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Abstract. A concept 01 the probability of failure is introduced. 
Some popular methods of exact computation of ruin probability are 
adopted to compute failure probability. Based on the f o d a  present- 
ed in [5] a generalization of a ruin probability algorithm is proposed 
that can also be used lor failure probability. The algorithm's com- 
putational complexity is studied and it is proved to be more effective 
for failure probability than for ruin probability. Finally, some numeri- 
cal examples for failure probability computations are given. 
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1. INTRODUCTION 

Let us consider the standard risk process 
Nt 

(1) U ( t )  = u+ct- C X i ,  
i =  1 

where u is the initial capital of an insurance company, ct represents the pre- 
mium income, and N ,  is a Poisson random variable with mean tA. Let N,,  XI,  
X,, . .. be independent and XI,  X,, .. . be identically distributed positive 
insurance claims. u is the initial capital and c is the income rate. The sum 
CY:,X, will be further denoted by St.  

One of the fundamental problems in both theoretical and practical 
approaches in actuarial literature (e.g. [2], [3]) is the problem of the time of 
ruin of the company whose capital is described by the risk process. Let the time 
of ruin be denoted by 

infit: t  > 0 A U ( t )  < 0) if the ruin occurs, 
+a0 otherwise. 

Let us consider ruin probability on the finite time horizon [0, TI, i.e. 

$(% T )  = P(R < T ) .  
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Although the ruin probability problem plays a central role in insurance 
mathematics, another problem can be of equal importance for an insurance 
company. The company usually wishes not only to survive the next year, but 
aIso expects a reasonable rate of return. Let us introduce the probability of 
failure. 

DEFINITION. For 0 < w the probability of failure in time T is determined by 

For convenjence we will denote the probability of non-failure by 
-d 

The reason why this problem is worth considering can be illustrated by 
a question asked by the investor with initial capital u: what is the probability 
that the m m p w y  will not go bankrupt and will bring interest not smaller than the 
risk-free financial instruments during time T ?  This probability can be mathe- 
matically expressed as 1 - @ (u, T, (1 + ilT u), where i is the risk-free interest rate. 
Figure 1 illustrates the investor's dilemma. 

The probability of failure can be also viewed as a natural generalization of 
the probability of ruin in finite time while 

Note that - unlike ruin probability - the concept of failure probability 
makes sense only in the finite time case. 

In this paper, we will consider the discrete claim distribution, i.e. 
P (X E N )  = 1. Every continuous claim distribution with probability density 
function p (x) can be approximated by a discrete probability function P (x), so 

FIGURE 1. None of the above 
realizations of the risk process 
causes a ruin, however one of 
them causes the failure for 

w = 27 (or i = 1.7). 
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that it is not a strong limitation. One way to do this is to put 
P (X = n) = ci ' p (u) du for n e N, but there are many other approximation 
possibilities of course. For convenience we will also assume that u + cT E N. 

The remainder of this paper is organized as follows: in Section 2, generali- 
zations of two ruin probability algorithms for discrete claims are presented. 
These generalizations allow to calculate failure probabilities. A brief study of 
computational complexity of one of them is provided. In Section 3, a similar 
generalization is proposed for the discrete time model. Finally, Section 4 con- 
tains two numerical examples of the application of the probability of failure. 

-d 

. - 

2. CONTINUOUS TTME MODELS 

2.1. Fdure probability based on conditional probabilities. An important 
approach to ruin probability was presented by Ignatov and Kaishev in [ S ] .  Let 
x = ( x l ,  x2, . . .) be subsequent discrete claims. Let the function bi ( c l ,  . . . , ci) be 
defined as follows: bo = 1, bl = cl and 

c f c f - l  ,-I-" 
-- . . . 

i !  (i- I)! (i-2)! I - 
Equation (33) from [5] states that if the vector of claims 3 = (xi) i  is given, 

then the non-ruin probability is 

where 

and kji: denotes a value such that for n = cT + u  + 1 

xl + .. . +xknPl  < n- 1 < x ,  + . . . +xk,. 
The non-conditional ruin probability can be now obtained as a sum over 

all possible claims' vectors, i.e. 

6 - PAMS 25.2 
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Remark. In the recursive calculation of the K,  only the determinant of 
the largest matrix, i.e. B,, = b k Z v l ,  is critical, as the otber determinants are 
side effects of the recursive calculation of B,,,. 

The following claim shows how the Ignatov-Kaishev method can be gene- 
ralized in order to be used to calculate the failure probability. 

