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1. MTRODUCTION 

One of the most celebrated breakthroughs in econometric modelling 
methods was the conception of Autoregressive Conditionally Heteroscedastic 
(ARCH) time series by Engle (1982) and more general GARCH by BoIIerslev 
(1986). Nowadays, econometrics and finance are still the most relevant fields of 
practical research standing behind this theory. In contrast to classical ARMA 
models, these nonlinear ones adopt a time-changing conditional variance. 

Since Bollerslev (1986), a large number of papers concerning the condition- 
al Gaussian GARCH series has been published. However, the normality as- 
sumption was found incompatible with real data. Vast empirical evidence (see 
e.g. Diebold (1988)) against conditional normality revealed the necessity of 
considering other distributions. Observed excessive kurtosis, heavier tails of the 
rescaled residuals were the major arguments justifying the usage of t-distribu- 
tions in econometric modelling of innovations (noise) in GARCH time series, 
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as shown in Bollerslev (1987) and Baillie and Bollerslev (1989). Hence, testing 
assumptions for the noise distribution has become one of the important issues 
in fitting the proper model to the data at hand. Several solutions to this 
problem have been proposed in the literature, some of them extending classical 
results for i.i.d. observations. Chen and Kuan (2002) derive a modification of 
the original JarqueBera (J-B) normality test and apply it in GARCH frame- 
work. Third and fourth sample moments play an essential role in their test 
statistic. Monte Carlo simulations proved good performance in detecting some 
departures from normality. Fiorentini et al. (2004), in turn, conclude that 
a closely related Kiefer-Salmon normality test slightly outperforms the J-B test 
when applied to time-varying variance models. A different approach was pro- 
posed in Bai (2003). With the aid of Khmaladze martingale transformation he 
elaborated a flexible asymptotically distribution free Kolmogorov-type good- 
ness d fit test. That test can be applied in a general context of dynamic models. 
Chen (2002) proposed a test based on the characteristic function. However, 
a choice of weight functions appearing in integral transformations essentially 
influences the sensitivity of the test. 

The aim of this paper is to propose a data-driven test of fit for the noise 
distribution in GARCH(1,l) model. Although this model is the simplest mem- 
ber of the GARCH(p,q) class, it retains well heteroscedastic properties and 
exhibits an exponentially vanishing lag structure, absent in ARCH. Our con- 
struction matches some score tests and some selection rule. Note also that 
score tests are often called smooth tests. 

The concept of smooth goodness of fit tests dates back to 1937, when 
Neyman introduced a locally optimal test intended to detect departures from 
the nu11 distribution in many directions equally well. In  contrast, classical 
Kolmogorov-Smirnov or Crarnkr-von Mises tests downweight successive direc- 
tions in some sense, and therefore are able to detect very few deviations from 
the null distributions, only. The numerical evidence and some discussion of this 
fact can be found e.g. in Milbrodt and Strasser (1990) and Inglot and Ledwina 
-(2001). The idea adopted by Neyman (1937) was to embed the null density into 
an exponential family and then consider the equivalent parametric testing. The 
choice of a dimension of this exponential family- has substantial influence on 
'-the behaviour of the resulting test. This was shown e.g. in Inglot, Kallenberg 
and Ledwina (1994) and in Kallenberg and Ledwina (1995). To overcome this 
problem Ledwina (1994) proposed a data-driven smooth test of fit, where the 
dimension of the exponential family is estimated from the data by Schwarz's 
BIC selection rule. Inglot et al. (1997) showed that this construction can be 
adopted to testing composite hypotheses, where the null density depends on 
some nuisance parameters. Extensive simulations performed in Kallenberg and 
Ledwina (1997a) confirmed that this data-driven smooth test of fit compares 
very well even to competitors like ShapirwWilk normality test. The ability to 
detect a wide variety of deviations from the null distribution accounts for an 
omnibus character of the test. 



Data-driven score test 333 

Recently, the problem of smooth testing was tackled in the context of 
dependent random variables. Ducharme and Lafaye de Micheaux (2004) de- 
rived a data-driven goodness of fit test for normality of innovations in causal, 
invertible ARMA(p,q) models. The numerical simulations performed there 
show that the test is more powerful than the classical Anderson-Darling or J-B 
tests. Therefore, it seems promising to make a step forward by considering 
a data-driven smooth test for noise distribution in nonlinear GARCH time 
series. Simulation study presented herein proves that such a test is indeed 
competitive to the ones discussed above. 

The paper is organized as follows. In Section 2 we define GARCH(1,l) 
model and f~rmulate our assumptions. In Section 3 we derive efficient score 
vector and establish its asymptotic behaviour; then we define a score-based 
selection rule and corresponding data-driven statistic and, finally, propose 
a test statistic. In Section 4 we specify estimators of nuisance parameters and 
other quantities appearing in our test statistic. We also present a simulation 
study in which we compare our test to J-B test for normality as well as to the 
test proposed in Bai (2003). Sections 5 and 6 contain proofs of main and 
auxiliary results. In the Appendix we derive some properties of GARCH(1,l) 
series needed in proofs in Sections 5 and 6. 

2 THE MODEL AND BASIC ASSUMPTIONS 

Throughout the paper we shall consider the GARCH(1,I) model pro- 
posed by Bollerslev (1986) as a generalization of the ARCH family introduced 
in Engle (1982). The GARCH(1,l) time series {X,, t € Z )  (sometimes called 
strong-GARCH, as in GouriCroux (1997)), defined on a space (52, 9, P), is given 
by the following relations: 

- 

where Z is the set of integers, whiIe {E,, t €2)  is a sequence of i.i.d, random 
variables having a density f (x) with respect to the Lebesgue measure and 
Ect = 0, Var = 1. SO, the model we consider is indexed by 9 = (a,, a, P) from 
O = (9 =(ao, a ,  P): a,, a, P>O, a + P <  1). The assumption O <  a + p <  1 
ensures strict stationarity and ergodicity of the series {X,). These properties of 
GARCH time series were intensively investigated by many authors (e.g. Engle 
(19821, MilhQj (1985) and Bollerslev (1986)). Nelson (1990) and Bougerol and 
Picard (1992) formulated necessary and sufficient conditions for ergodicity and 
strict stationarity. For further references and detailed overview of results on 
this subject we send the reader to Li et al. (2002). 

