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Abstract. Rao (1979) established separation theorems for singu-
lar values of a matrix and showed their applications in multivariate
analysis. In this paper, we provide generalized separation theorems for
singular values of a matrix and use them to find some interesting
relations between canonical correlations and conditional canonical
correlations.
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1. INTRODUCTION

Suppose (X', Y, Z') has a joint multinormal distribution, where X, ¥ and
Z are px 1, gx1 and sx 1 random vectors, respectively. The canonical cor-
relations between Y and Z might be different from the canonical correlations
between Y and Z when X is given. The latter will be called conditional canoni-
cal correlations. In this paper, we generalize the separation theorems given by
Rao [2], and then use them to establish the relations between canonical cor-
relations and conditional canonical correlations.

The following notation is used throughout the paper. The singular values
of a matrix A are denoted by ¢,{(4) = g,(4) = ..., and the eigenvalues of
A which is Hermitian are denoted by 4, (4) = 1,(4) = ... We use A4', r(4) and
A* to denote the transpose, the rank and the complex conjugate of A, respec-
tively. A real-valued function |||, defined on the space S,,x, of m xn complex
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matrices, is called a wunitarily invariant norm if it satisfies the following con- -

ditions:
@ IXl| >0 if X £0;
(i) lleXT| = le|-[1X1l5
(i) [1X + Y| < X +Y]];
@iv) ||VXU|| = ||X|| for any unitary matrices V and U of orders m and n,
respectively. :

We present the main results in Section 2. Applications of thesé¢ fesults in
canonical correlation -analysis are considered in Section 3. The proofs of all
theorems are given in Section 4.

2, MAIN RESULTS

First, we state the Separation Theorem for Singular Values (STSV) of
a matrix by Rao [2]. STSV has been used successfully to solve some problems
in multivariate analysis.

THEOREM 1 (see Rao [2]). Let A be mxn, B be mxr and C be nxk
matrices such that B*B=1, and C*C =1,. Then

(1) 01+i(4) < 0;(B* AC) < 0,(A),
where i=1, ..., min(r, k) and { = m+n—r—k.

Now we state the Generalized Separation Theorem for Singular Values
(GSTSYV) of a matrix. GSTSV can be considered as a generalization of STSV if
we only take into account the right inequality of (1), since the right inequality
of STSV is a special case of GSTSV, when ¢,(B)=1 and ¢,(C) = 1.

THEOREM 2. Let A be mxn, B be mxr and C be nx k matrices such that
0,.(B)<1 and d,(C) < 1. Then

0:(B* AC) < 0;(A),

"where i=1,2,...,h and h =min(r, k, m, n).

COROLLARY 2.1. Let A be mxn, B be mxm and C be nxn matrices such
that 6,(B)< 1 and ¢,(C) < 1. Then

IB* AC|| < |14l
for any unitarily invariant norm.

The result follows from Theorem 2 and Lemma 4.1 in Section.4.

COROLLARY 2.2. Let M be mxm and N be n x n nonsingular matrices. Let
A be mxn, B be mxr and C be nxk matrices such that o,(B*M) <1 and
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o{(NC)< 1. Then
6;(B*AC) < o;(M~ ' AN,
where i=1,2,..., h and h=min(m, n, r, k).
Proof. Using Theorem 2, we have
0;(B* AC) =6;(BFkMM AN ' NC)< 0;(M~* AN™Y),
where i=1,2,..., h

COROLLARY>2.3. Let M be m xm and N be n X n nonsingular matrices. Let
A be mxn, B be mxm and C be nxn matrices such that ¢,(B* M) <1 and
01(NC)< 1. Then

IB*AC|| < |M~1 AN
for any unitarily invariant norm.

This result follows from Corollary 2.2 and Lemma 4.1 in Section 4.

3. APPLICATIONS IN CANONICAL CORRELATION ANALYSIS

In this section, we will discuss some applications of GSTSV in canonical
correlation analysis. In these applications, the canonical correlations turn out
to be singular values of some matrices.

Let X be px1, Y be gx1 and Z be sx1 random vectors. Now we
suppose (X', Y', Z'Y has the normal distribution and its dispersion matrix is

X Z‘11 Z‘12 Z‘13
DY = Z‘21 Z‘22 223 s
Z Z‘31 Z‘32 Z‘33

where D(X) = Zy,, D(Y) = 23, D(Z) = 233, COV(X, Y) = X1,, COV(X, Z) =
Zi3, and COV (Y, Z) = X,,.

Canonical correlation analysis is a method of summarizing relationships
between two sets of variables. The objective is to find linear combinations of
one set of variables which are most highly correlated with linear combinations
of a second set of variables. Here we consider the relations between two sets of
canonical correlations: one between Y and Z, the other between Y| X = x and
Z|X =x.

THEOREM 3. Let (X', Y', Z'Y be as defined before, and we assume
min (r(Z,), r(Z13) <k or r(ZZiZ) <k
Then

2) Ov,zix=x () = oy, z(i+K),




iadn !
| SR

E 226 . C. Xie et al.

where gy z (i) and 0y zx - (i) denote the ith canonical correlation between Y and
Z and the ith canonical correlation between Y| X = x and Z| X = x, respec-
tively.

