is 
required there. We present here a direct proof. 
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THEOREM 4.1. Assume that y # 0. Let v be a bounded continuuzks function 
defined on [O, 11, piecewise C1 and with finite left- and right-hand derivatives. If 
v satisfies (13) at 0 and 1 and almost everywhere in 10, I[, then v solves (14). 

Proof.  We shall use Theorem 5.2 in the Appendix. First observe that 
3 (J) 3 C1. Moreover, there exists a sequence v, of C1-functions converging to 
v in sup-norm such that v, = v, vk = v' everywhere but intervals of Lebesgue 
measure converging to 0. We introduce 

for w E [O, 11 such that u' is detined and continuous in w. The process w (x, t )  
has a non-zero drift, so P (t, x, {v, # v, v; # v')) + 0 as n + co for any t > 0, 
which proves condition (iii) of Theorem 5.2. Moreover, a similar argument 
shows that every set of Lebesgue measure zero in 10, 1[ is of 2-measure zero, 
so (iv) is satisfied. Therefore 

t 

Y(x, t) = jeepsf (w(x, s))d~+e-~'u(w(x, t)) 
0 

is a submartingale, so E Y  (x, 0) 2 EY (x, 0) = u ( x )  for any stopping time a 
(f is bounded). The process 

t 

Z(w, t) = Je-Psf (w(x, s ) ) d ~ + e - ~ ~ ~ v ( w ( x ,  t)) 
0 

satisfies Z (x, t) 2 Y (x, t )  since Mu($- v (x) 2 0. This leads to the conclusion 
that EZ(x, a) 8 v (x) for any stopping time a. To complete the proof it suf- 
fices to show that there exists an optimal stopping time z*(x) such 
that EZ (x, z* (x)) = v (x). It is true for z* (x) = inf {t 8 0: Mv (w (x, t)) = 

v(w(x, 0)). 
Previous considerations imply the following 

- 

COROLLARY 4.2, v (w) is a unique bounded continuous solution to (14) and it 
is the value function for the problem of minimizing (7). Theorem 3.2 shows how to 
construct the optimal strategy. 

From now on we assume, without any loss of generality (see Lemma 2-31, 
that f (w) is a positive function. We derive two results. 

LEMMA 4.3. Iff is non-decreasing on [0, I], then v is non-decreasing. if 
f is non-increasing on [0, 11, then v is non-increasing. 

Proof.  We sketch the proof of the first fact. The proof of the second 
one is analogous. Observe that if x 8 x', the proportion process satisfies 
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w ( x ,  E )  2 w { x t ,  t). Denote by v, the potential defined by 

Hence vo is a non-decreasing function. Let 

v.(x) = i n f~ ( j e -~" (w(x ,  S ) ) ~ S + ~ - ~ ~ M U . - ~ ( W ( ~ ,  r))),  XE[O, 11. 
0 

We can-show by induction that v, is a non-decreasing function. By Proposi- 
tion 2.2, v: converges uniformly to the value function v, so u is non-decreasing. ra 

LEMMA 4.4. If the dlflerence between minimum and maximum o f f  is srnaI- 
ler than PK, the continuation region spans the whoEe interual LO, 11. 

Proof.  Let f = rnin,,lo,,l f (u), fl = max,,[o,,l f ju), The value 'function 
u has trivial bounds f < flu (x )  6 x E 10, 11. Hence M v ( x )  > u ( x )  for all 
~ € 1 0 ,  I], which implies that the optimal strategy prevents any impulses. rn 

Assume now that there are no proportional costs, i.e, k = 0. In this case all 
impulses aim at the same target point u* E [ O ,  11 at which the function v attains 
its minimum. Hence, if f is non-decreasing, impulses can only occur in some 
interval [bo, 11 and they aim at w = O (minimum of v). We know, by a direct 
calculation, that v (0) = f (O)/P. The potential of f at 1 equals f (l)/P. Hence, 
the impulse interval is non-empty if and only if v(l) > v(0)f PK. The same 
reasoning applies to the case of non-increasing f: 

4.1. Recursive formulae. We derive a solution to (13) for a specific case of 
a non-empty impulse region around 1 and the absence of proportional transac- 
tion costs k = 0. We do not require monotonicity of f: However, we assume 
that f 3 0, which is no restriction (see Lemma 2.3). 
. We construct an iterative procedure to find the solution to the QVI (13). 
We set u, (w) = H ,  H E R ,  for w E [bo, 11. The function vo is undefined outside of 
the interval [b,, 11. A pair H ,  bo E R x [0, 11 is used as an index for the set of 
solutions. - 

To formulate the lemma we need to define a sequence 

and introduce the following equation being a differential part of (13): 

A v -  (15) ( ( w ~ l ) - ~ ( ~ ~ ) - ~ ~ ~ ( ~ ~ ~ ( ~ - ~ ~ - ~ ~ ( w ) + f ( w j = o .  