Denote by & = a ( E , ,  E , - ~ ,  . . .), t €2, the a-field of the process his- 
tory up to time t. Clearly, for any t, the conditional variance hi is %-l-mea- 
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surable. For each t E Z put 

(2.2) e,Z = U E ; ~  +fin 
The formula (2.1) yields 

Successively iterating (2.3) we obtain after n steps 

Passing n to,infinity-we get, due to the model assumption a + fl < 1, an explicit 
almost sure (and L,) series representation 

It is a special case of a matrix formula for h, in the general GARCH(p,q) model 
derived by Li and Ling (1997). They proved that the representation is unique, 
&-adaptive, strictly stationary and ergodic. Note that from (2.1) and (2.4) it is 
easily seen that a, is a quadratic scale coefficient, i.e. rnultiplymg X, by 4, 
c > 0, is equivalent to replacing a. with em,. The conditional variance h, can 
also be expressed in another form more useful for our purposes. NameIy, 
iterating the second formula in (2.1) we get for t > 1 

The equality (2.5) describes the conditional variance la, in terms of the observed 
time series {X,, 1 < t < a). 

Now, we shall introduce our main assumptions on the model given by 
(2.1). Whenever it does not lead to ambiguity, to omit the time subscript, we 
shall denote by E an r.v. distributed as E, .  Below lA denotes the indicator of 
a set A. The assumptions (Al)-(A3), listed below, will be valid throughout the 
rest of the paper. 

(Al)  The noise density f is absolutely continuous on the real line and has 
finite Fisher information 

f'(4 I , = E  - (f' (vN2 
(f ( E l )  = { , ! Y O  

d y  € co. 

(A2) The function 

is not an almost everywhere constant function. 

(A31 EIS(E)I~ 
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Remark  2.1. The assumption (A2) will be used to prove linear indepen- 
dence of components of the score vector (cf. Proposition 3.3). It is mild and 
holds for standard densities. An example, when (A2) is not satisfied, is as 
follows. Take for some C > 1 and yo > 0 

(yl = lrl l ~ g - s o - ~  for IYI E [ lo .  Cl.01, 
otherwise. 

Then it is immediately seen that [Iy) = 0 almost everywhere. The same holds 
for convex combinations of such functions. 

-- - 
Rem& 2.2. The assumption (A3) will be used in the proof of Theo- 

rem 3.6 to show that a Lyapunov-type condition for normalized efficient score 
vector holds true. This assumption is a technical one and could be weakened. 
Since it is satisfied in most cases important for applications, we decided, for the 
sake of simplicity, to impose this stronger form. 

I 
! Observe that EC@) = 0 and put 

3. CONSTRUCTION OF THE TEST STATISTIC 

Suppose we observe a stochastic process (X,, ~ E Z )  obeying the mod- 
el (2.1). Given observations XI,  . . ., X, of (X,}, we would like to verify the null 
hypothesis asserting 

H,:  E;S in (2.1) have the density f ,  8~ 8, 

where f (y) is a completely specified density function (with respect to the Lebes- 
gue measure) on the real line. The GARCH(1,l) coefficient 9 = (a,, a,  8) E O of 
our model constitutes the 3-dimensional nuisance parameter in this testing 
problem. 

At the first step, applying the Neyman idea, we fix k, k 2 1, and embed 
the null density f into an auxiliary k-dimensional exponential family of the 
form 

where F (y) denotes the cdf of f (y), @ ( y )  = [@, (y), . . ., cPk (y ) lT  is a vector of 
bounded orthonormal functions in L, [0, 11, 13 E Rk, and Ck (8) is the normal- 
izing constant. All vectors appearing throughout the paper are column ones. 
Assuming that the unknown noise density belongs to this family, verifying 
Ho is equivalent to testing 
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For a- fixed k 2 1 testing such a hypothesis can be performed by the efficient 
score test. Vast literature on this subject is available, see e.g. Cox and Hinkley 
(19741, Thomas and Pierce (1979) and Inglot et al. (1997). Note that related 
terminology is rich. Efficient score tests are called also score, smooth or efficient 
tests. Following Cox and Hinkley (1974), we shall use below the name score 
test. 

Finally, at the second step, we adopt the idea proposed by Ledwina (1994) 
and extended to the case when nuisance parameters are present in Inglot et al. 
(1 997) to choose the dimension k using the data at hand. Such a strategy results 
in a datadriven score statistic. 

' In consecutive subsections we shall follow the standard way (in i.i.d. case) 
of deriving efficient score vector and constructing score statistic. 

3.1. The =ore vector. From (2.1) we have X, = Jk, e, with h, given by (2.5). 
Therefore, one can express (cl, . . ., E,) in terms of@,, . .., X,) and h, .  To this 
end take h > 0, put , = q, (h, 9) = h and for t > 1 set 

where 9 = (a0, a, P)E@. Then, by (2.51, we have 

where 9 denotes an unknown true value of the nuisance parameter of our 
model. Consequently, 

From (3.1) we infer that the joint density of the vector (cl, . . ., E,) has the form 

Hence and from (3.3) we get, by standard calculations, the explicit formula for 
the-logarithm of conditional density of (X,, . . ., X,) given h, = h: 

n 

+ C log (q; lI2). 
t = l  

Later on (cf. (3.7) and Theorem 3.6) it will be shown that the influence of the 
unknown value of h is asymptotically negligible due to the exponential decay 
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of the multiplier p-2 standing at it. So, we do not need to consider h as an 
additional nuisance parameter. In some papers it is suggested that h should be 
the stationary solution of Nelson (1990) (see Lumsdaine (199611, whereas e.g. 
Drost and Klaassen (1997) consider it as a certain "starting value". 

Now, we define components of the score vector 1 as derivatives of 
&(XI, .. ., X,; 8 ,  9 1 hl = h) with respect to all parameters involved, calculated 
at the point (0, 9), i.e. under the null hypothesis. Namely, 

The first k components of 1 correspond to the parameter of interest 0 while the 
next three components concern the nuisance parameter 9. Set 

Routine calculations give 

and 

To formulate our basic results concerning the score vector I let us in- 
troduce some further notation. Observe that from (2.2) and (2.4) it follows that 
ht > ao/(l - j3) a.s. for every t E 2. For a future use set ao/(l -p) = KO. Here and 
in the sequel we shall denote by Ph the probability on the cr-field c(X,, X , ,  . . .) 
induced by the family of conditional densities of (XI, . .., X,) given hi = h, 
h > K*, under the null hypothesis. These densities have the form (cf. (3.4) with 
e = o) 

Accordingly, Eh will stand for expectation with respect to this probability. 
The following fact plays a crucial role in the proofs of properties of 1. 
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PROPOSI~ON 3.1. Suppose {X, ,  t E Z )  obeys the model (2.1). For any 
h > uo and n 2 1 the random variables 

E;'= X1Q11/2, $ = x ~ Q ~ ~ ~ ~ ,  ..., E,, = X X n ~ n 1 J 2  

are independent under Ph and have the same distribution us E,'s. 

