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Abstract. An integral analogue of the almost sure limit theorem
is presented for semi-selfsimilar processes. In the theorem, instead of
a sequence of random elements, a continuous time random process is
involved; moreover, instead of the logarithmical average, the integral
of delta-measures is considered. Then the theorem is applied to obtain
almost sure limit theorems for semistable processes. Discrete versions
of the above theorems are proved. In particular, the almost sure func-
tional limit theorem is obtained for semistable random variables.
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1. INTRODUCTION AND NOTATION

Let {,, neN, be a sequence of random elements defined on the probability
space (2, o/, P). Almost sure limit theorems state that

(11 o Y didpwy=u, as n— oo, for almost every weQ,
nk=1

where §, is the point mass at x and = u denotes weak convergence to the
probability measure u. _ .
In the simplest form of the almost sure central limit theorem (a.s. CLT)

L= X1+ ... +X)//n,
where X, X,, ... are ii.d. real vandom variables with mean 0 and variance 1,
dy = 1/k, D, = logn, and u is the standard normal law .4 (0, 1); see [5], [18],
[13]. Almost sure versions of several known usual limit theorems were proved,

see e.g. [11, [2], [81, [9].

!
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Major in [15] and [16] gave a unified approach to the almost sure limit
theory. The starting point in [15] is an integral version of the a.s. limit theorem
for selfsimilar processes. The final result in [16] is an a.s. functional limit
theorem for variables being in the domain of attraction of a stable law. Here we
shall follow [15]. We shall denote by X (u) = X (u, w), u = 0, the underlying
stochastic process.

Theorem 1 in [15] is an a.s. limit theorem for selfsimilar processes. Our
first result (Theorem 2.1) is its extension to semi-selfsimilar processes. In [15]
the proof is based on the continuous time ergodic theorem. Here we shall apply
the discrete time ergod1c theorem.

Our Theorem 3.1 is an almost sure limit theorem for semlstable processes.
We remark that the second part of Theorem 1 in [15] is an a.s. limit theorem
for stable processes.

We prove discretized versions of Theorem 2.1. In Theorem 4.2 we consider
random probability measures concentrated on some trajectories X, (-, @).
The result is a version of the first part of Theorem 3 in [15]. In Theorem 4.3 we
consider random probability measures concentrated on step functions con-
structed from the trajectories X, (-, w). The result is a generalization of the
second part of Theorem 3 in [15].

Theorem 5.1 is an. a.s. functional limit theorem for semistable distributions.

We mention an open problem. Can the approach of the present paper be
used to prove an a.s. functional limit theorem for variables being in the domain
of geometric partial attraction of a semistable distribution? We remark that
Major in [16] was able to apply his original approach to obtain an a.s. func-
tional limit theorem for variables being in the domain of attraction of a stable
law. Moreover, (non-functional) a.s. limit theorems for variables being in the
domain of geometric partlal attraction of a semistable law were obtained in [3]
(usual version) and in [7] (integral version).

We shall use the following notation. I, is the indicator function of the set A.
In the space C[0, 1] we shall consider the supremum norm. Let ¢ denote the
usual metric on D [0, 1] (see [4]). Le. let A denote the set of strictly increasing
continuous A: [0, 1] — [0, 1] functions satisfying 4(0) = 0 and A(1) = 1. Then
~o(x, y) < e if there exists a AeA such that ’

sup log|A(®)—A@)(t—s)|<e and |x@O—y(A@) <e

for any te[0, 1]. Both the above spaces endowed with the metrics mentioned
are complete separable metric spaces.