We note that the sequence b, is strictly decreasing with the limit equal to 0. 
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LEMMA 4.5. Assume that vn is defined on [b,, 11 and satisfies (15) for 
w E [b,, bo]. We define v,+ on [bn+ 11 by the formula 

. 
Then v,+, satisfies (15) for w ~ [ b , , ~ ,  bo]. 

P r o  of. We can easily see that 

We solve first the following equation: 

v 1 4  = V, (4, w f Cb,, 11 
Its homogeneous version is of the'form 

which we simplify to 

-~v(w) = vl(w)w(l-W) for 5 = ( A + ~ ) / Y .  

We obtain the solution 

By- setting c = c(w) and plugging into the generic equation we obtain 

cf (w) = (2w/(w f 1)) +f (4 . Ei 

Y ((1 - w ) / ~ ) ~  w ( l  -w)  

Rem ark. The function v (w) is unbounded on LO, 11. It converges to co as 
w + O  and to 0 as w + l .  

We formulate conditions under which the optimal control is determined 
by the numbers 0 < a < c < b $ 1 and consists of making impulses to c when 
the proportion process exits from the interval [a, b]. Such strategies will be 
denoted by II,,,,,. 
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Let vbo,,(w) be the limit of u, with the initial condition u,(w) = H, 
W E  [b, ,  I ] ,  in the sense that v b , , ~  (w) = q, (w), w E [b , ,  11. Define 

The following theorem might be useful for numerical treatment of the 
problem : 

THEOREM 4.6. Assume that the following conditions hold: 

(i) inf~~[b:bo,H.l] u b D , H ( ~ )  = H - K ;  
.. . 

. CEY ;uPL;~; ,,,, 11 v ~ , , R  (w) = H ;  

(iii) f(w) 2 Pff, WE[bo,  11; 

(iv) f (w)+~vb0,~(2w/V/I1 +w)) 2 (a+P)H,  ~ ~ [ b & , n / ( 2 - b : ~ , ~ ) ,  bb$o,H]; 
(v> f (4 2 BH, wf[O, b~, ,~ / (2 -bb* , ,H) l .  
Then 

v (4 = l{wgh; ,,,, Vbo,EI (w) + l{w<b; H 

is a solution to (13). Moreover, lib; o,H, bo ,C ,  where 

is an optimal strategy. 

Proof.  The conditions guarantee that v is piecewise C1 with finite left- 
and right-hand derivatives and satisfies (13) at all points but (b,),,,. By Theo- 
rem 4.1, v is a value function for the control problem of minimizing (7). rn 

Remark.  If f (b,) > pH, then v' (b, -) < 0 and condition (ii) is satisfied. 

4.2. Transcendental equation. If we know a priori that the function v attains 
its minimum in the first interval [ b , ,  bo],  then the target point u* can be 
characterized by the following transcendental equation: 

(16) 
1 AH+f (u*) H b0 AH+f (u) du. - - S v(u*) R+P v(b0) .*yv(tc)u(l-u) - 

To obtain the above equation we observe that vf(u*)  = 0. From (15) we have 

Hence 
v (u*) = 

AH + f (u*) 

n + p  
and we take the formula for u(u*) from Lemma 4.5. 

If we assume that 
1 AH +f (u) 

vtu) n+B 
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is decreasing in u, then the equation (16) has at most one solution. We recall 
that f 2 0, which makes the expression under integrand non-negative. 

Similar but more complicated equations can be obtained if [b,, b,] is 
replaced by [bk+ bk]. 

4.3. M~dels with given impulse regions. In this section we will show that for 
any region J in [0, 11 there exists a cost functional (1) such that the optimal 
control impulse region is exactly J. 

We introduce a family of functions: 

for some a E (0, 1). 
Now, we proceed with the construction of the function f starting from the 

right end. We assume that in the impulse region the value function u is equal to 1. 
We will guarantee that the value function is bounded by I. Hence, by setting 
the impulse cost K = 1 -min v, we obtain the solution to the QVI. In the fol- 
lowing lemma we show how to extend the function f so as to keep to the 
required impulse region. First we introduce the notation: [a, b] < c if a < c and 
b < c. Analogously, [a, b] < [ c ,  4 if [a,  b] < c and [a,  b] < d. 

LEMMA 4.7. Assume that f and the value function v are d$ined on [b, 11 
and ~ l [ ~ , s ~  = 1 for some 8 > b. For any interval 0 < [ I ,  r ]  < b there exists an 
extension o f f  to [ E ,  11 such that v is a solution to the QVI on [ I ,  11 with [ E ,  r]  
being a part of the impulse region and Ir, b[ being a part of a continuation region: 

Proof.  We set 

a = 
A + f i  - Avf 2b/(1+ b)) -f (b) 

-b) 

We extend f on [r, b) in such a way that v jLr,b) = gfb),E lfr,b), i.e. 

f ( w ) = y v t ( w ) w ( l - w ) + p v ( w ) + R  
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The function f is continuous on [r, b). Moreover, the condition for the deriva- 
tive v'(b) = a implies the continuity in b. 