The proof of Proposition 3.1 as well as the proofs of all other results of this 
section are given in Section 5. As a corollary of Proposition 3.1 we get square 
integrability of 1. Namely, we have 

PROPOSITION 3.2. Assume that (A3) is fi@IIed. Then for any 9 E O, any 
h > uo--and 'every a-2  1 Eh1(9;) = 0 and Eh111(9)112 < m hold true, where llsll 

denotes the Euclidean norm. 

An important property of the score vector E, needed to construct a score 
statistic, is nonsingularity of its covariance matrix. This is guaranteed by the 
following proposition. 

PROPOSITION 3.3. Suppose {X,, ~ E Z )  follows the model (2.1), and (A2) is 
satisfied. Then for any 9 ~ 0 ,  any h > u, and every n >, I the components of the 
score vector 1(9) given in (3.5H3.7) are linearly independent random variables. 

3.2. Efficient score vector and rdatd  resdts. Denote by B("'($) the covari- 
ance matrix of the normalized score vector n-lI2 I@), i.e. 

According to (3.5) divide ~ ( " ) ( 9 )  into four blocks putting 

Note that B[zJ (9.) is a 3 x 3 matrix of covariances of n-lI2 l,, BY; (9) = 

[BF] (9;)IT = n-I Eh (lo (9) lZ(9)) is a k x 3 matrix of mixed covariances while, by 
Proposition 3.1 and orthonormality of @is ,  BPI (9) = 1 is the k x k identity 
matrix. From Proposition 3.3 we infer that B("'(9) and Bpi (9.) are nonsingular 
for every n ,  9 E O, and h > K O .  

Recall that components of the efficient score -vector 1; (8) are defined to be 
.residuals of the orthogonal projections (in L2 (Ph) for our case) of components 
of the vector n-'I2 lo onto the subspace spanned by the components of n-'I2 I,. 
Consequently (cf., e.g., Cox and Hinkley (1974)), 

l,* (9) = n-'t2 (IB -@Ti (9) [B$'i (911 - ' I , ) .  

Thus we have got the following theorem. 

THEOREM 3.4. Suppose the observed time series ( X , )  obeys the model (2.1), 
and (AIj(A3) are satisfied. Let @(y) = tQ1 (y), . . ., sPk(y)lT be a vector of 
bounded orthonormal functions in L2 [0, I ] .  Then for any h > x0 = ol,/(1 - f i )  
the efficient score vector l,*($) for testing H$ has the form 
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where E;'s are defined in Proposition 3.1. Moreover, the covariance matrix of 
1; (8) under Ph is given by 

The formula (3.10) describing the efficient score vector reveals its martin- 
gale structure. Indeed, for t 2 1 let us write cr, = a (XI, . . ., X,), set Y,, = 

n - ' I 2  @ (F apd . 

the consecutive summands in (3.10). Clearly, for each t = 1, .. ., n, I.;, is a,- 
measurable. We have 

P ~ o ~ o s x n o ~  3.5. For any n 2 1 and h > ?co the sequence (Yln, . . ., Y,,) is 
a martingale diflerence array with respect to Isl, . . ., c,,} under Ph. 

We omit an elementary proof of Proposition 3.5. Let us put X ,  = 
(A(") (9))- "' T., t = 1 ,  . . ., n. Then 

n 

(3.13) C Xtm = (A!'") (9)) - l" 1: (9) 
t= 1 

is the standardized eficient score vector. The martingale structure of lf(9) 
allows us to apply the result of Kundu et al. (2000) to establish limit behaviour 
of (3.13). The main theorem of this paper is as follows. 

THEOREM 3.6. Suppose the observed time series (X,) obeys the model (2.1), 
and (AIHA3) are satisJied. Let @ ( y )  = [ G l ( y ) ,  ..., @,(y ) lT  be a vector of 
bounded orthonormal functions in L2 [0, 11. Then for any k 2 1 and almost 
every h > x0 = a,,/(l -P) (with respect to the Lebesgue measure) we have in Rk, 
under Ph, 

(3.14) (A(n) (3))- ' I 2  a (9) 4 N (0, I )  as n + m, 

where I is the k x k identity matrix. 

Theorem 3.6 is proved in Section 5. Now, for a given k 2 1, set 

where IIeII again denotes the Euclidean norm in Rk. From Theorem 3.6 we 
immediately get 

COROLLARY 3.7. Under the assumptions of Theorem 3.6 it follows that 

under Ph,  where X; is a chi-square random variable with k degrees of freedom. 
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3.3. Data-driven score statistic. Up to now we focused on the fixed dimen- 
sion k of exponential family built on the null distribution. As mentioned in the 
Introduction, the choice of k strongly influences the sensitivity of the corre- 
sponding score test. Therefore, following the construction proposed by Led- 
wina (1994) and developed in Kallenberg and Ledwina (1997a, b) we suggest 
the adaptive choice of the dimension k based on the data. Assume for a mo- 
ment that 9 is known and consider a score-based selection rule defined as 

for all j = I , " : . . ,  K). 

Here K < c~ is a fixed, but arbitrarily chosen, maximal dimension we allow 
while c is some positive constant controlling the magnitude of the penalty. 
Sl(9) is intended to simplify the original Schwarz BIC criterion. The choice - 
c = 1 corresponds to BIC penalty. We have 

In consequence, Corollary 3.7 implies 

This together with Corollary 3.7 determines the asymptotic behaviour of 
WSI(S) (8). 

COROLLARY 3.8. Under the assumptions of Theorem 3.6 it follows that 

under Ph.  

Obviously, the statistic Ws1(,,($), depending on the unknown nuisance 
parameter 9; cannot be directly used as a test statistic. A natural and standard 
solution is to insert into the two items (i.e. Wk(9) and Sl(9)) an estimate of 9. 
Below, we describe our implementation which patterns standard approach in 
the case of independent observations; cf. also Biihler and Puri (1966) and Inglot 
et al. (1997), Section 3. 

Suppose 8 = (diO, 6,  f l  is a square-root consistent estimator of 8 = 

(a,, a, 8) while and B$'& are consistent estimators of the matrices BpJ(9) 
and B$'l($) defined in (3.9). The consistency is required to hold under the null 
model, only. Put 
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Then the estimated efficient score vector takes the form 

and consequently we get the score statistic 

Now, (3.17) allows us to introduce the selection rule $ by 

for all j = 1, ..., K}. 

