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Abstract. We present sharp bounds for an approximation of frac-
tional kth record values by convex combinations of ordinary kth
record values. The bounds are expressed in different scale units mea-
sured in pth central absolute moments of the underlying distribution.
The distributions which attain the bounds are also specified. The
bounds are derived by the projection method.
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1. INTRODUCTION

Let F be a continuous distribution function with the quantile function \
Fl'(y)=supf{t: FO) <y}, yel0, 1),
and the hazard function Hg(x) = —log(1— F (x)). The inverse function to Hy is
Yr(x)=F 1(1—e™), x>0.

For a given integer keN, let {Y,¥), ¢t > 0} denote the kth record-values
process for F defined by Bieniek and Szynal [2] as ¥® = y(W®), t > 0,
where {W,®, ¢ > 0} is the so-called kth exponential record-values process, ie.
the stochastic process starting from 0 with independent increments which are
gamma distributed, '

WO_W® ~T(t—s, k), t>s5=0.

Here I'(a, f), a > 0, f > 0, denotes the gamma distribution with the density
function

fup(®) = %x”‘le"’x, x > 0.
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The random variables Y, t > 0, are called fractional kth record values since
any finite-dimensional vector of fractional record values with integer indices t
has the same distribution as the vector of kth record values of the sequence of
iid. random variables defined by Dziubdziela and Kopocinski [6] as follows.
For fixed k > 1 we define the kth record times U, (n), n = 1, of the sequence
{X,,n>=1} as

.Uk(l) =1,

Ucn+1) =min {j > Up (n): Xjjex-1> Xvmvumre—1}, 121,

k
Y9 = Xvmwum+e-1  for n> 1.

In the theory of record values it is well known that the kth record value
Y®, ne N, can be considered as good approximation for ¥ (n/k) (see [1], p. 12,
or [11]). But for n/k¢ N, a better approximation is obtained if the fractional
record value is used instead of the ordinary one. Bieniek and Szynal [2]
showed that for any fixed u > 0 the fractional record value ¥ is a good
approximation for ¥ (x). However, fractional record values are a purely theo-
retical notion as they cannot be obtained from statistical data. Bieniek and
Szynal [2] also stated that the fractional record Y,® may be approximated
by the convex combination (1—{t}) ;¥ +{t} ¥{¥., of neighboring kth record
values, where [t] and {t} stand for the integer and fractional part of teR,
respectively. The aim of this paper is to derive sharp upper and lower bounds
for the expectation of the random variable

A%, = Y0, (1) YO —hY®,,

where k=1,2,..., n=1,2,..., and he(0, 1), ie. bounds for the bias of
approximation of fractional kth record values by kth record values. Also at the
end of the paper we consider a different method of approximating of Y,®, by
Y®, where he(0, 1). This approximation is obviously worse, especially if h is
close to 1, but it does not require the value of Y,¥),. Therefore we also evaluate
the bounds for the expectation of the increment -

RE = 7, — 7 :

for k=1,2,...,t>1, and h> 0. Bounds for the expectation of R%¥) with
t, he N can be found in [10] and [5], but they cannot be applied here since we
are especially interested in the case he(0, 1).

2, AUXILIARY RESULTS

From the above definition of fractional records and results of [2] one can
easily obtain the representation

1
EY® = [F~1() fP (9 dx,
0
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where

1) F90) = = (1 —xp L(—log(1—x) ", xe(, 1),

()

is the density function of the fractional record value U® from the uniform
U (0, 1) distribution. Therefore

EA® = _[F (x) g%, (x) dx,

where for k‘= 1,2,...,n=1,2,..., he(0,1)
2 95 (%) = f¥ ) —A—1) P ) -hfE(x), x€(0,1).

Moreover, if u = up = joF ~1(x)dx, then EA%), may be written as

1
(3) EAR), = [(F™* (x)— ) g% (x) dx.

