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Abstract. We present sharp bounds for an approximation of f r a ~  
tiond kth record values by convex combinations of ordinary kth 
record values. The bounds are expressed in different scale units mea- 
sured in pth central absolute moments of the underlying distribution. 
The distributions which attain the bounds are also specified. The 
bounds are derived by the projection method. 
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1. INTRODUCTION 

Let F be a continuous distribution function with the quantile function 

F- '(y)=sup(t:  P ( t )<y) ,  y ~ [ O , l ) ,  

and the hazard function HF (x) = -log (1 - F (x)). The inverse function to HF is 

$P(~)=F- l ( l -e -x) ,  x20. 

For a given integer  EN, let (I;(~), t 2 0) denote the kth record-vaIues 
process for F defined by Bieniek and Szynal [Z] as E;(k) = $F t 3 0, 
where (K(k) ,  t 2 0) is the so-called kth exponential record-values process, i.e. 
the stochastic process starting from 0 with independent increments which are 
gamma distributed, 

Here r t a ,  P), a > 0, /3 > 0, denotes the gamma distribution with the density 
function 
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The random variables x(k', t 2 0, are called fractional k t h  record values since 
any finite-dimensional vector of fractional record values with integer indices t 
has the same distribution as the vector of kth record values of the sequence of 
i,i,d. random variables defined by Dziubdziela and Kopocinski [6] as follows. 
For fixed k 2 1 we define the kth record times U,(n), n 3 1, of the sequence 
{X,, n 2 1) as 

and the- kth 'record values as 
L 

G " = X  Uk(? l ) :Uk(n]+k- l  l '  

In the theory of record values it is well known that the kth record value 
Zk', n E N ,  can be considered as good approximation for $, (n/k] (see [I], p. 12, - 
or [Ill). But for n/k$N,  a better approximation is obtained if the fractional 
record value is used instead of the ordinary one. Bieniek and Szynal [2] 
showed that for any fixed u > 0 the fractional record value is a good 
approximation for $,(u). However, fractional record values are a purely theo- 
retical notion as they cannot be obtained from statistical data. Bieniek and 
Szynal [21 also stated that the fractional record K(k) may be approximated 
by the convex combination (1 - {t)) + {t}l$f! of neighboring kth record 
values, where [t] and {t) stand for the integer and fractional part of ~ E R ,  
respectively. The aim of this paper is to derive sharp upper and lower bounds 
for the expectation of the random variable 

where k = 1, 2, . . ., n = 1, 2 ,  . . ., and h ~ ( 0 ,  I), i.e. bounds for the bias of 
approximation of fractional kth record values by kth record values. Also at the 
end of the paper we consider a different method of approximating of by zk), where h E (0, 1). This approximation is obviously worse, especially if h is 
close to 1, but it does not require the value of Y,'yl. Therefore we also evaluate 
the bounds for the expectation of the increment 

@kJ = y'k' - y ( k 1  
- 

t + h  t 

for k = 1, 2,  . . ., t 2 1, and h > 0. Bounds for the expectation of Ri:kJ with 
t, h E N can be found in [lo] and [ 5 ] ,  but they cannot be applied here since we 
are especially interested in the case h ~ ( 0 ,  1). 

2. AUXILIARY RESULTS 

From the above definition of fractional records and results of [2] one can 
easily obtain the representation 
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where 

is the density function of the fractional record value Ujk' from the uniform 
U (0, 1) distribution. Therefore 

-. .. 
where fqr k-= 1 ,=2, . . . , n = 1, 2,  . . . , Iz E (0, 1) 

I 

Moreover, if p = p~ = 1; F-' ( x )  dx,  then ~ A i f l  may be written as 

If we used Hijlder's inequality only, then the last equation would imply 

with p, q 1 and I/p+ l/q = 1, where ((gt(, denotes the norm of a function g as 
an element of the Banach space L4 (10, 11, dx)  and 

and for p = ao 

denotes the pth central absolute moment of F (writing a,, 1 6 p < a, we 
tacitly assume that it is finite). But the equality in Holder's inequality holds iff 
F - I  - p  is proportional to g$fk, which is impossible since the former-function is 
monotone and the latter in general is not. Therefore the bound (4) cannot be 
sharp, and to obtain sharp bounds we apply Holder's inequality combined with 
Moriguti's [9] inequality, which is presented in the following lemma. 