Finally, we propose mi($) as a data-driven score test statistic for test- 
ing H a .  

In the case of i.i.d. observations, the above assumptions on estimators 
along with a counterpart of (3.19) imply that data-driven score statistic tends, 
under the null hypothesis, to ;c! random variable. Such an asymptotic result 
rather shows disappearing influence of nuisance parameters upon the null dis- 
tribution than provides a way to calcdate critical values. The reason is the rate 
of convergence of the selection rule to the dimension 1 influences the correct 
critical values for moderate n. Typically, the asymptotic critical value strongly 
underestimates the actual ones. For more discussion and some approximation 
see Kallenberg and Ledwina (1997b). 

For dependent data the picture may be different as shown e.g, in Ignaccolo 
(2004). However, one may conjecture that W$ (9) shall asymptotically stabilize 
when n + m. Formal derivation of the asymptotic distribution of wi (3) needs 
some additional work and will be a subject of a future paper. Here, we restrict 
ourselves to showing empirical behaviour of the test based on ~ ~ ( 3 ) .  The 
simulation study presented in the next section nicely confirms our conjecture. 

4. SIMULATION STUDY 

. - -  - 
4.1. Specification of estimators and other quantities. In our implementation 

a Quasi Maximum Likelihood Estimator 9 (QMLE) of 9 constructed on the 
basis of Gaussian likelihood was used. It has been well established in the 
literature and popular in GARCH modelling. Weiss (1986) and Lee and Han- 
sen (1994) proved that this estimator is square-root consistent and asymp- 
totically normal if the noise distribution has finite fourth moment. Moreover, 
Ling and McAleer (2003) proved the consistency of QMLE under the second 
moment condition, only. Note that Drost and Klaassen (1997) proposed sernipa- 
rametric methods for efficient estimation of model parameters that allow for 
unknown form of a noise density. The widely accepted iterative BHHH algorithm 

10 - PAMS 25.2 
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(see Berndt et al. (1974)) was applied here to obtain 3. One drawback is that the 
BHHH algorithm encounters stability problems if the starting parameter is too 
distant from the true value, as was indicated in Mak et al. (1997). The mag- 
nitude of the effect was especially cumbersome when P > 0.8, i.e. when the true 
model is close to the nonstationary IGARCH(1,l) model. Such cases were 
discarded from our simulations so as not to disturb the stability of critical 
values. Anyway, most attention was paid to the case when a + P is larger than 
0.8, which accounts for longer (but still exponential) "memory" of the time 
series, observed in high-frequency financial data. For empirical contirmation of 
this phenomenon see e.g. papers by Mittnik et al. (1998) or Brooks et al. (2001). 

- Another crucial step was to estimate the covariance matrices 8rJ ($9) and 
~ $ 4  (3) appearing in Wk(8) (cf. (3.15) and (3.11)). To avoid estimating further 
unknown parameters we decided to use moment estimators appearing in (5.19) 
and (5.20) with estimated $ plugged into these formulae. Namely, we set . 

and 

where 

and J' is given by (2.6). Stationarity and ergodicity of the GARCH(1,I) process 
{X,), leading to (5.19) and (5.20) in Section 5, argue for the consistency of 
&"A and 394. We state the consistency of (4.1) and (4.2) in Lemma 5.4. 

From Theorem 3.6 it follows that unknown value of h has no influence 
upon the asymptotic behaviour of Ws provided h > K, = ao/(l -/3). Since we 
considered /3 < 0.8 and a, = 0.001, we chose a nonrandom fixed value h = 0.1 
which is considerably greater than actual KO in all presented cases. 
- As an orthonormal basis we took the cosine system @,(x) = f i  cos ( jnx) ,  
j =  1, 2, ..., on [0, I]. 

By taking various penalty coeEcients c ~ ( 0 ,  11 in (3.21), sensitivity of the 
score test can be regulated. For some evidence see Kallenberg and Ledwina 
(1997b). In general, too small c lowers the penalty impact and, in consequence, 
one loses some power for smooth deviations and gains some power for highly 
oscillating ones. Obviously, the choice of c considerably influences also the 
critical values. Passing c below 0.5 resulted in large critical values exceeding 10 
for c = 0.3. As there is no analytic answer which penalty coefficient to choose, 
we suggested searching for a reasonable computational compromise. Therefore 
we took c = 0.5 together with c = 1 as two competing penalty coefficients. 
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In our empirical study, the following two standardized null distributions 
were considered: 

0 normal with the density f (y) = (2x1- ' I2  exp (- y2/2), 
* Laplace with the density f ( y )  = 2- l t2  enp ( - f i  1 yl). 
Testing the conditional GARCH normality is highly desirable as this as- 

sumption has been constantly questioned since Diebold (1988) provided strang 
evidence on favour of heavier tails in the noise distribution. The standard 
Laplace distribution, in turn, allows for heavier tails and may serve as com- 
petitor to e.g. more complex t-distributions. 

Below,-we describe all remaining quantities and functions (depending on 
the null distribution) which appear in the explicit form of @@) in (3.20), (4.1) 
and (4.2). In the norm1 case we have 5 (y) = 1 - y2 and Jf = 2 while for the 
Laplace case i (y) = 1 -$ lyl and Jf = 1. For the cosine system the compo- 
nents of the vector A defined in (4.3) equal: A, = 0 for odd j's and 
d j  = - ~ ~ ~ ' 2 c o s ~ n u ) ( @ - 1 ( ~ ) ) 2 d u  for even j's for the n m a l  case, while 
A j  = 0 for odd j's and dl = fil;'' cos Unu) (log 2u)du for even j's for the 
Laplace case. Here @ denotes the standard normal distribution function. In our 
simulations the non-zero integrals were calculated numerically. 

42. Null Ibehaviwr of w;($). Table 1 contains simulated critical values at 
0.05 sigdicance level, determined separately for the normaE and Laplace cases. 
Corresponding average critical values are presented in the last row. Our 

I 

choices /3 > a were motivated by empirical justification of Brooks et al. (2001), 
I since it is fl that governs the memory of the process by means of inclusion of 

the past conditional variances in h,. 
The influence of u and P on the critical value is highly limited. The maxi- 

mal oscillations around the average critical values do not exceed 4% of this 
average in each case. 