V]
If we used Holder’s inequality only, then the last equation would imply
) | EAY, < llg%Hlg5,

with p, ¢ > 1 and 1/p+1/q = 1, where ||g||, denotes the norm of a function g as
an element of the Banach space I4([0, 1], dx) and

1
o, = IF 1 —pll, = (fIF 1 ()=l dx)"", 1<p<oo,
0

and for p= o0

O = ”F_i_p*”w = Slip IF l(x) I'tl

denotes the pth central absolute moment of F (writing ¢,, 1 <p < o0, we
tacitly assume that it is finite). But the equality in Holder’s inequality holds iff
F~1—pis proportional to g%}, which is impossible since the former function is
monotone and the latter in general is not. Therefore the bound (4) cannot be
sharp, and to obtain sharp bounds we apply Holder’s inequality combined with
Moriguti’s [9] inequality, which is presented in the following lemma.

Lemma 1 (Moriguti’s inequality). Let g: [a, b1+ R be an integrable func-
tion. Let g be the right derivative of the greatest convex minorant G of the
antiderivative G(x) = jzg(t) dt of g. Then for every nondecreasing function
f:{a, b]—R

b

©) ffge)dx < [ f(x)g(x)dx

a

Equality in (5) holds iff f is constant on every interval where G(x) > G (x).
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The function § is the projection of g onto the convex cone % of nonde-
creasing functions in I? ([0, 1]). For detailed formal justification of this state-
ment see [12], pp. 12-16.

Using Moriguti’s inequality, by (3) we obtain

(6) EA®, < }(F 1 (%) — ) G99 (x) dx = } (F~1 (x)— 1) (g% () — ¢) dx

for arbitrary ce R. The last equality is true as [; (F~* (x)—pu)dx = 0. To derive
the lower bound on EA%) it is enough to note that

. 1
(M ' —EA$), < [(F~1 (x)—p) (g%} (x)— ) dx,
0 E
where =g, is the projection of —g%} onto €.
Similar considerations lead to

1

®) ER¥ < [ (F™ (9~ 1) (68 () —c) dx,
0

where for t =1, h>0, and k> 1

) = B - fPx), xe@,1).

Therefore we need to determine the projections §&,, =g%,, and ¢%. To
this end, knowledge of the shapes of g%, and @) is crucial. This will be deter-
mined using the variation diminishing property (cf. [13]) of densities of frac-
tional record values proved in [3].

For an arbitrary sequence a = (a,, ..., a,)€R" let S~ (e) denote the num-
ber of sign changes in the sequence a,, ..., a, after deletion of zeros. For
k=1,2,... and teR we write

Ul (x) = 1—xp~ Y (=log(1—-x) ", xe(, 1).

Moreover, for any function f: [0, 1]+ R let Z (f) denote the number of zeros

~of fin (0, 1). The variation diminishing property of densities of fractional

record values may be stated as follows.

LeMMA 2 (Bieniek and Szynal [3]). Let t; < t; < ... < t, and for acR" let
H,(x)= Y a;u,(x), x€(,1).
i=1

Then for all a # 0€R" we have Z(H,) < S™ (a). Moreover, the first and last
signs of H, are the same as the signs of the first and last nonzero elements of a,
respectively.

Putting t; =ieN, 1 <i< n, we obtain Lemma 5 of [7]. Our proof of
Lemma 2 uses the following result. )
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LemMA 3 (Karlin and Studden [8]). Assume that o, ..., o, is a strictly
increasing sequence of real numbers. Then for all ae R, a # 0, the number of
positive zeros of the polynomial P,(x) = Z:ﬂla,- x* does not exceed S~ (a).

Proof of Lemma 2. We have

n —1 (1_'x)k—1 n

Ha() = (12" 3, a(—log(1 =) = o0 3. 2",

where z = —log (1 —x). Obviously, Z(H,) is equal to the number of positive
zeros of Zﬁ a;z""-and Temma 2 follows from Lemma 3. Furthermore, let
a, and a, denote the first and the last nonzero element of a. Then the latter
statement follows from the equalities
im H,(x) =g lim Ha (9
x=0* (—log(1—x))

ol TP (1—35)"‘1(—Iog(l—x))"'_1 B
This completes the proof. m

The shape of g%}, is determined in the following lemma.