CLAIM 2.1. Let n' = cT + u + 1 - w and let k& denote a value such that 

and let KZ be defined ,like Kjt  but with k;, replaced by k f .  Then the probability of 
non$diZvre us defined in (2) can be expressed as 

Proof.  Let the claims = 3 be given. Let t, denote the moment when 
the first claim occurs and zi be the waiting time between the ( i -  1)-st and i-th 
claim for i > 1. Then the following holds: 

Since the equality 

was proved in [5] without any specific assumptions about k, exactly the same 
procedure can be used to prove the claim where k is replaced by kZ. H 

Now we obtain 

COROLLARY 2.2. The result of Ignatov and Kaishev can be generalized to 
-deliver the probability of non#ailure: 

The problem with the above is that it contains an infinite sum. Due to this 
sum, the equality cannot be applied in a numerical algorithm. Therefore, a fi- 
nite equivalent of formula (4) is needed. It is provided by the following 

THEOREM 2.3. Let n' = cT +er + 1 - w. Furthermore, let the singleton Cy = 

((n', nrY . . .)} contain an infinite sequence and for rn > 1 let Cz be a set of 
sequences such that for each element XE C$ the following holds: 

(i) for all i, xi€{17 2,  ...}; 
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(ii) zy=-: xi < n' - 1 ; 
(iii) for all i 2 rn, xi  = n'. 

Then 

Proof.  Let kiZ be defined as in Claim 2.1 and let Di be a set such that 
3 E Di Fk = i. Since 1 < k' (x) < n', it is obvious that . . 

x6(u, T, w 1 X1 = X I ,  ..., Xill = x i - , ,X i  = n', Xi+l  = n', ...), 

If two different vectors 2 and are members of Di and xj = yj for j < i, then 

Hence 

xG(u, T, w I XI = xl ,  ..., Xi-, = xi-1, Xi = n', Xi+l = n', ...) 

Now, applying Claim 2.1, we have 

2.2. Computational complexity of the Ignatov-Kaishev method. Since the 
infinite sum (4) was reduced to a finite sum in (9, this formula can be now used 
in practical failure probability applications. Now, it would be interesting to 
determine the numerical complexity of calculating (5). Because the determina- 
tion of the sum KE for each claim vector is the critical numerical problem, 
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we will consider the computational complexity of the algorithm in terms of the 
required number of computations of Kk. 

THEOREM 2.4. The computational complexity of the naive algorithm for 
determining 1 - $ (u, T, lu) is 0 (2"'), where n' = u + cT + 1 - w. 

Proof .  Let us first consider # C:' - the size of the set C;'. We know that 
# CT' equals the number of all possible ways of packing n' undistinguishable 
balls into (i- 1)+ 1 = i distinguishable boxes (the extra box is added to allow 
the i - 1 'real' boxes to contain less than n balls) in such a way that each of the 
i - 1 boxes cpntains at least one ball. This is equal to the number of possibilities 
of n' -(i- 1) balls into i boxes, i.e. 

We are now interested in 

The above equals the number of all possible proper subsets of a set con- 
sisting of n' elements. Hence 

It  is clearly seen that the parameter n'-1, the maximal allowed total 
claim, plays a critical role in the efficiency of the algorithm. In case of the ruin 
probability n'- 1 is chosen largest possible, namely n'- 1 = ea+c?: Hence the 
complexity of 0 (2"') for this algorithm is not satisfying in case of ruin proba- 
bility. However, it is clear that we can use the same algorithm in a far more 
effective way if we are interested in computing failure probability instead of 
ruin probability. 

2.3. Failure probability based on Appel polynomials. In [6] Lefevre and 
Picard solved the classical ruin problem using the generalized Appel polyno- 
'inials. For the sake of simplicity we will assume that 1 = 1. Let the auxiliary 
polynomial en(x) be defined as 

I1 if n = 0 ,  

The generalized Appel polynomial can be now defined as 
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Then, according to [el, the probability of non-ruin in the finite time T can be 
expressed as 

where v. = (n - u)/c. Namely, 

Again, we can see that this non-ruin probability construction can be gene- 
ralized !o provide the Frobability of non-failure in a very intuitive way. 

CLAIM 2.5. Nola-failure probability can be expressed using the generalized 
AppeE polynomiab by 

Pro of.  The equality is a simple consequence of (6). w 

The problem with this elegant result is that the Appel polynomials provide 
numerical complexity, and it is not a trivial task to use them efficiently. We will 
not study the complexity of this approach here. Some ideas of how the Appel 
polynomials can be handled numerically and effectively can be found in [I]. 