2. A LIMIT THEOREM FOR SEMI-SELFSIMILAR PROCESSES

Let (Q, &/, P) be a probability space. Let X (u) = X (u, ), u = 0, be a real-
valued stochastic process defined on Q. We assume that X (0) = 0 a.s., X (u) is
non-trivial, and it is stochastically continuous. We can assume that X (u, o),
(u, w)e[0, 0)x Q, is (Borel) measurable (see [10], Section 4.3).
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X (w), u=>=0, is called a semi-selfsimilar process ([17], pp. 70-72) if there
exists a ¢ > 1 such that

{# u> 0} L (X (u), u>0}

for some o > 0. The sign £ means that the finite-dimensional distributions are

equal.
For_ t >0 let X,(u), ue[0, 1], denote the following process:
.. X (tu
- X () = %, uel0, 1].

For any function x: [0, o) — R and for ¢ > 0 we shall use the notation

x({tu
t( )_ (1/1)3 u>0

We assume that the trajectories of X (u), u = 0, are either continuous or
cadlag, i.e. they are continuous from the right and have limits from the left for
all u> 0 (with probability 1). It means that {X,(u), ue[0, 1]} can be con-
sidered as a random element of C[0, 1] or D [0, 1], respectively. Let u, denote
the distribution of the process X, on C[0, 1] or D[0, 1]. We consider both
C[0, 1] and D{0, 1] endowed with their usual topologies (i.e. they are com-
plete separable metric spaces, see [4]).

We denote the tail o-algebra of the process X (), u = 0, by #,,. That is,

0

Fo= () o{Xw: uzn}.
n=1
Theorem 1 in [15] is an a.s. limit theorem for selfsimilar processes. Our
first theorem is its extension to semi-selfsimilar processes. In [15] the proof is
based on the continuous time ergodic theorem. Here we shall apply the discrete
time-ergodic theorem. Qur proof is shorter than the one in [15] because we
apply a general lemma (Lemma 2.1) widely used in the a.s. limit theory.

~ THEOREM 2.1. Let X (u), u >0, be a semi-selfsimilar process with cadlag
trajectories. Let X (0) = 0 a.s. Assume that the tail o-algebra of the process X (u)
is trivial, i.e. for any Ac F, P(A) is zero or one. Then for any bounded mea-
surable functional F: D[0,1] >R

@.1)

Jn 0010 Tj F[X,(, w)]dt = D[g‘”F[x]du(x)

for almost all weQ, where

1

@2) k= logey

I#t

is a mixture of . the distributions of the processes X,.




_restricted to ue[0, 1].) Then F is a bounded measurable functional on R
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Let ur, be the following random measure on the space D[O0, 1]:

1
(2.3) Hr,0(A4) = o—j IA( () dt
Then
2.4 lim pr,=p  for almost all weQ.
T—-w
We remark that when X (u), u > 0, has continuous trajectorles then in

Theorem 2.1 D[0, 1] can be substltuted by C[O, 1].

Proof. F[X,(-, w)] is a measurable function of (¢, ). We can see that it
is enough to prove (2.1) for T = ¢". Then '

1 n
og Tj -F[X,(, w)]dt = —jF[Xcs(-, aJ)]ds— Z _[ F[X.(, w)]ds.
o ni=1i-1

Now consider RI®*) endowed with the distribution of the process X (u),
u>0. Then S: x — x, is a measure-preserving transformation of RI®® into
itself.

Let A be an invariant set of the transformation X — SX. Then there is
a set A’ from the tail o-algebra &, such that the symmetric difference of 4 and
A’ has zero probability. The tail g-algebra is trivial, therefore the transform-
ation X —» SX is ergodic. ‘

For any function x: [0, c0) — R let F(x) = 0 if x is not a ciadlig function,
and

Fx)= }F [x.1ds
0

if x is a cadlag function. (In F [x..], in the formula above, the function x, (u) is
[0,c0)

Now, using the ergodic theorem, we obtain

1 1n= 11
logTj‘ F[X,(, o)]dt = lzo £F[S’Xcs( a))]ds -
n—1
— o E FISXC 0] > EFIX) = [ FLxldu)

D[0,1]

for almost every weQ. Therefore (2.1) is proved.
Now, applying Lemma 2.1 below, we can deduce (2.4) from (2.1). &

The following lemma is widely used in the a.s. limit theory (see, e.g., [8]).
Its proof follows from that of Theorem 11.3.3 in [7]. Let (M, g) be a complete
separable metric space. Let BL (M) be the space of the Lipschitz continuous
bounded functions g: M — R with ||gl|sr. = |9l +llgll < oo, where ||g|| is the sup
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norm and

Ig(x)—g(y)l.