LemMMA 4. For k> 2, n > 2, there exist 0 < x; < x; < x3 <1 such that
g%, is decreasing on the interval (0, x,) from 0 to 9%, (x,) < 0, increasing on
(1, X2) to g% (x3) > 0, decreasmg on (x4, x3) to g®,(x3) < 0, and increasing on
(x3, 1) to 0. For k = 1, n > 2, g} is decreasing on (0, x;) from 0 to g{4)(x) <O,
increasing on (x,, x,) to g\, l(xz) > 0, and decreasing on (x,, 1) to 0. For k = 2,
n =1, g¥, is increasing on (0, x,) from —k(1—h) to g¥,(x,) > 0, decreasing on
(x1, x2) to g% (x,) < 0, and increasing on (x,, 1) to 0. For k=n=1, g1}, is
increasing on (0, x;) from —(1—h) to ¢!} (x,) > 0 and decreasing on (x,, 1) to
—(1—h).

Proof. We prove the first statement of this lemma only. The remaining
statements are proved analogously.
First note that (1) and (2) imply that

0 ift>1, 0 i )
® () — oL g% nz2,
+o0 ft<l,

and f® (1) = 0 except f{"’(1) = 1, and g%}, (1) = 0 except g{'} = —(1 —h). Next,
applying Lemma 2 to equation (2) written in the form

gni () = —(1=1) £ )+ £84 )~ 121 (),

we see that g9, is first negative, then positive, and negative (— + —, for short)
or negatlve on (0,1). But the latter case is impossible, since then
j o 955 (x) dx = 0 implies g%}, = 0, which is not true (see (2)). Moreover, using the
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identity
(@) = (kﬂ(k)l (x)—(k—1) £9(x)),

which is valid for any teR adopting the convention f; =0 for te{0, —1,
—2,...}, we see that

(g59) (x) = ( k(L=h) 21 (0)+ k-1 (x)

- ((k 1)(1—h)—kh) £, (x)—(k—1) 25 ()+(k—1) £2; (x))

is either — + — + or — . Since g%, (0) = g®,(1) = 0, the second case implies
that g%}, is negative on (0, 1), which is 1mp0581ble Hence g%}, has the claimed
shape. m

The shape of ¢ is as follows.

LemMa 5. For k = 2 and t > 1 there exist points 0 < y, < y, < 1 such that

@) is decreasing on (0, y;) from O to @ (y;) <O, increasing on (y1, y,) to

0" (y2) > 0, and decreasing on (y2,1) t0 0. For k=1 and t > 1, ¢ is de-

creasing on (0, y;) ﬁ'om 0 to @} (y1) < 0, and increasing on (y,, 1) to + 0. For

k=2 and t =1, ¢P, is increasing on (0, y,) from —k to ¥, (y,) > 0 and de-

creasing on (y,, 1) to 0. For k =t = 1, ¢'t}, is increasing on (0, 1) from —1 to
+ 0.

- Proof. The proof is analogous to that of Lemma 4. It is based on analy-
sis of the derivative

(@) (x) = ( kfi®: () + k-1 o)+ (k—1) £ (0)— (k—1) £ (X))

with the aid of Lemma 2. Note that since the coefficients of £%,_, and £, are

‘both nonnegative, it does not matter whether t+h—1<tor t+h—1>t =

Now, let G¥, be the antiderivative of g%}, namely G¥},(x) = [, g% (1) d.
Then by (2) we have G%,(0) = 0 = G¥),(1). By Lemma 4, for k > 2, n > 2, there

- -exist exactly two zeros 0, and 02 of g(’" in (0, 1) such that 0 < x, <6, < x, <

0, < x3 < 1. Obviously, 6; and 0, are the points of global minimum and
maximum, respectively, of G%}.