TABLE 1. Simulated critical values for W~ for normal and Laplace null hypotheses for various 
GARCH(1,I) parameters. Significance level 0.05, a, = 0.001, h = 0.1, K = 10, n = 500, M = 5000 

Monte Carlo runs 
I I I 

Average critical values 

I normal I Laplace 
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One may also ask about possible influence of the maximal dimension 
K upon the critical values. Earlier experiences with data-driven tests argue for 
stable behaviour of the critical values when K > 5 (cf. TabIe 1 in Kallenberg 
and Ledwina (1997b)). 

In Table 2 we show critical values for three various K in normal case for 
c = 0.5, four pairs of (a, j) and ct,, n and M as in Table 1. Indeed, the results 
presented in Table 2 confirm the expected stability of critical values. Observed 
small fluctuations are probably caused by poor stability of the estimator 8. 

In all cases the selection rule 9 chooses the dimension k = 1 at a stable 
frequency 88-90%.--This stands in accordance with (3.18). 

- In the context of financial time series, n = 500 observations correspond 
roughly to 2 years of daily quotations. Still, in empirical economics there is 
a vast research done with larger data sets. From this point of view it is reasona- 
ble to examine changes of critical values under varying n. Stabilization with 
a growing sample size is expected. This is confirmed by Table 3. As previously, 
we present here only the normal case, but the same behaviour was observed 
also for the Laplace case. To show the stability of the procedure, this time we 
took some different pairs of GARCH parameters. Even though the stabiliza- 
tion of critical values is not too fast, the oscillations essentially decrease with 
growing n. This justifies the use of average critical values for n 2 500, which we 
recommend for practical implementation. 

TABLE 2. Normal case. Simulated critic& val- TABLE 3. Normal case. Simulated critical val- 
ues of @* for various K. Significance level ues of W~ for various n. Significance level 0.05, 
0.05, a, = 0.001, h = 0.1, c = 0.5, n = 500, a. = 0.001, h = 0.1, K = 10, c = 0.5, M = 

A4 = 5000 Monte Carlo runs 5000 Monte Carlo runs 

. 4.3. Power behaviour and comparison of powers. In the power-behaviour 
study two competing tests were taken into account. The first one was proposed 
by Bai (2003) and is obtained by Khmaladze transformation of the empirical 
process and an application of Kolmogorov-Smirnov statistic. The second is the 
Jarque-Bera (J-B) normality test adopted for the GARCH case by Fiorentini 
et al. (2004). It is constructed on the basis of the third and fourth sample 
moments and provides an asymptotically chi-square distributed test statistic 
with 2 degrees of freedom under H , .  

For both null hypotheses we considered the following alternatives: 
the family of standardized Generalized Error Distributions (GED(v) for 

short) with v E (1, 2), see Remark 4.1 below; 
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* standardized t-Student distribution with 5 degrees of freedom, consid- 
ered also in Bai (2003) (t-Student(5) for short); 

standardized x2 distribution with 5 degrees of freedom CX2(5) for short); 
and, additionally, standard Laplace for the normal null hypothesis and vice 
versa. 

Re m a r k  4.1. Recall that Generalized Error Distribution (or Generalized 
Exponential Distribution, see Mittnik et al. (1998)) with parameter v is defined 
by the density 

-A 

-- . 

f I u ) = ~ v ~ ~ v ) [ ~ ( ~ / v ~ l - ~ e x ~ ( - ( ~ ( v ) I ~ l ) ~ ) ~  

where v > 0 and C (v) = Jr (3 /v )  [r (l/v)] -' while T ( p )  denotes the Euler 
gamma function. The standard normal distribution corresponds to the case 
v = 2 whereas v = 1 gives the standard Laplace distribution. By changing v in- 
side (1, 2) departures from our both null hypotheses can be modelled in a con- 
tinuous manner. 

In order to inspect in a continuous way the sensitivity of compared tests 
we considered the family of contaminated alternatives of the form 

where Q E [0, I]. 

As previously, f is the null density while f, denotes one of the alternative 
densities listed above. 

For the two competing tests, the corresponding critical values were cal- 
culated by M = 5000 Monte Carlo runs implementing appropriate algorithms 
evaluating the respective test statistics. We obtained the following critical val- 
ues a t  0.05 significance level for n = 500: 

normal case - CVB,, = 5.305 (asymptotic critical value 2.22) and 
C h - B  = 5.612 (asymptotic critical value 5.991); 

-Laplace case - CVBN = 2.580 (asymptotic critical value 2.22). - 

For our test (denoted by w ~ )  we used the average critical values from 
Table 1. 

The results shown in Tables 4 and 5 were calculated by A4 = 2000 Monte 
Carlo runs for the GARCH(1,l) model with a, = 0.001, a = 0.3, /I = 0.5 and 
with alternative densities given by (4.4). 

Comparing two first columns in Table 4 it can be observed that changing 
c below the value c = 1 can sometimes improve the power of wi e.g. for 
t-Student and chi-square distributions. Bai test scarcely manages to compete 
with W~ and J-B tests in the case of GED alternatives. On the other hand, 
wi competes well with J-B test and often outperforms it. 
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TABLE 4. Normal case. Empirical powers of ~ 3 ,  Bai and J-B tests. Significance level 0.05, 
a, = 0.001, h = 0.1, o: = 0.3, B = 0.5, K = 10, M = 2000 Monte Carlo runs 

As seen in Table 5, Bai test fails to detect departures from the non-Gaus- 
sian null distribution. In contrast, W~ retains its good performance against 
various types of alternatives, which confirms its omnibus character. For the 
Lapiace case the gain of the power when choosing c = 0.5 is more visible than 
in the normal case. 

Taking into account the above results we recommend our data-driven 
score test with c = 0.5 as a sensitive tool for testing the noise distribution in 
GARCH(1,l) model. 