THEOREM 4. Let (X', Y', Z') be as defined before and X and Z be indepen-
dent random variables. Then

3 QY,Z|X=x(i) Z 0v,z (®,
where gy z(i) and gy zx-x(i) are defned in Theorem 3.

' 4. PROOFS OF THEOREMS

The following two lemmas will be used in the proofs of main theorems in
this paper.

LemMa 4.1 (see Rao [2]). Let X; be a matrix with singular values ay; >

.20, fori=1,2. Then || X,|| = [|X;|| for any unitarily invariant norm if and
only if
it ... +0 2012+ ... +0x2, k=1,2,...,r.

LemMA 4.2 (see Gel'fand and Naimark [1]). Let A and B be n x n complex

matrices. Then

k k :
[]0,(4B) < [] 0;,(A)o,(B), 1<i;< ...<ix<n,and k=1,2,...,n,
s=1

s=1
with equality for k =n. Especially, for k =1, we have
0;(AB) < 0;(A)o;(B), i=1,2,...,n

Proof of Theorem 2. Let p = max(r, k, m, n),

¥
p_ (49  pe_(B"O md Fo(C0)
00/, 0 0/,., 0 0/,

. where 0’s are matrices of appropriate order and consist of zeroes only. Then,
fori=1,2,..., h, we obtain

*
E*DF=(B AC O) .
pXp

0 O
0;(D) = 6;(4), 0:(E*) = 0:(B),
0;(F)=0;(C) and o;(E*¥ DF)=g;(B* AC).
Using Lemma 4.2, we have

0;(E*DF) < 0, (E*) 6;(DF) < 0, (E*) 6;(D) 0 (F),



|
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where i =1, 2, ..., p. Therefore
0;(B* AC) = 06;(E* DF) < 0, (E*) 6;(D) 5, (F)
= 01(B*) 0;(4) 01 (C) < 0:(A),

where i=1,2,...,h
In order to prove Theorems 3 and 4, we quote two lemmas

LemMmaA 4.3 (see Rao [2]). Let A be an m x n matrix of rank r and B be an
mx n-matrix of rank < k. Then o

) - ~ 0{(A—B) = 0)+:(4)

for any i, where 01+ (A) is defined to be zero for i+k > r. The equallty of @4)is
attained for all i if and only if k<r and

B=O'1P1 1+"'+O-kPle?s
while the singular value decomposition of A is
A=0P, 0%+ ... +0,P,QF.

LeEmMA 44 (see Srivastava and Carter [3]). Let

X, #1) (211 Z12>) <E11 E12> '
X = ~N , and >0, |
(Xz) P((#z 2y 2y 21 222 i

where X, X,, Uy, fz, X1 and Xyyare rx 1, sx1, rx1, sx1, rxr and sxs [
matrices, respectively. Then the conditional distribution of X,, given X,, is !

N1 +21,258 (Xy— ), Z15), Wwhere 2y, =211—21,25, %, >0.

Proof of Theorem 3. Using Lemma 4.4, we obtain the dispersion ma-
trix of (Y, Z'Y, given X = x, in the form

Y| X=x 2y Za3 231 -
D = — Tz x
<Z|X — x) <E32 233 231 11 ( 12 13)
_ <222—221 2 2, 223—221 2 213) 20
232—23121_11 212 233—‘23121_11213 -

Then the canonical correlations between Y and Z are the singular values
of 2;;12%,,25/2 and the canonical correlations between Y |X = x and
Z|X = x are singular values of :

(22— 251 211 Z15) V2 (223 =251 211 213) (T35 — 23y 21 Z43) " M2

It is easy to see that

04 (22_21/2(222—221 Zi 2712)1/2 \/}»1 Zz 2 (22— 201 21 210) 25 1/2)

= \/11 (I-27% 172 ZnZit 2 Zn ) <1, ' |
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In the same way we can get
01((233_2312111213)1/223 1/2) 1.
By Theorem 2, we have
(B  0:(Z237 223 2557~ 27, 1/2221 i 213 2537
= 0:i(2322 (222 =251 Tt Z12) 2 (Zp0— 25, 211 2yp) 12
X(Z23— 25 211 213)(233—231 i Z1a) (T332 2111213)1/223 1/2)
0‘1((22-2—22121 212)_1/2(223—221211 213) (233 —Z5, 21 213) 1/2)
= Qy,z1x=x(0)-
Since ,
723372 25 211 213 2537 = 1 (221 211 213)
<min(r(Z;y), r(Z13)) <k
by Lemma 4.3 we can get
6) 0:(2332 203 255 P =255 2 25, Z11 213 25317
0i+1(2227% 223 2337%) = oy.z (i +k).
Then (5) and (6) together implies
0v.z1x=x(0) = 0y z(i+K).

Proof of Theorem 4. Since X and Z are independent random varia-
bles, we have

213=0, 231 =0.

By Lemma 4.2, we obtain

QY,Z|X=x(i) = O'i((zzz 2 Zit 212)_1/2 25323 1}2)
0:(22 (22— 201 Z11 Z45)'2 (2224221 2 Zp) TP 2,5 255
=0;(Z3 /2 233233 /2) = Qy,z ().
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