Let I,(x) = G% (w)+ g%, () (x—u), xeR, be the tangent to the graph of
G% at ue(0, 1). We prove that, for n > 2, k > 2, there are exactly two tangent
lines passing through each of the points (0, 0) and (1, 0).

LeMMA 6. For n =2, k = 2, the equation 1,(0) = 0 has exactly two solu-
tions a,,, o* €(0, 1) such that x; < a, < 04, x, < o* < 0,; the equation I,(1) =
has exactly two solutions B, , p*€(0, 1) such that 0; < B, < x5, 0, < f* < x5.
Ifk =1,n > 2, then we have a* = * = 1. For k =22, n = 1 we have a, = 0. For
k=n=1 we may put a, =0, p* =
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Proof. First we consider the function

L(0) = G%, (u)—ug$ (u).
We have

bO=LO=0 and L (L0)= —u(ghy @

Therefore, by Lemma 4, [,(0) is increasing on the interval (0, x;) from 0 to
l,cl (0y> 0, decreasing on (x;, x;) to I.,(0) <0, increasing on (x,,x3) to

Iz, (0) > 0, and decreasing-on (x3, 1) to 0, where x,, x,, x5 are as-in the state-
ment of the first part of Lemma 4. Therefore I, (0) has unique roots s and o* in
each of the intervals (x;, x,) and (x,, x3), respectively. Moreover, since ,, (0) =
G%.(60,) <0, 1;,(0)=G"0,) >0 and 0, < x,, 0, <x;3, we see that x; <
ay < 0; and x, < a* < 02 Similarly, considering the function

L(1) = G ) — (1 —w) g7k ()
with
d

Ll)=4L(1)=0 (l (1))—(1 w(gen @), - I, (1) <0, Ip,(1)>0,

we prove the second part of the lemma. =

The shapes of the projections of g&, and — g%}, are given in the following
lemma.

LEMMA 7. For k=1, n>= 1, we have

g®(e), 0<x<a,,
g% (x) = < g(k) (x)a U X< ﬁ*:
gn,h(ﬁ*)s ﬂ* <X < 1,

_gn}l(a*)a 0<x<a*:

A

=Tnn(X) =<4 —gni(x),  o* <x<p,
g, pr<x<y,
where oy < By, dy, B.€(0, 1), are the smaller solutions of the equations
©) G (@) = 9% (@), |

(10) G (B +(1-p)gih B =0

respectively, and o* < B*, a*, B*€(0, 1), are the greater solutions of these equa-
tions.

Proof. First note that G%), starts from the origin and by Lemma 4 it is
concave decreasing on (0, x,), convex decreasing on (x;, f;), convex increas-
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ing on (64, x,), concave increasing on (x,, 8,), concave decreasing on (f,, x3),
and convex decreasing on (x3, 1) to 0. Therefore the greatest convex minorant
G8, of G, is given by
G(k;. (“*)+g(k) (org) (x—ty), 0<x<ay,
G (x) = G"‘i (x), x < By
GIL B+ 9% (B.) (x— B, ﬂ* <x<1,
where a, and B, are as in the statement of Lemma 6. Note that equations
G%), (@) = og®, (@) and G}, (B)+(1—B) g%, (B) = 0 are equivalent to [, (0) = 0 and
l;(1) = 0, respectively. Now differentiate G{ (x) with respect to x to obtain the

assertion of the lemma. The statements concerning —g"‘}, are proved analo-
gously after observing that the antiderivative of —g%), is just —G%),.

Remark 1. Note that the functions g%} restricted to (a,, f,) and —g&
restricted to (¢*, f*) are strictly 1ncreas1ng Therefore they have well- defined
inverse functions (g%))~! and (—g%))~*, respectively.

Let &% denote the antiderivative of ¢, ie. % (x) = [} ¢ (u)du. Then
the projection of @) is as follows.