LEMMA 1 (Moriguti's inequality). Let g: [ a ,  b] I+ R be an integrable func- 
tion. Let g be the right derivative of the greatest convex rninorant G of the 
antiderivative G (x) = j: g ( t )  d t  of g. Then for every laondecreasing function 
f: [ a ,  b ] - R  

b b 

(5) S f  ( x ) s ( x ) d x  G S f  ( x ) f l ( x ) d x .  
a a 

Equality in ( 5 )  holds if f is constant on every interval where G(xj > G ( x ) .  
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The function ij is the projection of g onto the convex cone %' of nonde- 
creasing functions in ([0, I]). For detailed formal justification of this state- 
ment see [12], pp. 12-16. 

Using Moriguti's inequality, by (3) we obtain 

for arbitrary c E R. The last equality is true as ( F -  ' ( x )  - p) d x  = 0. To derive 
the lower bound on Ed:!$ it is enough to note that - -. 

1 

where =&& is the projection of -gLtk onto V .  
Similar considerations lead to 

where for t 2 1, h > 0, and k 2 1 

Therefore we need to determihe the projections affk, -g;k, and #l. To 
this end, knowledge of the shapes of g f j ,  and cpifl is crucial. This will be deter- 
mined using the variation diminishing property (cf. [13]) of densities of frac- 
tional record values proved in [3]. 

For an arbitrary sequence a = ( a l ,  . . ., aJ E Rn let S -  (a)  denote the num- 
ber of sign changes in the sequence al, .. ., a, after deletion of zeros. For 
k = 1, 2, ... and ~ E R  we write 

Moreover, for any function f : [0, 11 H R  let Z  ( f )  denote the number of zeros 
of f in (0, 1). The variation diminishing property of densities of - fractional 
record values may be stated as follows. 

LEMMA 2 (Bieniek and Szynal [3]). Let t ,  < t ,  < . . . < t ,  and for a E R" let 

Then for all a # OER" we have Z ( H a )  6 S -  (a). Moreover, the first and last 
signs of Ha are the same as the signs of the first and last nonzero elements of a, 
respectively. 

Putting t i  = i~ N, 1 < i G n, we obtain Lemma 5 of [7]. Our proof of 
Lemma 2 uses the following result. 



Approximation of fiactionai record values 201 

LEMMA 3 (Karlin and Studden [a]). Assume that crl, . . ., cx, is a strictly 
increasing sequence of real numbers. Then for all a E Rn, a # 0, the number of 
positive zeros of the polynomial P A )  = Cf=, ai xai does not exceed S- (a). 

Proof  of Lemma 2. We have 

where z = -log (1 -x). Obviously, Z (Ha)  is equal to the number of positive 
zeros of EL, ai zri- and Lemma 2 follows from Lemma 3. Furthermore, let 
a, and a, denote the first and the last nonzero element of a. Then the latter 
statement follows from the equalities 

lim K T  (4 
= a,, lim H a  (4 = a,. 

"Q+ ( - lag( l  -*))'-I - 1 -  ( I - x ) ~ ~ ( - ~ o ~ ( ~ - x ) ) ~ ' - ~  

This completes the proof. %B 

The shape of g f l  is determined in the following lemma. 

LEMMA 4. For k 2 2, n 3 2, there exist 0 < x ,  < x, < x ,  < 1 such that 
gkfL is decreasing on the interval (0, x l )  from 0 to g$'$(xl) < 0, increasing on 
(xi, x2) to g f i  ( xZ )  > 0, decreasing on (x2 ,  x3) to gfk (x3)  < 0, and increasing on 
(x3,  1) to 0. For k = 1, n 2 2, g$:d is decreasing on (0, x l )  from 0 to gitl(xl) < 0, 
increasing on (x,, x2) to gL;i(x,) > 0, and decreasing on ( x z ,  1) to 0. For k 2 2, 
n = 1, gFJ, is increasing on (0, x l )  fiom - k(1-  h) to g(lL(x1) > 0, decreasing on 
( x l ,  x2)  to g(k!h(~2) < 0, and increasing on (x2 ,  1 )  to 0. For k = n = 1, gl:k is 
increasing on (0, x l )  from -(1 - h) to g\:j, ( x l )  > 0 and decreasing on ( x l ,  1) to 
- (1 - h). 