3. FAILURE PROBABILITY IN DISCRETE TIME 

In this section we will consider a discrete time model, e.g. t = 1, 2,  . . ., T. 
Without loss of generality we assume that the premium revenue per time unit 
(say a year) is one. In this model, the ruin may occur only at the beginning of 
a year, i.e. for t = 1, 2 ,  . . ., T. The claims are i.i.d. and the number of claims is 
independent on their sizes as in the previous model. Let be the aggregated 
claim in the i-th year. x's are also i.i.d. and we denote the aggregate probability 
function by f (x) = P (Y, = x). 

The model presented in this section is a modification of the one proposed 
by De Vylder and Goovaerts in [7] and recalled by Dickson in [4]. The failure 
in one step is simply expressed as: 

If we assume that the failure occurs, then either the ruin occurs in the first 
step or the ruin does not occur in the first step, but the failure occurs during the 
next T- 1 steps. This can be expressed as the recursive equation: 
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To improve the numerical efficiency of this recursive algorithm, a trun- 
cation procedure similar to the one introduced in 171 can be used. The idea is 
to use a function f a (x) instead of the original f (x). Let E > 0 be s r n d  and k be 
the largest natural number such that d=, f (x) < 1 - 8 .  We have 

if x < k ,  
otherwise. 

Let now @(u, T, w) denote the modified failure probability calculated 
recursively using the modified function f "(x as follows: 

. - 
( l w )  if u b k ,  

otherwise 
and 

u+ 1 

(7) 9"(u, T, w) = P(u, 1,O)f 1 f u ) $ E ( ~ + l - j ,  T - 1 ,  W )  
j= 0 

This improvement is justified by the following 

THEOREM 3.1. If k > T + u, then 

P r o  of. The first inequality is obvious. Let UE (t) denote the modified risk 
process which is a copy of the original process but with the only difference that 
if a claim of size larger than k happens in the U(t) ,  then a claim of size 
oo happens in the UE(t). While the aggregated claims are independent in each 
time unit, the probability that U (t)  = UE(t)  equals (1 - E ) ~ .  We have 

The above inequality is clear for T = 0. Assuming that it is true for let us 
prove it for T + 1 : 

2 1 - T E - E  = 1 - ( ? " + I ) & .  
- 

Hence, the probability that U( t )  > U y t )  does not exceed TE.  Assuming that the 
failure happened each time U ( t )  > UE((t), the probability of failure cannot ex- 
ceed P ( u ,  t ,  ~ ) + T E .  H 

4. NUMERICAL EXAMPLES 

We present numerical examples for the calculation of the failure probabili- 
ties in the discrete time model from the previous section. We choose one 
heavy-tailed truncated Pareto distribution and one light-tailed truncated 
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exponential distribution as single claim distributions. The same claim distribu- 
tions were considered in [4]. 

The computations were performed using the recursive algorithm expressed 
by formula (7). They were performed for different initial capitals ps and different 
final capitals w. The results are presented as functions depending on w. The 
time horizon for all calculations was set to 10. Figure 2 presents the failure 
probabilities for the risk processes and the time required to compute them for 
different initial and final capitals. It is not surprising that the failure probabili- 
ty grows with w and falls with the initial capital u and that for a small initial 
capital and-large w the-failure is sure. -. ~ 

More interesting is the behavior of the CPU time required to compute 
probability as a function of w. As could have been expected, the CPU time falls 

0 5 10 15 
final capital w 

(a) failure probability, Pareto claim 

- 
0 5 I0 15 

final capital w 
(c) CPU time, Pareto claim 

0 
0 5 10 15 

final capital w 
(b) failure probability, exponential claim 

0 5 10 15 

final capital w 
(d) CPU time, exponential claim 

FIGURE 2. Failure probabilities and CPU computation times for the risk processes starting from 
the initial capital of one, three, five and seven, respectively (from top to bottom in the upper panel 
and from bottom to top in the lower panel). The left panel was obtained for the Pareto claim 

distribution, the right panel - for exponential claim distribution. 
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rapidly with w. In fact, the slope is largest for large initial capital. The empirical 
results show that the discrete time failure probability is computationally less 
expensive than the ruin probability. These results accord with analogous result 
obtained in Theorem 2.4 for continuous time. This can be a strong motivation 
for using failure probability instead of pure ruin probabilities in some practical 
applications. 

5. CONCLUSION 

- The faiiure probability problem is a natural generalization-of the ruin 
probabiiity in a finite time horizon. In many practical cases it can be even more 
important to know the failure probability than just to be' able to determine 
only ruin probability. 

Many popular methods of solving the ruin probability problem can be 
adopted to solve the failure probability problem as well. Moreover, in many 
cases the modified methods have better computational complexity and are 
less time-consuming. The above facts confirm that failure probability is an 
interesting and valid subject of study. 
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