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Abstract. An integal analogue of the almost sure limit theorem 
is presented for semi-selfsimilar processes. In the theorem, instead of . 

a sequence of random elements, a continuous time random process is 
involved; moreover, instead of the logarithmical average, the integral 
of delta-measures is considered. Then the theorem is applied to obtain 
almost sure limit theorems for semistable processes. Discrete versions 
of the above theorems are proved. In particular, the almost sure func- 
tionaI limit theorem is obtained for semistable random variablcs. 
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1. INTRODUCTION ANI) NOTATION 

Let c,, n E N, be a sequence of random elements defined on the probability 
space (0, d ,  P). Almost sure limit theorems state that 

1 " 
(1.1) - d 6 = p as n + co , for almost every w E S Z ,  _ 

D n  k =  1 

where 6, is the point mass at x and =-p denotes weak convergence to the 
probability measure p. 

In the simplest form of the almost sure central limit theorem (a.s. CLT) 

where XI,  X, ,  . . . are i.i.d. real vandom variables with mean 0 and variance 1, 
d,  = l/k, D, = logn, and p is the standard normal law N ( 0 ,  1); see [5], [18], 
C131. Almost sure versions of several known usual limit theorems were proved, 
see e.g. C11, PI, C83, C91. 
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Major in [l5] and [16] gave a unified approach to the almost sure limit 
theory. The starting point in [15] is an integral version of the a.s. limit theorem 
for selfsimilar processes. The final result in [16] is an a.s, functional limit 
theorem for variables being in the domain of attraction of a stable law. Here we 
shall follow [15]. We shall denote by X (u) = X (u, w), u 3 0, the underlying 
stochastic process. 

Theorem 1 in [IS] is an a.s. limit theorem for selfsimilar processes. Our 
first result (Theorem 2.1) is its extension to semi-selfsimilar processes. In [l5] 
the proof is based on the continuous time ergodic theorem. Here we shall apply 
the discrete time ergodic theorem. 

Our Theorem 3.1 is an aImost sure limit theorem for semistable processes. 
We remark that the second part of Theorem 1 in [I51 is an a.s. limit theorem 
for stable processes. 

We prove discretized versions of Theorem 2.1. In Theorem 4.2 we consider 
random probability measures concentrated on some trajectories Xbl,"(.,  01. 
The result is a version of the first part of Theorem 3 in [IS]. In Theorem 4.3 we 
consider random probability measures concentrated on step functions con- 
structed from the trajectories Xbjmnt, o). The result is a generalization of the 
second part of Theorem 3 in 1151. 

Theorem 5.1 is an as. functionaI limit theorem for semistable distributions. 
We mention an open problem. Can the approach of the present paper be 

used to prove an a.s. functional limit theorem for variables being in the domain 
of geometric partial attraction of a semistable distribution? We remark that 
Major in 1161 was able to apply his original approach to obtain an a.s. func- 
tional limit theorem for variables being in the domain of attraction of a stable 
law. Moreover, (non-functional) as. limit theorems for variables being in the 
domain of geometric partial attraction of a semistable law were obtained in [3] 
(usual version) and in [7] (integral version). 

We shall use the following notation. 1, is the indicator function of the set A. 
In the space C [0, 11 we shall consider the supremum norm. Let Q denote the 
usual metric on D 10, 11 (see [4]). 1.e. let A denote the set of strictly increasing 
continuous A: [O, 11 -+ [0, 11 functions satisfying A(0) = 0 and A (1) = 1. Then 
q (x, y) < E if there exists a 2. E A such that - 

sup log (t) - A (~))/(t - S)I G 8 and IX (t) - ~ ( n  (t))l G 
t *s 

for any t E [0,  11. Both the above spaces endowed with the metrics mentioned 
are complete separable metric spaces. 

2. A LIMlT THEOREM FOR SEMI-SELFSIMILAR PROCESSES 

Let (a, d ,  P) be a probability space. Let X (u) = X (u, a), u 2 0, be a real- 
valued stochastic process defined on O. We assume that X (0) = 0 a.s., X (u) is 
non-trivial, and it is stochastically continuous. We can assume that X ( u ,  o), 
(u, o)E[O, CO) x a, is (Borel) measurable (see [lo], Section 4.3). 
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X (u), u 2 0, is called a semi-seIfsimiZar process ([17], pp. 70-72) if there 
exists a c > 1 such that 

for some ct > 0. The sign means that the finite-dimensional distributions are 
equal. 

For t > 0 let Xt(u), u E LO, 11, denote the following process: 

For any function x: [O, cn) -+ R and for t > 0 we shall use the notation 

x(" ~ 2 0 .  x* (u) = - t l i a  ' 

We assume that the trajectories of X(u),  u 2 0, are either continuous or 
ciidlig, i.e. they are continuous from the right and have limits from the left for 
all u > 0 (with probability 1). It means that {Xt(u), UE[O, 11) can be con- 
sidered as a random element of C [ O ,  11 or D [ O ,  11, respectively. Let p, denote 
the distribution of the process X, on C [O, 11 or D [0, 11. We consider both 
C LO, 11 and D LO, 1 J endowed with their usual topologies (i.e. they are com- 
plete separable metric spaces, see [4]). 