Proof.  We prove the first statement of this lemma only. The remaining 
statements are proved analogously. 

First note that (1) and (2) imply that 

and f,(A1(l) = 0 except f l l )  ( 1 )  = 1, and ( I )  = 0 except g\tk = - (1 - h). Next, 
applying Lemma 2 to equation (2) written in the form 

we see that gI,:3, is first negative, then positive, and negative ( -  + -, for short) 
or negative on (0, 1). But the latter case is impossible, since then 

g$lk (x )  dx = 0 implies g!!'i = 0, which is not true (see (2)). Moreover, using the 
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identity 
1 (A(') (x))' = - (kJ(kll (x )  - (k - 1) (x)), I - x  

which is valid for any t E R adopting the convention ,f, - 0 for t E (0, - 1, 
- 2, . . .), we see that 

- - + ( ( k ~ ~ ) ( l - h ] - k h ) # ~ ) ( x ] - ( k - l )  fJYh(x)+(k-1)fJYl(x)) . 
is either - + - + or - + . Since gjlfb (0) = gjE[k ( 1 )  = 0, the second case implies 
that gjlfl is negative on (0, 11, which is impossible. Hence g$f, has the claimed 
shape. H 

The shape of rpj!'j is as follows. 

LEMMA 5. For k 3 2 and t > 1 there exist points 0 < yl < y2 < 1 such that 
qifd is decreasing on (0, yl) from 0 to cpjfLR(yl) < 0, increasing on ( y l ,  yz) to 
q2!l5l(y2) > 0, and decreasing on ( y z ,  1 )  to 0. For k = 1 and t > 1, qj,il is de- 
creasing on (0, yl) from 0 to rp$,2 ( y l )  < 0, rand increasing on (yl ,  1) to + w. For 
k 2 2 and t = 1, y(k!h is increasing on (0, y2)  from - k to 43\k,)h(y2) > 0 and de- 
creasing on ( y2 ,  1) to 0. For k = t = 1, cp\:i is increasing on (0, 1) #om - 1 to 
+ co. 

Proof .  The proof is analogous to that of Lemma 4. It is based on analy- 
sis of the derivative 

1 (dfB' (x) = - ( - kJ?l (x )  + k f t e i  - 1 (x )  + (k - 1) ft'k) (x)  - (k - 1) ft(:)h (x)) 
1 - x  

with the aid of Lemma 2. Note that since the coefficients of A'$!),-, and are 
both nonnegative, it does not matter whether t + h- 1 < t or t + h - 1 > t. 

Now, let G f l  be the antiderivative of gkfk, namely Gktk (x)  = 1; g f ;  ( t)  dt. 
Then by (2) we have Gi!k (0) = 0 = GLtj, (1). By Lemma 4, for k 2 2, n 2 2, there 
-exist exactly two zeros 8, and 8, of gktk in (0, 1) such that 0 < xl <-01 < x ,  < 
O2 < x3 < 1. Obviously, 8, and O2 are the points of global minimum and 
maximum, respectively, of GfL. 

Let lu (x )  = G$!k (u) + gSi (u) ( x  -u), x E R, be the tangent to the graph of 
GLti at u ~ ( 0 ,  1). We prove that, for n 2 2, k 2 2, there are exactly two tangent 
lines passing through each of the points (0, 0) and (1, 0). 

LEMMA 6. For n 2 2, k 2 2, the equation l,(O) = 0 has exactly two solu- 
tions a,, u* ~ ( 0 ,  1) such that x, < u, < 0,, x ,  < u* < 0,; the equation 1,fl) = 0 
has exactly two sollrtions 8, , fl* E (0, 1) such that 8, Q P, Q x2, 82 Q P* d x3. 
i f  k = 1, n 2 2, then we have a* = p* = 1. For k 22 ,  n = 1 we have a,  = 0. For 
k = n = 1 we may put a, = 0, b* = 1. 
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Proof. First we consider the function 