Alternative density 
f i  

e 

Laplace 0.5 
0.8 

GED(1.25) 0.5 
.. 0.4 

. ~ ~ ~ ( 1 1 5 )  0.8 
1 .O 

t-Student(5) 0.8 
1.0 

x2(5) 0.4 
0.6 

TABLE 5. Laplace case. Empirical powers of wi and Bai tests. Significance 
level 0.05, a. = 0.001, h = 0.1, o: = 0.3, f l  = 0.5, K = 10, M = 2000 Monte 

Carlo runs 

Empirical powers (in %) 

mi % 
c = l  

BAI J-I3 
c = 0.5 

93 93 55 88 
100 100 80 95 
60 60 34 58 
97 98 55 95 
52 52 26 50 
69 72 32 65 
90 88 69 95 
98 98 80 100 
77 40 71 93 
99 84 90 100 

Alternative density 
f i  

e 

normal 0.5 
0.9 

GED(1.75) 0.5 
0.9 

GED(1.5) 0.8 
1.0 

t-Student(5) 0.8 
1.0 

x2(5) 0.4 
0.6 

Empirical powers (in %) 

wi wk 
c=O.5 . c = 1  

BAI 

75 66 10 
100 100 27 
66 5 1 8 

100 100 17 
73 7 1 9 
92 92 13 
47 44 8 
69 66 10 
81 61 5 

100 97 5 
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5. PROOFS 

Pamf of PropsiBioa 3.1. Observe that from the definition of q, given in 
(3.2) we obtain the recurrence formula 

Thus (XI, ..., Xn) = (.El&, ..., En,,&) can be explicitly expressed as 
a measurable function of (E;, . .., En). Hence and by the conditional density of 
(XI, ..., X,), given h1 = k, under the null hypothesis (see (3.8)) we see, 
by standa~d cdculations, that the joint density of El, . . ., E;, is simply 
f ( yl) . . : f This completes the proof. m 

Proof of Proposition 3.2. Introduce further notation putting 

By Proposition 3.1 and the square integrability of @is it follows that 
components of E,, given in (3.6), have b i t e  variances under P,. On the other 
hand, the assumption (A3) guarantees that ((9 has a finite second moment. As 
c(E;) is independent of Q; aQJa9, finiteness of the second moment of l g ,  given 
by (3.7), is implied by (5.3) of the following lemma. 

LEMMA 5.1. Let Q,, t = 2, .. ., n, be defined as in (3.7). Than for euery 
s = 0, 1, . . . , t -2  a d  t = 2, 3, . . . it follows that 

2 Xt-l-s 
- 
Et - s -1  1 

$ -2 6 - a.s. under Ph.  
Qt e l  . . e t 1  ap 

Moreooer, for every P 2 1 

- Lemma 5.1 can be proved in a similar way as (A.9) in the Appendix and 
goes along the lines of the proof of Lemma 3 in the Appendix in Lumsdaine 
(1996), so we omit it. Finally, the relation E, l(9) = 0 is a general-property of 
a score vector. rn 

Proof of Proposition 33. First we shall prove that the components of 
I ,  = dLJ8S; given by (3.7), are linearly independent random variables. On 
the contrary, suppose that there exist real numbers C,, Cz, C3 such that 
under Ph 
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Let us put 

Then transposing the last summand in (5.4) to the right-hand side we get 

Both the left-hand side and the second factor on the right-hand side are 
~~-~-rneasurable .  Since, by the assumption (A2), 5 (.En) is not a constant random 
variable,' it follows that there exists a measurable set A c R ,such that 

From (5.5) we infer that 

By Proposition 3.1 the event ([(&)E A} is independent of un-,, and hence 
independent of No. This implies 

Therefore, by (5.6), we get Ph(No)  = 0, and hence U, = 0 a.s., which reads as 

This implies C2 = 0 because E;T-l is a nonconstant random variable indepen- 
-2 dent of an-, and Q,- is positive. Using the relation X:-, = Qn- en-2, we 

obtain (5.7) in the form 

Exploiting again the property that &-, is independent of on-,, we get C3 = 0 
similarly as previously, and consequently C1 = 0. 

Now, to prove linear independence of all components of 1(9.) suppose, on 
the contrary, that there exist scalars Dl, . . ., D, and C1, C,, C, such that' 
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Taking the conditional expectation with respect to a, - over both sides of (5.81, 
remembering that aQt/dS is a,- ,-measurable for t < n and that E, @(F(&)) = 0, 
E, [ ( E ; )  = 0, we obtain 

n - l  k aQf a Q  (19) 8 = l  c j = l  C D t m i ( F ( E s ) ) = n ~ 1 ~ ( G - + C 2 - + C  t = 2  Qt a f f o  a m  " aQt) as. 

Repeating this step by taking successive conditional expectations with respect 
to an- ,, . . ., a, we finally get c=, Dj @j (F (Q) = 0 a.s. By the orthogonality of 
@j's the last equality holds if and only if Dl = . . . = Dk = 0. This completes the 
proof. rn - : .  

-- - 

Proof of Theorem 3.6. The proof is based on the following theorem of 
Kundu et al. (2000). 

THEOREM (Kundu et al. (2000)). Let for every n 2 1, (Xt,),= ,...,,, deBned on 
(a, P), be an Rk-valued martingale di$erence array with respect to an in- 
creasing sequence {u,,,},=,,...,, of sub-u-fields of 5 Assume E(11X,112) < co for 
euary 1 < t 6 n and a 2 1, where 11.11 denotes the Euclidean norm. Further as- 
sume that 

(i) there exists a positive definite matrix .Z such that for every b E Ilk 

(ii) for some basis 4 = (#,, ..., dk) in R~ and any S > 0 the following 
Lindeberg-type condition holds : 

Z ((4; Xtn)' ltI4;xtnl I , n )  for j =  I ,  ..., k .  
t = l  

Then z:=, xt, 3 N(O, El- 

It is easily seen that i€ E IIXrnll3 < co for all l < t < n and n > l, then (ii) 
may be replaced by a stronger Lyapunov-type condition 

In our application of the above theorem we take X, as given in (3.13), 
considered as random variables on (52, Po, P,), where so = 0 (Xi, X,, . . .). To 
check (i) and (5.10) we shall need the following lemma proved in Section 6. 

LEMMA 5.2. For almost every h > rc,, and under the assumptions of Theo- 
rem 3.6 matrices 3fJ (9) and B$'i(S) defined in (3.9) converge, as n + oo, to the 
limiting matrices B?, ((9 ~ n d  3% (9) given explicitly in (6.2) and (6.3), respectively. 
Moreover, B7, (9) is nonsingular for any 3 E O. 

Checking (5.10). As, by Lemma 5.2, the normalizing matrix in the for- 
mula defining X,, converges to some limiting one, to have (5.10) it is enough to 
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prove 

By the triangle inequality and the elementary inequality (x + y)3 < 4x3 +4y3 
we get 

= .  .- .. 
1 

-- + - n- 3/2 I[ (E;)I3 BtJ  (8) [I324 (811 - I 2 I I 
Taking the conditional expectation on both sides of (5.12). and remembering 
that E; is independent of 0,- ,,,, while Qt is measurable with respect to 0,- ,,,, we 
estimate the sum in (5.11) by 

where for a matrix A = [aij] we put llAllZ = zipja$. Using boundedness of @, 
(5.3) of Lemma 5.1 and again Lemma 5.2 we see that the sum in (5.11) is 
OF,@- 'I2), which proves (5.1 1). 