= su
ligllz x;&I: 2(x, )

LEMMA 2.1. Let p be a finite Borel measure on M. Then there exists
a countable set ® = BL(M) (depending on p) such that for any sequence of finite
Borel measures u,, ne N, on M we have: u, = u, n — oo, if and only if for each ge ®

J 9 du, ()~ [ g()du(x), n-—>o0.
IR A )

3. A LIMIT THEOREM FOR SEMISTABLE PROCESSES

The process V (u), u = 0, is called a Lévy process ([17], p. 3)if V(0) = O as,,
V (u) has independent and stationary increments, it is stochastically continuous,
its trajectories are continuous from the right and have limits from the left for all
t > 0 (with probability 1).

First we remark that the tail o-algebra of the process V (u) is trivial, i.e. for
any Ae%, P(A) is zero or one. Its proof is similar to the proof of the
Hewitt—Savage zero or one law.

For every infinitely divisible law u on R there is a Lévy process V (u) such
that the distribution of V(1) is g ([17], p. 63). By the Lévy formula (see [11],
Section 18) the characteristic function of the process V (u) is

G.1) Py () = E(€"¥) = Y (u, x, b, a*, L(y), R(»))
2 0 ;
_ a0 5 iy g IXy
e_xp|:u{sz 7 +_jw (e 1 1+y2)dL(y)

+ (efxy_l_—llfvz> dR(y)ﬂ,

xeR. Here L(y) is (left-continuous and) non-decreasing on (; 50, 0) with
L(—o0) = 0 and R(y) is (right-continuous and) non-decreasing on (0, co) with
R(0) =0 and they satisfy

0 £
{ y*dL(»)+fy*dR(y) < 0 for all &> 0.
2 b

To exclude the Gaussian case we assume that ¢ = 0 (and 0 < a < 2, see below).
If V(u) is a non-Gaussian semistable process, then its Lévy’s represen-
tation is the following (see [12] and [3]):

3:2) L(y)= M. (y)/IyI*, y<0,

4 — PAMS 252




246 I. Fazekas and Z. Rychlik

is left continuous and non-decreasing, and

(3.3) R(y)= —Mz(»)y*, y>0,

is right-continuous and non-decreasing, where 0 < a < 2, M;(y) and Mgz(y)
are non-negative bounded functions on (— o0, 0) and (0, o), respectively, one
of which has a strictly positive infimum and the other either has a strictly
positive infimum or is identically zero; moreover, for the same period ¢ > 1
My(c**y) =M, (y) for all —o0 <y<O0 and Mgx(c*y) = Mg(y) for all
0 <y < 0. For simplicity, we shall assume that b = 0.

If-V(u) is a non-Gaussian semistable process, then, using the Lévy re-
presentation, one can show that X (u) = V (u)—b(u) is semi-selfsimilar if

(Ku)/(c* " Y*—1) for a # 1,
G4 “w=iKm%mm%@ for o =1,
where
2ja 3 (p2/x__
(3.5) K—j S ol Y Y S A Cilia P Y

(1 +y)(A+y2c 2’“ o 1+y*)(1+y*c*)

. Therefore we can apply Theorem 2.1 to the process X (u) to obtain the
following almost sure limit theorem for semistable processes. We remark that
the second part of Theorem 1 1n [15] is an a.s. limit theorem for stable pro-
Cesses.

