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Abstract. Rao (1979) established separation theorems for singu- 
lar values of a matrix and showed their applications in multivariate 
analysis. In this paper, we provide generalized separation theorems for 
singular values of a matrix and use them to find some interesting 
relations between canonical correlations and conditional canonical 
correlations. 
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1. INTRODUCTION 

Suppose (X', Y', Z')' has a joint multinormal distribution, where X, Y and 
Z are p x 1, q x 1 and s x 1 random vectors, respectively. The canonical cor- 
relations between Y and Z might be different from the canonical correlations 
between Y and Z when X is given. The latter will be called conditional canoni- 
cal correEations. In this paper, we generalize the separation theorems given by 
Rao [2], and then use them to establish the relations between canonical cor- 
relations and conditional canonical correlations. 

The following notation is used throughout the paper. The singular values 
of a matrix A are denoted by a, (A) 2 a, (A) 2 . . ., and the eigenvalues of 
A which is Hermitian are denoted by A1 (A) 2 ,I2 (A)  2 . . . We use A', r (A) and 

I A* to denote the transpose, the rank and the complex conjugate of A, respec- 
tively. A real-valued function I]-I], defined on the space S,, ,  of rn x n complex 
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matrices, is called a unitarily invariant norm if it satisfies the following con- 
ditions : 

(i) llXll > 0 if X 4 0; 

(ii) IlcXll = lcl . IlXll; 
(iii) IIX+ Y I I  a I I X I I + I I Y I I ;  
(iv) IIVXUII = llXjl for any unitary matrices V and U of orders m and n, 

respectively. 
We present the main results in Section 2. Applications of these results in 

canonical correlation .analysis are considered in Section 3. The proofs of all 
theorems are given in Section 4. 

First, we state the Separation Theorem for Singular Values (STSV) of 
a matrix by Rao [2]. STSV has been used successfully to solve some problems 
in multivariate analysis. 

THEXIRBM 1 (see Rao [Z]). Let A be rn x n, 3 be m x r and C be n x k 
matrices such that B* B = I ,  and C* C = Ik. Then 

where i = 1, ..., min(r, k) and t = m+n-r-k. 

Now we state the Generalized Separation Theorem for Singular Values 
(GSTSV) of a matrix. GSTSV can be considered as a generalization of STSV if 
we only take into account the right inequality of (I), since the right inequality 
of STSV is a special case of GSTSV, when a, (3) = 1 and a, (C) = 1. 

THEOREM 2. Let A be rn x n, B be m x r and C be n x k matrices such that 
al (B) < 1 and a1 (C) < 1. Then 

ot (B* AC) 6 Ci (A), 

where i = 1, 2,  ..., h and h = min(r, k ,  m, n). 

COROLLARY 2.1. Let A be rn x n, B be m x rn and C be n x n matrices such 
that al (B) < 1 and o1 (C) < 1. Then 

for any unitarily invariant norm. 

The result follows from Theorem 2 and Lemma 4.1 in Section 4. 

COROLLARY 2.2. Let M be rn x m and N be n x n nonsingular matrices. Let 
A be m x n, B be m x r and C be n x k matrices such that al (B* M )  < 1 and 
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al (NC) 6 1. Then 

ai(B* AC) < ai(M-l AN-'), 

where i = 1, 2, ..., h and h = min(m, n, r, k). 

P r o  of. Using Theorem 2, we have 

ai(B* AC) = ai(B* MM-I AN-I NC) 6 o ~ ( M - '  AN-I), 

where i = 1, 2, . . ., h. 

COROLLARY = 2.3. Ler M be m x m and N be n x n nonsingulur matrices. Let 
A be m x n, 3 be na x m and C be n x n matrices such that a, (B* h4) < I and 
al (NC) < 1. Then 

for any unitariiy invariant norm. 

This result follows from Corollary 2.2 and Lemma 4.1 in Section 4. 

3. APPLICATIONS IN CANONICAL CORRELATION ANALYSIS 

In this section, we will discuss some applications of GSTSV in canonical 
correlation analysis. In these applications, the canonical correlations turn out 
to be singular values of some matrices. 

Let X be p x 1, Y be q x 1 and Z be s x 1 random vectors. Now, we 
suppose (X', Y', 27)' has the normal distribution and its dispersion matrix is 

where D ( X )  = El,, D(Y) = C,,, D ( Z )  = E,,, COV(X, Y) = El,, COV(X, Z )  = 
El3, and COV(x Z) = zZ3. 

Canonical correlation analysis is a method of summarizing relationships 
between two sets of variables. The objective is to find linear combinations of 
one set of variables which are most highly correlated with linear combinations 
of a second set of variables. Here we consider the relations between two sets of 
canonical correlations: one between Y and Z, the other between Y I X = x and 
Z I X = x .  

THEDREM 3. Let (X',  Y', Z')' be as defined before, and we assume 

min(r(Czl),r(C13))<k or r (Z21E~?&3)<k.  