Checking  (i). We shall show that (i) holds with T; = I. In fact, we shall 
show even a little more proving that 

where I stands for the k x k identity matrix. From Lemma 5.2 we have 

So, by the definition of X,,, to get (5.13) it is enough to prove that 

using (3.12) we get 
n 

(5.15) C Eh(E;n YZIot-I,,) = d l n + A , , + A 3 n y  
t = l  

where 

(5.1 6) 
1 

A,. = - C ~ h ( @  (F(2a) C@ (F (&))IT I at- I..), 
nt=1 
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A,. = ' E,  Cr (Et)I2 BTi ($1 
4n ,= , t 

Since $ is independent of at-,,,, we have (by orthonormality of O) 

where A is defined in (4.31, and from (2.6) we obtain 

Now, if we shall show that for almost every h > rco it follows that 

and 

then Lemma 5.2 together with (5.17) and (5.18) will imply (5.14). This, however, 
is stated in the following lemma which is proved in Section 6.  

- LEMMA 5.3, Under the assumptions of Theorem 3.6, (5.19) and (5.20) are 
fuEfiEkd for almost every h > rco. 

-The proof of Theorem 3.6 is complete. 

LEMMA 5.4. Suppose $ = (do, 8 ,  $) is a consistent estimator of 9 and 
E E ~  < CO.  Then for almost every h > K O ,  BY& and BE, given by (4.1) and (4.2), 
are consistent estimators of By4 (9) and Bpi (89 respectively, under Ph, i.e. 

B [ ; ~ - B ~ A ( ~ ) S O  and B ~ ~ - B ~ J ( $ ) % o .  

Proof.  By the assumption E E ~  < co and the argument used in Lemma 2 
of Lumsdaine (1996) it follows that for t > 20 
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where H ,  = (1 + z:- I) . . . (1 +EL,,) (.$- + . . . +d,"- 20)-1. Now introduce some 
additional auxiliary notation setting for b ~ ( 0 ,  1) and t 2 4 

By a similar reasoning to that in (A.10) but using (6.1) instead of (2.3) we prove 
that, for any r 3 1 and b < (t,*)-' with t: defined in (A.81, 

Take any h > K, for which (5.19) and (5.20) hold. Observe that, by Lemma 5.2, 
to show the consistency of and 89 it is enough to-prove that 

and 

We have 

where D,T = [I, Xi, h] and for t > 2 

An elementary calculation shows that, using (5,21), for t > 20 and on the event 
{B < Po) with Po E (P,  1) we have the following estimates (cf. Lemmas 1, 2 
and 3 in Lurnsdaine (1996) for similar considerations): 
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and 

where Cj, j = l , 2 ,  3 ,4 ,  depend on 3, 3, h and Po but do not depend on t. 
Hence and from (5.25) we get 

Choose /Il > fl  such that 8, < (<:)-I, where 5: is defined in (A.8) Then by 
(5.22) and the Schwarz inequality it follows that dj ,  (PI), H,  djt (bl) and H, d$ (p,) 
are bounded in L1(P,) uniformly with respect to t ,  t > 20. This together with 
(5.26) and consistency of 8 proves (5.23). 

To prove (5.24) write for t , 20 and Po ~ ( b ,  1) 

Now, choose 8, > f l  such that 8, < (&)- l .  Then from (5.26) and (5.27) we see 
that all expressions on the right-hand side of (5.27) that depend on t are of the 
form Hs1dj;(8,) with s1 = 1, 2 and s2 = 1,2 ,  3. By Holder's inequality and 
(5.21) we infer that they are bounded in L, (Ph) uniformly with respect to t, 
t > 20. So, consistency of 3 implies (5.24). rn 

6. PROOFS OF AUXILIARY LEMMAS 

It is more convenient to prove first Lemma 5.3. 

Proof of Lemma 5.3. We shall infer (5.19) and (5.20) from (A.12) and (A.13) 
in the Appendix by a measure theoretic considerations, 

Let us put Z +  = (1,  2, . . .) and Z -  = (0, - 1 ,  -2, . ..), write RZ = 

RZ- x R", and let p be the distribution of the i.i.d. sequence {e;) on RZ. If p+ 
denotes the distribution of {ef, e;, . . .) on R'' and p- the distribution of 
{ei, eT1, . . .) on RZ- ,  then p = p -  x p+. Observe that h1 is a measurable func- 
tion of e;, e? , ,  . . . So, denoting by vl  its distribution, we see that the represen- 
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tation (2.4) implies that v, is absolutely continuous with respect to the Lebes- 
gue measure and is supported on (K,, m). In consequence, the distribution of 
{hl, e:, e;,  . . .} on R x R'' is v1 x p+. 

Now, inspecting the formula (A.11) and using again (2.4) and (2.5), we see 
that elements of matrices 

l t -2  1 ah, 
- C -- and (1 -- 8h"j (1 -- ahs). 
n,,,hs 88 n,,, h, 39 h,d9 

are images of the random vector {hi, e:, e$, . . .) by measurable functions. So, 
almpst-sure convergince in (A.12) and (A.13) means almost sure convergence 
with reslject to vl  x p'. By the Fubini theorem for almost every h > rc, (with 
respect to vl or, equivalently, with respect to the Lebesgue measure) these 
functions converge pf almost surely, and hence in the measure p', to the same 
limits. 

On the other hand, iterating the recurrence formula 

we see, as previously, that for any fixed h > K, and every n 3 1, {XI, . . ., X,) is 
the image of (E:, i!;, , . .) by a measurable mapping and the induced distribu- 
tion is the conditional distribution of {XI, . . ., X,) given h1 = h. This and the 
above imply 

and 

where x, i = 1, 2, 3, are defined in (A.6). Setting 

(6.2) 

a n d  

we infer that the relations (5.19) and (5.20) hold true. rn 

Proof of Lemma 5.2. From (3.6), (3.7) and (3.9) we have 
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By Proposition 3.1, E; is independent of E; for t < r and independent of Q,. 
Moreover, Eh C (E; )  = 0. Consequently, the second sum on the right-hand side of 
(6.4) vanishes. Therefore, from (5.17) we get 

Similarly, we obtain (cf. (2.6)) 

Hence, by the definitions (6.2) and (6.3) of matrices 3% (9.) and B,", (9), we see 
that it is enough to prove (cf. (A.12) and (A.13)) 

and 

It will be done by showing that each element of matrices in (6.7) and (6.8) tends, 
when n + m, to the corresponding element of the limiting matrices. 