THEOREM 3.1. Let V (u), u > 0, be a non-Gaussian semistable process, i.e. let
the characteristic function of V (u) be given by (3.1)3.3) with ¢ = 0, b = 0, and
O0<a<2 Let X(u)=V (u)—b(u) be semi-selfsimilar, i.e. let b(u) be given by
(3.4) and (3.5). Then (2.1) and (2.4) are satisfied for almost all we Q.

4. DISCRETE VERSIONS OF THE LIMIT THEOREMS

We start with some preliminary results.
" LemMA 4.1. Let xeD[0, 1]. If lim, .1 _o|x(@)—x(1)| <&, then

lim sup g (x;, x) < &.

t—=1—-0
In particular, if x(u) is continuous in 1, then lim,;_og(x,, x) =0

Proof. We follow the lines of [15], pp. 293-294. Let t*(t) = 1—./1—t,
te[0, 1]. Let

u < t*(1),

A)_iJ —t+)m—1)+1, tﬂﬂSu\L
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Then A,: [0, 1]—[0, 1], 4,(0) =0, 4,(1) =1, A,(u) is strictly increasing and

continuous. Moreover, ‘
log (At =4 (v))
u—v

lim sup |x()—x (L) = lim x () —x (1)] < e.
t=#1—-00<u<1 -+1-0

lim sup =0,

t=>1-0u¥v

These relations imply the result. =

LEMMA™4.2. Let X (f)"t;é a process with trajectories in D [0, 1], and let u be
a probability on D[0, 1]. Assume that for any bounded measumble Sfunctional
F:D[0,1]-R
4.1) lim wl*_" F[X,(, w)]dt

T—o0

= | F[xldu(x) for almost all weQ.
D0, 1]

Then u almost all functions in D[0, 1] are continuous at 1.
Proof. Let ¢ >0 and let
F(x)=I{xeD[0, 1]: |x(1)—x(1—0)| > &}.

Then F is a bounded measurable functional defined on D [0, 1]. Applying (4.1)
to this functional, we obtain

0=pu{xeD[0, 1]: [x(1)—x(1—-0)| > &}.

Now let £]0. Then the continuity of the measure yu gives the result. m
The following result is an extension of Theorem 2 in [15].
THEOREM 4.1. Let us assume that for any bounded measurable functional
F:D[0,1]-R
@2)" lim | F()dpr,(x)= | Fx)du(x) for almost all weQ,
T—=w p[o,1] DI0,1]
where ur ,, are probability measures depending on we( and Te R. Assume that
u almost all functions in D [0, 1] are continuous in 1. Then for almost all w e

43) lim lim pr, {x: sup_ 0(xy,x)>e =0 for any €>0.

7-0 T 1-n<<1

Proof. Let # >0 and ¢ > 0 be fixed. Let

F,.(x)=I{xeD[0,1]: sup_ o(x1, X)) > g}.

—nEt<l
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Then F, . is a bounded measurable functional defined on D[O0, 1]. (To see
the measurability of F,, one can apply the fact that x — x, is a measu-
rable mapping which can be checked by using projections; see [4], Theo-
rem 14.5))

By Lemma 4.1,

lim | F,,(x)du(x)=limp{x: sup_ Q(xl,x,)>c} 0.
nl0 pI0,1] 710 1-ns1<1

This 1mphes the result because, by (4.2), for almost all cueQ

lim KT, {x. sup 0 (x1, ;) > &}

T—w 1—p<t<1

=lm | Fo®dio®= | Fp(ddu().

T—w ppo,1] DI[0,1]
The last quantity converges to 0 as # —»0. =

COROLLARY 4.1. Assume that the conditions of Theorem 3.1 are satisfied.
Let pr,, be defined by (2.3). Then for almost all weQ the relation (4.3) is
satisfied.