LeMMA 8. For k=1, t>1, and h>0

Pfay), 0<x<a

P =4 P, @ <x

Pih(by), by <x

where ay, by, 0 <a, <b, <1, are the unique solutions of the equations

X (a) = ap®)(@), X (b) = (b—1) o),

respectively.
3. MAIN RESULTS )
Applying Hélder’s inequality to (6) we obtain

(A1) EA% < [(F 00— ) (5 09— ) dx
Q

< IF~ = pll, g8 —cll, = B, , () 0,
say, where c € R is an arbitrary constant. Similarly, by (7), EA®), > —B%, ,(¢)a,,
where B, ,(c) = |=g%,—cll,, which together with (11) 1mp11es

EAR),
g

(12) ' — B, < < B,

P
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with BY), , = inf,.g B®, ,(c) and BY), , = inf.r BY), , (c). Therefore it suffices to
specify va.lues of ¢ which minimize BY, ,(c) and B ,(c). We should also find
distributions for which the bounds are attained.

In subsequent theorems we analyze the cases 1 <p < oo, p=1, and
p = co. Since the shape of the projection g%}, given in Lemma 7, is the same as
the shape of the projection obtained in [4] or [10], the proofs in these cases are
similar to those in cited papers.

In the case 1 <p< the result is as follows.

THEOREM 1. sz 1<p<oo and let q=p/(p—1). For k> 1 '21,
he(©,1), — )

(13) BY,» = g5 —cullg

with ¢, = g%}, (x,), where x,, is the unique solution of the equation

(14) o, (g% 0 —g% (@) "+ s(g 0.9 —g% @) " du

Xy

= f(g B ) — g% )" du+(1—B,) (6% B — 9B )"’

The bound (13) is attained if

2 (e
b L lek%lp ‘ >
(k) pla —
(g;':m-l(c*—Bs:f;.,p (“ ) ) ( R Xt g,
15) F(x) =< Brhs ’
(19 F&) %) x—pY o< H o g (B —cy \
h,p Op ’ h Op ngz.p T
1 X—HU > ggf}.(ﬂ*)—c* p/q- i
U7 o, BY., !

The statements for B, , are of the same form as (13), (14) and (15) with BY), ,,
g%, oy, By and c, replaced with B®, ,, —g®,, a*-B* and c*, respectively.

Proof. Note that the value of c, that minimizes the norm ||g¥—cl|, has
to be of the form c, = g%} (x) for some xe[a,, f,]. Therefore we consider the
function

D (x) = 3% — g% GOl

= oy (g% () — g% ()" + I(gﬁ"i (x)— g% ()" du

+§ (9% @) — g% (x))" du+(1— ) (9% (B — g8h (x)"
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and we minimize it with respect to x€[a,, f,]. Differentiating the last equa-
tion we obtain D’ (x) = q(g¥}) (x) (D1 (x)— D (x)), where D, (x) and D, (x) stand
for the left-hand and right-hand sides of (14), respectively. Note that g > 0,
9®) (x) > 0 for a, <x < B, and D, (x,) = D,(B,) = 0. Moreover,

100 = (@—1) (%) () {24 (6% () — g% ()"

(68 09- g @) 2} > 0
and s1m11arly D,y (x) < 0 This implies that D, increases from 0 to D By) > 0
and D, décreases from D, (ay) > 0 to 0. Therefore there exists x, which is the
unique solution of the equation D, (x) = D,{(x) or equivalently (14). Moreover,
D' changes sign at x, from negative to positive, which implies that x, mini-
mizes D on [a,, f.]
The equality in (12) is attained and the moment conditions

1 1
[F'@du=p, [IF'@—pPdu=o,
0

0

are fulfilled if F~! satisfies (cf. [12], p. 160)

F~ ) —p _ 195k () —cyl””
&) _ *q/p sgn (gslk;l (u) - C*)'
GP ”g *”q

Equivalently,

F )= g @0,

F~ 1 (u)— P
e IR
Op n,h,p

which gives (15). Since the projections g%, and =g¥), are of similar form,
the proofs of the results for the lower bound are exactly the same as above
with replacements as in the statement of the theorem This completes the
~ proof. m : -

Remark 2. In subsequent results we give precise expressions for
upper bounds only. The lower bounds may be treated as in the case 1 <
p < 0.