1, (0) = Gktk (u) -  us^^^ (ts). 
We have 

d 
lo (0) = 1 (0) = 0 and - (1, (0)) = - u ( (u) . du 

Therefore, by Lemma 4, l"(0) is increasing on the interval (0, x,) from 0 to 
lx, (0) > 0, decreasing on (xi, x,) to I,,(O) < 0, increasing on (xz, x3) to 
lx,(0) > 0, and decreasing on (x3, 1) to 0, where xi, x2, x3 are as in the state- 
ment of-thefirst part of Lemma 4. Therefore 1, (0) has unique roots a, and or* in 
each of the intervals (xi, x2) and (x2, x3), respectively. Moreover, since I,, (0) = 

Gk'$ (13,) < 0, I,, (0) = GLt9(f12) > 0 and 8, < x,, 8, < x,, we see that x, < 
a, d dl and x, < a* < 8,. Similarly, considering the function 

l ,  (1) = GAt), (u) - (1 - u) gjffb (u) 
with 

we prove the second part of the lemma. 

The shapes of the projections of gfk and -gfi are given in the following 
lemma. 

LEMMA 7. For k 2 1, n 2 1, we have 

- gfj, [a*), 0 < x < a*, 
9. gn,h (4 = { - A ? ff* < x G B*? 

-gth (B*),  P* < x G 1, 
- 

where a, < p,, a,, P, ~ ( 0 ,  I), are the smaller solutions of the equations 

(9) Gllfk (4 = wr:3 (4, 
(10) G E L ( ~ ) + ( ~ - P I R ) ~ ~ ~ ,  (8) = 0, 

respectively, a d  ol* < P*, a*, P* E (0, I), are the greater solutions of these equa- 
tions. 

Proof .  First note that GIIfk starts from the origin and by Lemma 4 it is 
concave decreasing on (0, xi), convex decreasing on (x,, el), convex increas- 



204 M. Bieniek et al. 

ing on (el, xz) ,  concave increasing on (xz, Bz) ,  concave decreasing on (02,  x3), 
and convex decreasing on (x3, 1) to 0. Therefore the greatest convex minorant 
Gfi  of Gifj, is given by 

where a, and p,  a re  as in the statement of Lemma 6. Note that. equations 
(4 2 J X ~ L ~ R  (a) and Gi'$ (fi)  + (1 - 8) gktl (fl) = 0 are equivalent to 1, (0) = 0 and 

l p ( l )  = O7 respectively. Now differentiate Gitl,(x) with respect to x to obtain the 
assertion of the lemma. The statements concerning -gLfj, are proved analo- 
gously after observing that the antiderivative of -a$fk is just -GfA. rn 

Remark 1. Note that the functions restricted to (a,, IS+) and -g(ltk 
restricted to (a*, fl*) are strictly increasing. Therefore they have well-defined 
inverse functions (gitl) - and ( - gi:L)- l, respectively. 

Let @::A denote the antiderivative of @A, i.e. (x) = ji cpiri (u) du. Then 
the projection of is as follows. 

LEMMA 8.  For k >  1, t >  1, and h > O  

i i  a *  0 d x < a* 7 

@::A (4 = ( P I 3  (4, a* d x d b* 7 

A * ?  b* < x d 17 

where a,, b,, 0 $ a,  < b, d 1, are the unique solutions of the equations 

@!!A (4 = ad:A (a) 7 @::A (b) = (b  - 1) (P8 (b) 3 

respectiuely. 

3. MAIN RESULTS 

Applying Holder's inequality to (6) we obtain 

d l l ~ - l - ~ l l p l l s ~ ~ i - ~ l l q  = EI:l,p(c)gp, 

say, where c ER is an arbitrary constant. Similarly, by (7), EAkti 2 -3I;Tb,, (c) a,, 

where B$l,p (c) = I[-:),- cllq7 which together with (1 1) implies 
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with B$tk,P = infcER @,fk,p(~) and 33,p = infc,,~i~k,p(c). Therefore it suffices to 
specify values of c which minimize BSifk,, (c) and @zl,,(c). We should also find 
distributions for which the bounds are attained. 

In subsequent theorems we analyze the cases 1 < p < a, p = 1, and 
p = a. Since the shape of the projection &,k, given in Lemma 7, is the same as 
the shape of the projection obtained in [4] or [10], the proofs in these cases are 
similar to those in cited papers. 

In the case 1 < p < oo the result is as follows. 

THEOREM 1. Fix  1 < p < m and let q = p / (p -  1). For k 2 1, n 2 1, 
7 .  