Proof. We check the conditions of Theorem 4.1. Let u be defined
by (2.2).
By Theorem 3.1, the relation (2.1) is satisfied. But in our case

1 T
44 § FIxldpure(x) = I F[X.(, o)]dt.

D[0,1] Tyt
Consequently, the relation (4.2) is satisfied. Therefore (2.1) and Lemma 4.2
imply that y almost all functions in D[0, 1] are continuous at 1. So Theo-
rem 4.1 implies the result. m

Now we prove discretized versions of Theorem 2.1. In the following
theorem we consider random probability measures concentrated on some
trajectories X, (', w). The result is a version of the first part of Theorem 3

“in 15].

THEOREM 4.2. Let X (t) be a process with trajectories in D[0, 1], and let
u be a probability on D[0, 1]. Assume that for any bounded measurable func-
tional F. D[0, 11> R

1 1
. lim —— |- : dt
@) Jim o [ FIXG 0]

= | F[xldu(x) for almost all weQ.

D[0,1]
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Foranynletl =b,,<b,,< ... <b,=b,be an increasing sequence of real
numbers with the following properties:

4.6) lim b, = co, lim %bg—" —0 for any fixed j,
and

bk+ 1,n
4.7 lim sup ——=1.

. J—mo(kn)1<k<kn bkn

For any’ fi xed w and n def' ne the random probability measure [, , on D [0 1]

to be concentrated on the trajectories X, (', w), j=1,...,k,—1, and satis-
Jying
1 bit1i,n 1
48 o0 (X, (5, @) = —— —du, j=1,...,k,—1.
(4.8) fino (X;,,(5 ) Togh. bI Sdu,

Then for almost all w

(4.9) lim f, o = p.

n—w

We need the following lemma.

Lemma 4.3 (Lemma B in [15]). Let (M, @) be a complete separable metric
space, let B denote the oc-algebra of its Borel sets. Let u, u,, and [,
n=1,2,..., be probability measures on (M, %#). Assume that lim,_, , u, = Q.
Assume also that for any &€ > 0 and for any compact set F

(4.10) lim inf ({, (F%) — 1, (F)) > 0

n—oo

where F* = {xeM: ¢(x, F) <¢}. Then lim,, f, = u

Proof of Theorem 4.2. First we remark that, by (4.5), for the probabili-
ty measures pr ,, defined by (2.3) we have lim,., , yp, . = p for almost all we Q.
Therefore, by Lemma 4.3, it is enough to prove that for almost all w, any ¢ > 0,
and any compact set F

(4.11) fim 00 (i (F) — 5,0 (F)) O

Define a probability measure on [1, T] as follows:

1
(0 = o [




250 _ I Fazekas and Z. Rychlik

for any Borel set C = [1, T]. Then for any Borel set B = D[0, 1] we have
Hbnyo (B) = v, {s: s€[1, b,), X, (-, w)e B},
fineo (B) = Wy, {s: 3j, 1 <j < ky, such that b;, <j <bji1,4 X;,,(, w)eB}.
For >0 and ¢ > 0 let
A(e,n)={xeD[0,1]: sup o(x;, x,) <e&}.

1-n<t<1

By Lemma 4.2, u almost all functions in D [0, 1] are continuous at-1. Therefore
we 'can apply Theorem 4.1. Consequently, for almost all @ we have: for fixed
e>0 and 6 >0 we can find # > 0 and n, such that

4.12) #b,.,m(A (e, n)) >1-6 if n>n,.