For p = q = 2, solving (14) we obtain ¢, = 0, which implies the following
. corollary.

COROLLARY 1. For k> 1, n>=1, he(0, 1),

B4

B2 = {o (6% ()" + [ (0% ) du+(1— ﬁ*) @9.B"".

ay
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This bound is achieved if

-

0, X— u<gn£(oc*)’

) Bnh2
- *))~ (k —H ' ;n(“*) x—p g% (By)
rey =t (ma(5E)) R < <

1 X—U k;‘(a*)

’ o, ~ BH.’

-}"‘

In" the «case p =1 we have the following theorem.

THEOREM 2. Suppose that o, and B, are asin Lemma 7. Fork>1,n2> 1,
he(0, 1)

(16) B¥, 1 = 3(9%h (Ba) — 989 (24)-
The bound (16) is attained for the distribution concentrated at the points
p—0o1/Qay), p and p+o./2(1—B,) with probabilities o, f,—a, and 1—f,,
respectively.

Proof. As in the case p > 1, we start with determining the value of
¢, which minimizes ||g%—c|l,. We have

inf lg}—cll,, = inf sup |G @—c

ccRO<us<1

1nfmax(c g% (@4), 9% (B)—¢) = (9% (B — g(k) (fx*)),'

which is attained for ¢ =%(g% (@) + 45 ’(ﬁ*))
The bound (16) is attained if F~* — u is constant on [0, a,) and (B, 1] (cf.
Lemma 1) and is equal to 0 on (o, B,) (by Holder’s inequality). Therefore,

A, 0<x<ay,
Flw—p=140, oa,<x<8B,,
B, By.<x<x1,

and the moment conditions j(l) (F~*(u)—p)du =0 and Ll) |F~ Y (u)—y|du = o,
imply A = —0,/Qa,) and B=1/2(1—8,). ® '

When p = oo, we obtain the following statement.

THEOREM 3. Suppose that o, and B, are as in Lemma 7, F is a distribution
function concentrated on [U—0 o, t+0,] and k> 1,n>1,he(0, 1). If o, > L
then BY, , = —g%, () and the bound is attained for the distribution concen-
trated at the points p— a -(1—a,)/a, and p+ o, with probabilities o, and 1—a,,,
respectively. If B, <3, then B®), ., = g%},(B,) and the distribution which attains
the bound is concentrated at the points u—oc, and pu+04'(1—pB,)/Bs with

e
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probabilities B, and 1— B, , respectively. Finally, if «, <% < B,, then B, , =
—2GY, (%) and the bound is achieved for the distribution concentrated at the
points u—o, and p+o,, each with probability %

Proof. Again, first we determine c, = g%}, (x,), for some x, e[a,, B,],
which minimizes D (x) = |[g®, —g®, (x)|l,- Using (9) and (10) we see that D
may be written as D(x) = 2x—1)g¥,(x)—2G%, (x) with derivative D' (x) =
(2x—1) (g% (x). Moreover, BY}, ., is attained if F~*(u)—p = o, (7% )~
(Holders inequality) as well as F~!—y is constant on each of the intervals
where g&, #g%,. - -

Now,.if a, > 1, then D'(x) > 0 in [a,, ,], and therefore c, = g"" (oty),
which implies BY), , = D(2,) = —g%, (o). The bound is attained if

N —0o (- )0y, 0<x<a,,
F~w ”—{o—m, o, <x <1,

which easily implies the statement of the theorem for o, > 4. Similar argu-
ments lead to the conclusions in the case B, < 1. If o, <% < B, then D’ (x) has
a unique zero at x =4 and D changes sign at 4 from negative to positive.
Therefore BY, , = D(3) = —2G%¥,(3) and the remaining conclusions of the
theorem follow. m

To conclude our discussion we state without proof a general result on
bounds for expectations of increments of record values. The proof of this result
may be established similarly to the proofs of Theorems 1, 2 and 3 of [5]. The
distributions for which the bounds are attained are also of the same form as in
[5] with obvious modifications, so we do not specify them here.