.. 
h ~ ( 0 ,  I), .. . 

L 

with c ,  = gjth(x,), where x, is the unique solution of the equation 

8* 

= J' (sitk(u) - gitk (XI)'-' du + (1 - 8 3  (g!!! (8.1 -g!!!, I x ) ) ' ~  
X 

The bound (13) is attained 

(15) F (x) = 
giirk GO*) - c* 

The statements for B;''L,, are of the same form as (13), (14) and (15)  with Bjtb,,, 
gfL, a,, B* and c ,  replaced with Biti,p, -g$,, u*,- P* and c*, respectively. 

Proof .  Note that the value of c, that minimizes the norm llaff3,-cllq has 
to be of the form c,  = g::), (x) for some x E [a* ,  P*] .  Therefore we consider the 
function 
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and we minimize it with respect to X E  [a,, &I. Differentiating the last equa- 
tion we obtain D' (x) = q (gfJ)' (x) (Dl (x) - D z  (x)), where Dl ( x )  and D, ( x )  stand 
for the left-hand and right-hand sides of (141, respectively. Note that q > 0, 
(gL:jJ1(x) > 0 for u+ < x < /3* and Dl (a,) = D2 (p,) = 0. Moreover, 

x 

+ j (gclro-a (~1)~-5~uj 2 
=* 

and sinil?rlfl);(x) b 0. This implies that Dl increases from 0 to D ,  (P,) > 0 
and D2 decreases from D2 (a*) > 0 to 0. Therefore there exists x, which is the 
unique solution of the equation Dl (x) = DZ (XI or equivalently (14). Moreover, 
D' changes sign at x ,  from negative to positive, which implies that x, mini- 
mizes D on [a,, f i * ] .  

The equality in (12) is attained and the moment conditions 

are fulfilled if ~ ; - l  satisfies (cf. [12], p. 160) 

Equivalently, 

which gives (15). Since the projections &tk and are of similar form, 
the proofs of the results for the lower bound are exactly the same as above 
with replacements as in the statement of the theorem. This completes the 
proof. - 

Remark 2. In subsequent results we give precise expressions for 
upper bounds only. The lower bounds may be treated as in the case 1 < 
p < 00. 

For p = q = 2, solving (14) we obtain c, = 0, which implies the following 
corollary. 
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This bound is achieved if 

- -. 

In-the case p = 1 we have the following theorem. 

THE~REM 2. Suppose that a, and fl ,  are as in Lemma 7. For k 3 1, n 2 1, 
h ~ ( 0 .  1) 

(161 R:f,, = $ (&!k (8d- gkfl (a*)). 
The bound (16) is attained for the distribution concentrated at the. points 
p - a1/(2a,), p and p + c1/2(l - P,) with probabilities a,, 8, - a, and 1 -/I,, 
respectively. 

Pro  o f. As in the case p > 1,  we start with determining 'the value of 
c ,  which minimizes II&fk-cllm. We have 

inf 1 - ell = inf sup (u) - cl 
CER o z R O < u < l  

which is attained for c = 4 (gi!k (a,) + gLtk (8,)). 
The bound (16) is attained if F-I - p is constant on [0, a,) and ( p , ,  11 (cf. 

Lemma 1) and is equal to 0 on (a,, fi,) (by Holder's inequality). Therefore, 

A, O < x < a , ,  

0 ,  a, < x < b*, 
By fl* < x  < 1, - 

and the moment conditions ( F - I  (u)-p)du = 0 and J: IF-' (u)-pl du = a ,  
imply A = -a1/(2a,) and B = 1/2(1-8,). 

When p = m, we obtain the following statement. 

THEOREM 3. Suppose that a, and /?, are as in Lemma 7 ,  P is a distribution 
function concentrated on [p  - a,, p + a,] and k 2 1, n 2 1, h ~ ( 0 ,  1). If a* 2 3, 
then BllfL,m = -gfk(a*) and the bound is attained for the distribution concen- 
trated at the points p -0,. (1 - a,)/a, and p +a, with probabilities a, and 1 -a,, 
respectively. If P, < 3, then Bit),,, = git),(jl,) and the distribution which attains 
the bound is concentrated at the points p- a ,  and p+ am . (1 -P,)/P, with 
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probabilities p8, and 1 - p,, respectively. Finally, if a, < $ < /I,, then BfL,, = 

-2G;3,(%) and the bound is achieved fir the distribution concentrated at the 
points p-cr, and pta,, each with probability 4. 