For the above fixed ¢ >0, § >0, >0, and n, we choose j, =j,(n) and
n; > ne such that

(4.13) 1<b’;)“'"<1+g if n>n, and jo, <k <k,
k.,n )
logb;y

4.14) <o ifn=ng.

logb,
(This is possible because of (4.6) and (4.7)) Now we have
fno (F?) = vy, {5: 3j, 1 <j <k,, such that b;, <s<bjr1, X,,,(, 0)eF}

= v, {81 3j, jo <j <k,, such that b;, < s<bji1s X;,,(, ®)€F}

kn—1 :
= 2 Vs, {S: bj,,, <s< bj+1,", ij,,,(': w)EFE}
j=Jo
: kn—1 A b
= > W, {s: bjn<5<bjrin Xs(, w)anA(s, ﬁ)}
i=jo B j+1.n
kn—1 -
2 Z Vb,,{S: bj,n < §< bj+1,n= Xs(" w)EF}
Jj=jo
kn—1 b,
- vb"{S: bjn <5 <bjiin Xs(, CU)¢A(3’ b > )}
. i=jo j+1,n
kn—1
= Z Vb, {S: bj,,. <5< bj+1,n5 Xs(" CO)EF}
j=1
jo—1

- Z Vb"{S: bj,n < s < bj+1,n5 -Xs(" CD)EF}
ji=1
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o

kn—1

- Z Vo { bjn S<b1+1n5X( CD)¢A( bj," >}

Jj=Jo bj+1,n

2 o (F) =0, ([, bjo)) = b0 (A (€, 1) > 0 (F)—20.
In the last steps we have used (4.12), (4.13), and (4.14). =

In the following theorem we consider random probability measures con-
centrated on step functions constructed from the trajectories X, (-, w). The
result is a generalization of the second part of Theorem 3 in [15]. '

THEOREM 43. Let X (t) be a process with trajectories in D[O 17, and let
i be a probabllzty on D[0,1]. For any nlet 0 =by,, 1 =by,<b;,< ... <
by,.n = b, be an increasing sequence of real numbers. For any fixed w and
n define the random probability measure [, , on D [0, 1] to be concentrated on
the trajectories X,, .(, w), j=1,..., k,—1. For any weQ define the random
step lines X,, (, ), j=1,...,k,—1, as

_ _ _ b
@19 K60 =, 10) ¥ st imt )

Jin Jn Jj.n
and
X, (1, 0) = X,, (1, o).

Let the random probability measures. /J,, » be concentrated on the above random
step lines such that

(416) Ijn.w (ij,n ( ’ (l)))

. 1 bj+1,n1 )
=.un,w(ij,,.(" CD))=1 gb bj —du, i=1 , ka—1
B by,

Suppose that for each fixed j the sequence {b;,: k,>j} is bounded,

4.17) lim inf b;,= oo,

Jr o {n:kn 2 j}

and” conditions (4.6) and (4.7) are satisfied. Assume “that for almost all w

lim ﬂn,a) = U.
Then for almost all @
lim f,, = p.

To prove this theorem we need the following preparation.

LemMmA 44 (Corollary of Lemma B in [15]). Let (M, ¢) be a complete
separable metric space, let # denote the o-algebra of its Borel sets. Let u, p,, and
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i, =1, 2, ..., be probability measures on (M, #). Assume that for any ¢ >0
and & > 0 there exist probability measures P2%, n=1, 2, ..., on the product
space (M x M, & x ) such that

(i) the marginal distributions are p, and [i,, i.e. P2°(Ax M) = p,(A4) and
P29(M x A) = fi,(A) for each Ac B, n=1,2,..;

(i) Lim sup,q P2°({(x, y): e(x, y) > &}) < 4.

If lim,., pty = p, then lim,. o, 2, = p.

If (i) and (ii) are satisfied, then we say that u, and f, have a good coupling.

Lemma 4.5 (Lemma C in [15]). For xeD[0, 1] and 6 >0 let
;g(x, 8)=supfo(x, X, ) 0=to <ty < .. <t;=1,
tj_tj—l < 5,] = 1, cany S},

where X . () =x(t;j-y) if tioy <t <ty j=1,...,5, and X%, _ . (1) = x(1).
Then for any xeD[0, 1] we have

limg(x, ) = 0.

60
Moreover, for any compact set K = D[0, 1] we have

lim supg{x, ) = 0.