THEOREM 4. Let F be an arbitrary continuous distribution function with
finite mean p and pth central absolute moment o, for some 1 < p < oo and let
Ay, by be as in Lemma 8. For k> 1,t>1 and h>0

ER®)

Op

< Cip

(@) if 1<p<oo, then CH, =168 —c,ll, wzth Ce = 08 (y,) and y.€
(a4, b,) being the unique solution to (14) in which g%, a,, and B, are replaced by
o®, a, and b, respectively;
(b) if p=1, then C,1 = 3(o(b,)— 0 (a,));
(¢) if p= o0, then
—o(ay)  foroa, =3,
CH.o= —209(3) for a, <3 <b,,
elaby)  for by <3
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Remark 3. For t =meN and h=n—meN we obtain results of [5],
and if t =neN and h =1, we obtain results of [10].

4. NUMERICAL EXAMPLES

Our results admit direct numerical implementation. In Tables 1, 2 and 3
we give values of upper and lower bounds for k=3, n=4and h=0.1...0.9
for three most popular scale units, i.e. p =1, p =2 and p = oo, respectively.

_ Tagre 1. Numerical values of —B$),,, BS),1, C&1 and CPL, 54

A ) —B%h. B} CEh1 C
4.1 —0.0115 0.0079 0.0596 0.5739°

g 42 —0.0206 0.0140 0.1200 0.5151

. 43 —0.0272 0.0182 0.1810 0.4551

‘ 44 —0.0313 0.0207 0.2428 0.3940

: 4.5 —0.0329 0.0214 0.3054 0.3316

4.6 —0.0318 0.0204 0.3688 0.2679

; 4,7 —0.0280 0.0177 04331 0.2029
4.8 —0.0215 0.0133 0.4983 0.1367
4.9 —0.0122 0.0075 0.5645 0.0690

TABLE 2. Numerical values of —B%), 5, B2, C§}.2 and Cy 42

—B%.2 - BE)., C32 C&ynz

4.1 —0.0063 0.0076 0.0481 0.4285

4.2 —0.0113 0.0134 0.0960 0.3817

‘; 43 —0.0148 0.0174 0.1438 0.3346
! 44 —0.0169 0.0198 0.1915 0.2874
‘f 4.5 —0.0176 0.0204 0.2391 0.2399
; 4.6 —0.0169 0.0194 0.2865 0.1923
: 4.7 —0.0148 0.0169 0.3339 0.1445
4.8 —0.0113 0.0127 0.3811 0.0965

49 —0.0063 0.0071 0.4282 0.0483

TaBLE 3. Numerical values of — B}, o, B o, C8h o and C&pp e -

—Bhw BSh o CEhw C o
4.1 —0.0022 0.0072 0.0314 0.2439
4.2 —0.0038 0.0127 0.0618 - 0.2143
43 —-0.0050 0.0164 0.0913 0.1854
44 —0.0056 0.0184 0.1199 0.1571
4.5 —0.0058 0.0189 0.1476 0.1294
4.6 —0.0055 0.0178 0.1745 0.1023
4.7 —0.0048 0.0153 0.2005 0.0759
48 —0.0036 0.0115 0.2258 0.0501

4.9 —0.0020 0.0064 0.2504 0.0247
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These values are typical in the sense that for other values of n and k the
expected error committed by replacing ¥® with (1—{t}) ¥¥+1¥¥,, mea-
sured in g, units, is at most a few percent. Therefore, the approximation of
fractional record values by ordinary record values is very close. Moreover, for
comparison the table contains the values of C$}, , and C$2, , ,. These numbers
are the bounds for E(Y{®,— Y and E(Y#—Y{,), respectively.
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