Then 

(2) er ,z~x=~( i )  2 e ~ , z G + k ) ,  
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where q ~ , ~ ( i )  and Q , , I , = , ( ~ )  denote the ith canonical correlation between Y and 
Z and the ith canonical correlation between P I X = x and Z I X = x, respec- I 

I tively. 
I 
I THEOREM 4. Let (X', Y', 2')' be as defined before and X and Z be indepen- 
I dent random variables. Then 

where ~ ~ , ~ ( i )  and ~ ~ , ~ ~ ~ = ~ ( i )  are defied in Theorem 3. 

- -- 

L 4 PROOFS OF THEOREMS 

The following two lemmas will be used in the proofs of main theorems in 
this paper. 

LEMMA 4.1 (see Rao [2]). Let Xi be a matrix with singular values ali 3 
. . . 2 api for i = 1 ,  2. Then llXll] 2 [IX211 for any unitarily invariant norm if and 
only if 

a 1 1 + . . . + ~ k 1 3 ~ l Z + . . , + @ k ~ ,  k = l , 2  ,..,, r .  

LEMMA 4.2 (see Gel'fand and Naimark [I]) .  Let A and B be n x n complex 
matrices. Then 

with equality far k  = n. Especially, for k = 1, we have 

ai(AB) < ai(A)al (B), i = 1,  2, .. ., n. 

Proof of Theorem 2. Let p = max(r, k ,  m,  n), 

B* 0 D = ( ^  O) , E * = (  ) and F=('O) , 
0 0 P X P  0 0 P X P  0 0 P X P  

where 0's are matrices of appropriate order and consist of zeroes only. Then, 
for i = 1 ,  2, . . . , h, we obtain 

ai (D) = ai (A), ai (E*) = ai (B) , 

ai ( F )  = ai (C) and ai (E  * DF) = ai (B* AC). 

Using Lemma 4.2, we have 

ci (E*DF) < (E*) ai (DJ ' )  $ al (E*) ai (D)  al (J') , 
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where i = 1 ,  2 ,  . . ., p. Therefore 

ai (B* AC) = ai (E* DF) < o1 (E*) ci (D) a l  (F) 

= (B*) ci (A)  GI (C)  G ai (A) ,  
where i = 1, 2 ,  . . ., h. 

In order to prove Theorems 3 and 4, we quote two lemmas: 

LEMMA 4.3 (see Rao [2]). Let A be an m x  n matrix of rank r and B be an 
rn x n matrix of rank 6 k. Then 

14) -- = .  a i ( A - B ) > c k t i ( A )  
L 

for any i, where C T ~ + ~ ( A )  is dejned to be zero for i +  k > r. The equality of (4 )  is 
attained for all i $ and only if k < r and 

white the singular ualue decomposition of A is 

LEMMA 4.4 (see Srivastava and Carter [33). Let 

where XI,  X,, pl, p2 ,  Ill and .Zz2 are r x l ,  s x l ,  r x l ,  s x l ,  r x r  and s x s  
matrices, respectively. Then the conditional distribution of XI,  given X,, is 

N,(PI +z12Z; ( ~ 2  -PA El.,), where Z1.2 = Z11-Zrzzz;l Czl > 0. 

P r o of of T h e o re m 3. Using Lemma 4.4, we obtain the dispersion ma- 
trix of (Y', Z')', given X = x, in the form 

Then the canonical correlations between Y and Z are the singular values 
of Z ~ i 2 E z 3 C ~ ~ 1 Z  and the canonical correlations between Y IX = x and 
Z I X = x are singular values of 

It is easy to see that 
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In the same way we can get 

((E33 - 2 3 1  z13)112C&112) < 1. 

By Theorem 2, we have 

(5) a, (.Z;iJ2 EZ3 . E ; ~ ~ ~ ~  zZ1 CF: C13 C;:l2) 

= 0i(z2jZ(z22-z21 25; .z12)1/2 (E22 -Cal C;: Zl2)-ll2 

x (z23-z21 2; 213)(233-C31 ~ ~ t x 4 ~ ~ ~ ~ ( z ~ ~ - C ~ 1  zz z13)112z~:i2 
. . 

1 
< "i((222-x21 z~: Z11)-L12(2.23-~ll Z13)(r33-211 Z~: z13)-112) 

Since 

r(C;l12 . z ~ ~  ~;;1 z3;1I2) = r (ZZ1 22 EI3) 

G min(r(E21), r(E13)) < k, 
by Lemma 4.3 we can get 

(6) gi (z;ii2 zz3 Ez1 '  - zy;l2 EZ1 2;: x1 3 

2 a i+k(z~; '~  z23 = ~ ~ , ~ ( i +  k). 

Then (5) and (6) together implies 

@y,zlx=x (4 2 eu,z(i + k). 
P r  o of o f The o r  em 4. Since X and Z are independent random varia- 

bles, we have 

zI3=o9 z 3 I = 0 .  

.By Lemma 4.2, we obtain 

QY,z~x=x(~) = ai ((E22-z2~ ETll C12) - 1 1 2 ~  23 z-112 33 ) 
2 ~ ~ ( z ; $ ~ ~ ( z ~ ~ - x ~ ~  z z  z12)1i2 (zz2-zz1 C z  x12)-112 zZ3 z;il2) 
= ai (E;i/2 C23 &:I2) = aysZ (i). 
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