620 xeg
Proof of Theorem 4.3. Apply Lemma 4.4 with y, = f,, and i, = ji, .
Define P2* = P, ,,,n=1, 2, ..., on the product space (D [0, 1] x D0, 1]) such
that
1 biring
" logb, bI ;du.

J.n

(418) Pn,m (ij,n (" CU), ij,,. (': CU)) = ﬁn,w (Xb,-,.. ('! CIJ))

Then the marginal distributions of P,. are f,, and j,,. So it is enough to

‘prove that for almost all

(4.19) lim P, ,(d, (e, ) =0,

n—+o -

where
A,,(S, CO) = {(ij,n(" (t)), ij,,.('s 0‘))) Q(ij,n(" (D)’ ij,,. ('a (D)) > 8},

where ¢ > 0 is arbitrary. As the sequence f, , is convergent, it is tight; therefore
for any 5 > 0 there exists a compact set K such that f,,(K) > 1—# for all
n=1, 2, ... Therefore, to prove (4.19), it is enough to establish

(4.20) lim P, , (A, (e, @)~ (K x D0, 1])) = 0

for any compact set K.
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Now for any fixed # >0 define m(n) = m(n, n) = max {j: logh;, <
nlogb,}. By (4.6), we have lim,_,m(n) = co, and by (4.18)

ﬁn,m{ U ij,n(.5 CO)} < n.

J:ism(n)

Let
AL, ) = {(Xs,,.(, ), Xy, (, @)): m(n, n) <j <k,
_ 0(Xs,,.(, @), Xy, (, @) > e}
We have P, ,(4,(, o)\A4%(, ®)) < #. Consequently, instead of (4.20) we have
to prove
4.21) lim P, (A% (s, ®)n(K x D [0, 1])) = 0.

n—ow

Conditions (4.6), (4.7), (4.17) and the boundedness of the sequence {b;,: k, > j}
imply that for any 6 >0

bin bi—1a
4.22) sup sup e ) <8
m<j<kn1si<i\bjn  Dbjn .
if n and m are large enough. This relation and Lemma 4.5 imply that
lim sup Q(ij,n(.’ 0)), ij,n(': (D)) =0

n— o {j:j>mn),Xp;j n(- w)eK}

for each compact set KeD[O0, 1]. Thus we obtain (4.21). =

5. A FUNCTIONAL LIMIT THEOREM
FOR SEMISTABLE DISTRIBUTIONS

The following theorem is an a.s. functional limit theorem for semistable
distributions.

THEOREM 5.1. Let &, &,, ... be independent identically distributed random
variables with non-Gaussian semistable distribution, i.e. the characteristic func-
tion-of £ isy (1, x, 0, 0, L(y), R(y)), where v is defined by (3.1), L(y) and R(y)
satisfy (3.2) and (3.3), respectively. For the exponent assume 0 < a <2 and for
the period ¢ > 1. Let b(u) be defined by (3.4-3.5). Let S, =¢:1+ ... +&—
bn,n=1,2,...,8=0. Let

] -1 1
Sl :/gw): Ls<—, l=1""’ n,
n n n

Y, (s, @) =

and Y,(1, w) = S,(w)/n*/®. Let the measure p,, on D[0, 1] be defined by

1 n—1
Hn,o (A) = fogn I:zl [log(I+1)—logl114(Y.(, @)
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for any Borel set A < DJ[0,1]. Then for almost all »

lim Hpo = K

n—+w

where p is defined by

and p, is the distribution of X,() = X (t")/t'" while X (u) is the semzstab!e process
defined in Theorem 2.1.

Proof: Let bj,=j for j=0,1,...,n (in particular, k,=n) and
n=1,2 ... It satisfies the conditions of Theorems 4.2 and 4.3.

Let X (t) be the semistable process defined in Theorem 3.1. We can choose
S,=X@m), n=0,1,2,... Theorems 3.1, 4.2, and 4.3 give the result. =
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