To define f on [I, r )  we have to assure that 

We check that 

since v1(P) = 0. We extend f to [ l ,  r)  in any way that guarantees that the 
inequality (17) is satisfied and the continuity of f holds.. H 

THEOREM 4.8. Let (In)"= be a family of closed intervals in [0, 11 with 
nan-void interior satisfying I,,, <I,. Then there exists a function f and the 
impulse cost K > 0 such that U,=,,...,,I, is the impulse region of the optimal 
strategy. 

Proof .  If I ,  = [b, I], we set vl~b,ll=l, f l E b , l l  = /I. Otherwise, I, = [ I ,  r] 
i 1. We put 

(1 I v I[r,1] = 9,  , v I[lsr, = 1, 

taking appropriate f as in Lemma 4.7. For next intervals, excluding the last, 
we apply the lemma. Let I, = [ I ,  r] be the last interval. If 1 = 0, then we apply 
the lemma. Otherwise, we proceed as follows. We take 

We define f appropriately, as in Lemma 4.7. For v to be a solution to the QVI, 
we have to specify the impulse cost K. We put K = 1 - min v. Now, we observe 
that f is a continuous function on [O, 11, v ~ [ a ,  11, and v is a solution to the 
QVI. 

Theorem 4.8 can be generalized to the case of an infinite-number of dis- 
joint intervals with non-empty interior converging to 0. - 

5. APPENDIX A 

We state and prove here an auxiliary result needed in the proof of Theo- 
rem 4.1. 

Let X (t, x) be a Markov process on the space (E, 8) with respect to the 
filtration (g) and a semigroup (P3. By (dl 9 (d)) we denote its generator. We 
formulate and prove a general result giving the probabilistic interpretation of 
the solution (in some sense, specified later) to the equation 

dv(w)-Pv(w)+f (w) = 0 ( 2  0, GO). 
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DEFINITION 5.1. A set BE& is of null &-measure if 

THEOREM 5.2. Let v :  E 4 R be a continuous function such that there exists 
a sequence of functions v , , ~ B ( d )  and a function h satisfying 

(if v,  + v in sup-norm; 
(ii) h is defined d-a.s . ,  

t t 

(iii) E 1 e - B W v ,  . . ( ~ ( s ,  x)) ds + E j e-#* h (X ( s ,  x)) ds;  . . 
D 0 

(iv)' h (x)- pu ( x )  + f {x) 3 0 d - a x ,  for a continuous function f : E -+ R. 
Then 

is a submartingale ( i j  it is well-defined and integrable). 

For the proof of the theorem we will need the well-known lemma: 

LEMMA 5.3. Let Z ( t ) ,  t 2 0, be an adapted and neeasurable process in Rd. 
For any Borel function f : R + x IZd 4 R, 

if the left- or right-hand side exists. 

Proof  of T h e  orem 5.2. The proof consists of two parts. First we show 
that E Y  (t, x)  > 0. Then we use the Markov property of X (t, x) to show that it 
is a submartingaIe. We have 

since v, is in the domain of &. Hence 

d - 
- e 8t P, vn = eeBt P, d v ,  - Be-@' P, v,. 
dt 

We integrate the above equation and we obtain 

Changing the order of integration we get 

7 - PAMS 25.1 
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We let n + co and by (i) and (iii) we get 
t 

~ ( e - ' v ( x ( t ,  x ) ) - v ( x ) - l e - " ( h ( ~ ( s ,  x)) -pv(X(s ,  x)))ds) = 0. 
0 

Using the condition (iv) we have -(h-flu) < f, so 

which -can be. written equivalently: 
L 

t 

(18) e - B t p , v ( x ) - v ( x ) + j e - f l U ~ ,  f (x)dtr 2 0.. 
0 

We shall show that Y ( t ,  x) is  a submartingale. We take 0 6 s < t and 
write 

= ~ ( e ~ j ' u ( x ( t ,  *))I%)-h(e-"u(x[s, x ) ) [ & ) + ~ ( j e - ~ ' f  ( ~ ( u ,  x ) ) d u l 8 ) .  
S 

From the Markov property of Xj t ,  x)  we get 

~ ( e - ~ ' 2 :  ( ~ ( t ,  x)) Ips) = e-@P,-,v(X(s, x)). 

Lemma 5.3 implies 

-Combining the above results and using (18) we obtain 

which completes the proof. 

COROLLARY 5.4. Under the assumptions of Theorem 5.2, if h (x) -/?v (x )  + 
+ f ( x )  < 0 (= 0) d-a.s., then Y ( t ,  x)  is a supermartingale (martingale). 
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