First, we shall show that 

and for each s 2 0 

Fix s 2 0. By Proposition 3.1, random variables E ; ,  . . ., E", under Ph have 
the same joint distribution as E - , + , ,  . .., E ,  under P.  This and (6.1) allow us to 
write for t 2 s + 4  
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Since Eef = u+P < 1 and h > rco is fixed, it follows from (2.4) that for given 
s the numerator of the expression standing under the expectation in (6.11) 
tends, as t -, a, in L,(P)  to h - ,  while the denominator tends to hi .  So, the 
expression standing under the expectation in (6.11) tends in probability to 
X? jh,. On the other hand, for every t 2 s + 4  

Hence (6.10) follows by the Lebesgue bounded convergence theorem. 
Similarly, 

where the expression in the denominator tends in probability to h ,  and is a.s. 
bounded from below by a,. Therefore, (6.9) follows again by the Lebesgue 
theorem. 

Going back to the proof of (6.7), for the first element on the left-hand side 
we have, by the definition of Yl, 

as n + oo. As for the second element, let us write 

By (6.101, the relation 

(cf. (A.9) in the Appendix) and fir,  < 1 we infer that the first term in (6.13) 
converges to EY, while the second is negligible. 

The same argument works for the third element of the matrix in (6.7) 
because, obviously, 



Data-driven score test 357 

The convergence in (6.8) follows by a quite similar argument, so we omit it. 
Nonsingularity of B,",(9) is a consequence of Lemma A.2 in the Appendix. 
Thus Lemma 5.2 is proved. 

APPENDIX 

In this section we prove some limit theorems being straightforward con- 
sequences of the ergodicity of the innovation sequence (e:} defined in (2.2). 

Let Z denote the set of integers, RZ be the space of doubly infinite real 
sequences eiidowed with a product c~-field .d, and let p be the distribution of 
the i.i.d. sequence (e:),. Note that p depends on GARCH parameters a and 
fl  which satisfy (2.1) and are fixed from now on. 

Suppose z: RZ 4 R is a measurable functional such that E, Izl < co. Then, 
by the classical Birkhoff ergodic theorem (see e.g. Friedman (1970)), 

almost surely and the convergence is also in L1 (P). 
In order to apply (A.1) define measurable mappings $ and $, on RZ with 

values in RZ by 

whenever the right-hand sides of these formulae have sense and the zero se- 
quence otherwise. Here a. is the third GARCH parameter appearing in (2.1). 
From (2.4) it follows that the formulae in fA.2) are well dehed  for p-almost 
all sequences {zj), $ ({e!)) = {hj>  as. and $, ({ej}) = {Xf) as. 

Applying mappings $ and introduce three measurable functionals zi, 
i = l., 2, 3, on RZ which are, in a natural way, related to the GARCH(1,l) 
model, and particularly to the part 1, of the score vector given in (3.7). 
For a sequence {zj} and SEZ write a coordinate selector as {zj)s = zs, 
and set 

m I 

11 - PAMS 25.2 
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whenever the expressions on the right-hand sides of (A.3HA.5) have sense and 
0 otherwise. We shall show that formulae (A.3HA.5) are well defined for p al- 
most all { z j )  and that zi as well as their twofold products zi T,, i, k = l ,  2, 3, are 
integrable with respect to p. To this end define 

( A 4  = ( e } ) ,  i = 1 ,  2, 3. 

By (A.3) we have 

1 
r 1 = - ~  P", 

h l F 0  

so Yl is a.s. bounded by ail, and hence has all moments. As to 

set to = 1 and 

Obviously, fitr < tr- ,. Consequently, 

tj 1 gf = max - 
~<j<r c j - l  < j. 

Iterating (2.3) and using (2.2) we get 

- and, consequently, by mutual independence of ef's for each r 2 1 we have 
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which proves that T2 has also all moments. Finally, an analogous argument 
shows that 

m oro + r, = C sp-I 
s = o  hl 

has also all moments. Thus, in particular, we have shown that z, and z ; ~ ~ ,  
i, k = 1, 2, 3, are integrable with respect to p. This allows us to apply (A.1) to 
all of these functionals. 

However, for further applications we need rather finite sums instead of 
infinite series. Note that, by the above reasoning, we have already proved that 
the remwders in all series defining and T; tend to zero in L,  (P) norm at 
exponential fates, so, by the Borel-Cantelli lemma, also almost surely. To make 
this clearer consider, as an example, a functional T,. 

Applying (A.l) to 2 ,  we get 

almost surely and in L, (P), where we have put 

By (A.9), (A.lO) and stationarity of {XI) and {hJ we obtain 

and for any q > 0, by the Markov inequality, 

which, by the Borel-Cantelli lemma, implies &?,, + 0 a.s. when t + co. Hence 

almost surely and in L, (P) as n + co. Consequently, we have proved that 

As said before, the same statements hold for all cs and T,'s as well. Taking 
formula (2.5), differentiating both sides with respect to 9 = (a,, a, 8) and 
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dividing by h, we get the random vector 

Taking into account that the random variable (t - 1)  $- h1 h; tends to 0 as 
t + m almost surely and in L, (P) we summarize the above reasoning in the 
followigg p~opositian. 

PR~POSITION A.1. The following asymptotic results hold true aImost. surely 
and in L1 {P )  : 

(A. 12) 

(A. 13) -- -- 'i n , = ,  ( Iaht ) ( '  h, a9 bas a h t y + ~ ~ r l ,  y2, r 3 ~ T ~ r 1 ,  G, &I, 

where denotes the transposition. 

We end this section showing Iinear independence of Y,, Y, and Y3. 

LEMMA A.2. Random variables K = zi ( { e f ) ) ,  i = 1 ,  2, 3, de$ned in (A.6) are 
linearly independent. Consequently, the matrix E [ T I ,  Yz, Y3IT [Y,, Yz, T3] is 
nonsingular. 

Proof.  Suppose, on the contrary, that there exist real numbers C i ,  
i = 1, 2, 3, such that 

Since hl > uo > O a.s., we can omit this factor and write (A.14) as 

The left-hand side of (A.15) is 9- l-measurable, hence independent of E:, which 
implies that C 2  E$ is independent of itself. Since E$ is a.s. positive, we get C z  = 0. 
Now, (A.15) can be written as 

m m 

Repeating the above argument to (A.16) and remembering that a,, u > 0 we 
infer that C ,  = 0. Hence C 1  = 0 and the proof is complete. H 
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