Proof .  Again, first we determine c, = &(x,), for some x ,~[a , ,  &.I, 
which minimizes D ( x )  = Il~n~~-g~~k(x)C)II,. Using (9) and (20) we see that D 
may be written as D (x) = (2x - 1) gitk (x) -  2GJ3 (x) with derivative D' (x)  = 
(2x- 1) @itk)' (x). Moreover, B7!3,, is attained if F p l  (u) - p = 8 ,  (&fEfA (u)- c) 
(H6Ider's inequality) as we11 as F - l - p  is constant on each of the.interva1.s 
where &:, # &i. -- - 

Now,, if a, 3 3, then D' (x) > 0 in [a,, P, ] ,  and therefore c, = gitk {u,), 
which implies = D(a,) = -gitk(cl,). The bound is attained if 

- - ) a  0 < x < a,, ~ - l ( u ) - ~  = 
a, < x < I, 

which easily implies the statement of the theorem for a, 3 i. Similar argu- 
ments lead to the conclusions in the case j3, $ $. If a, < f < 8,: then D' {x) has 
a unique zero at x = + and D changes sign at f from negative to positive. 
Therefore BitL,m = D (3) = -2~fEfA ($1 and the remaining conclusions of the 
theorem follow. rn 

To conclude our discussion we state without proof a general result on 
bounds for expectations of increments of record values. The proof of this result 
may be established similarly to the proofs of Theorems 1, 2 and 3 of 151. The 
distributions for which the bounds are attained are also of the same form as in 
151 with obvious modifications, so we do not specify them here. 

THEOREM 4. Let F be an arbitrary continuous distribution function with 
Pnite mean p and pth central absolute moment D~ for some 1 < p g co and let 
a,, b, be as in Lemma 8. FOP' k > 1, t 2 1  and h > 0 

where - 

(a) if 1 < p < a, then CiI;I,, = Il@iy - c,llg with c, = cpli;l(y,) and y, E 

(a,, b,) being the unique solution to (14) in which g$&, a,  and ~9, are replaced by 
q~jfj, a, and b,, respectively; 

(b) if p = 1, then Cl!2,1 = 2 (cp!!i Ib*) - qlfL(a*)); 
(c) if p = a, then 

- r a *  SOP' a* 2 3, 

- 2@1!2(+) for a, < 3 < b,, 

l * for b* 4 +. 
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Remark 3. For t = m ~ l V  and h = n - m ~ i V  we obtain results of [ S ] ,  
and if t =  EN and h = 1, we obtain results of [lo]. 

4. NUMERICAL EXAMPLES 

Our results admit direct numerical implementation. In Tables 1, 2 and 3 
we give values of upper and lower bounds for k = 3, n = 4 and h = 0.1 . . . 0.9 
for three most popular scale units, i,e. p = 1, p = 2 and p = CQ, respectively. 

- T A ~ E  1. Numerical values of -BCL, and Ck3ih .h , l  - 

ZJ 

TABLE 2. Numerical values of -321, and Cis!,, 

Ck3L3Lk.h,2 

4.1 
4.2 
4.3 
4.4 
4.5 
4.6 
4.7 
4.8 
4.9 

TABLE 3. Numerical values of - B!!k 

- B f i , ,  
-0.0063 
-0.0113 
-0.0148 
-0.0169 
-0.0176 
-0.0169 
-0.0148 
-0.0113 
-0.0063 

P 2 l . Z  

0.0076 
0.0134 
0.0174 
0.0198 
0.0204 
0.0194 
0.0169 
0.0127 
0.0071 
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These values are typical in the sense that for other values of n and k the 
expected error committed by replacing with (1 - { t ) )  I;$' + t@f! rnea- 
sured in gP units, is at most a few percent. Therefore, the approximation of 
fractional record values by ordinary record values is very close. Moreover, for 
comparison the table contains the values of C$:b,P and Ci31 These numbers 
are the bounds for E (Plyh - Tik1) and E (Yik) - Y ~ Y  h), respectively. 
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