We denote the tail a-algebra of the process X(u), u 2 0, by Fa. That is, 

Theorem 1 in El51 is an a.s. limit theorem for seIfsimi1ar processes. Our 
first theorem is its extension to semi-selfsimilar processes. In [I51 the proof is 
based on the continuous time ergodic theorem. Here we shall apply the discrete 
time-ergodic theorem. Our proof is shorter than the one in [I51 because we 
apply a general lemma (Lemma 2.1) widely used in the a.s. limit theory. 

THWREM 2.1. Let X(u) ,  u 3 0, be a semi-selfsimilar process with cridldg 
trajectories. Let X (0) = 0 a.s. Assume that the tail a-algebra of the process X (u) 
is trivial, i.e. for any A E F ~  P(A)  is zero or one. Then for any bounded mea- 
surable functional F: D [0, l] + R 

for almost all w EQ, where 

is a mixture of. the distributions of the processes X,. 
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Let p ~ , ~  be the following random measure on the space D [0, I]: 

Then 

(2.4) 1 , = p fur almost all w E 0. 
T-'m 

We remark that when Xtu), u 2 0, has continuous trajectories, then in 
Theprem 2.1 D LO, I ]  can be substituted by C [ O ,  11. 

I 

P r o  of. F [X, t ,  w)] is a measurable function of ( t ,  o). We can see that it 
is enough to prove (2.1) for T = cn. Then 

Now consider R["*") endowed with the distribution of the process X(u) ,  
u 2 0. Then S :  x -+ x, is a measure-preserving transformation of Rrobm) into 
itself. 

Let A be an invariant set of the transformation X + SX. Then there is 
a set A' from the tail a-algebra Fa such that the symmetric difference of A and 
A' has zero probability. The tail a-algebra is trivial, therefore the transform- 
ation X -+ SX is ergodic. 

For any function x: [0, co) -+ R let F(x)  = 0 if x is not a cadlag function, 
and 

1 

if x is a cidlAg function. (In F [x,.], in the formula above, the function x,, (u) is 
.restricted to u E LO, 11.) Then is a bounded measurable functional on R[O."). 
Now, using the-ergodic theorem, we obtain 

1 l n - 1 1  
- -1-F[x,(., w ) ] d t = -  C JF[S'X, ,( . ,  o ) ] d s  log T I  t ' i = o  o 

for almost every w EQ. Therefore (2.1) is proved. 
Now, applying Lemma 2.1 below, we can deduce (2.4) from (2.1). rn 

The following lemma is widely used in the a.s. limit theory (see, e.g., [8]). 
Its proof follows from that of Theorem 11.3.3 in [7]. Let (My q) be a complete 
separable metric space. Let BL(M) be the space of the Lipschitz continuous 
bounded functions g: A4 + R with IlgllBL = llgllm + 11g1IL < a, where llgllm is the sup 
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norm and 

L m  2.1. Let p be a finite Bore1 measure on M .  Then there exists 
a countable set O c BL(h4) (depending on ,u) such that for any sequence of finite 
Borei measures p,,, n E N ,  on M we have: p,, p, n -+ m, if and only if for each g E O 

3. A LIMIT THEOREM FOR SEMISTABLE PROCESSES 

The process V (u), u 2 0, is called a Livy process (1171, p. 3) if V (0) = 0 a.s., 
V (u) has independent and stationary increments, it is stochastically continuous, 
its trajectories are continuous from the right and have limits from the left for all 
t > 0 (with probability 1). 

First we remark that the tail a-algebra of the process V (u) is trivial, i.e. for 
any A E F ~  B(A) is zero or one. Its proof is similar to the proof of the 
HewittSavage zero or one law. 

For every infinitely divisible law p on R there is a Livy process V (u) such 
that the distribution of V(1) is p (1171, p. 63). By the LCvy formula (see [I l l ,  
Section 18) the characteristic function of the process V (u) is 

XER. Here L ( y )  is (left-continuous and) non-decreasing on (- oo, 01 with 
L (--a ) = 0 and R (y) is (right-continuous and) non-decreasing on (0, ao) with 
R (03) = 0 and they satisfy 

0 

1 y 2 d ~ ( y ) + j y 2 d N y )  < m for all E > 0. 
- &  0 

To excIude the Gaussian case we assume that a = 0 (and 0 < a < 2, see below). 
If V(u)  is a non-Gaussian semistable process, then its LCvy's represen- 

tation is the following (see [I21 and [3]): 

4 - PAMS 25.2 
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is left continuous and non-decreasing, and 

is right-continuous and non-decreasing, where 0 < or < 2, ML(y) and MR(y) 
are nonnegative bounded functions on (-a, 0) and (0, a), respectively, one 
of which has a strictly positive infimum and the other either has a strictly 
positive infimum or is identically zero; moreover, for the same period c > 1 
M,(c1Ia y) = ML (y) for all - co < y < 0 and M ,  (cliU y) = M R  (y) for all 
0 < y c m. For simplicity, we shall assume that b = 0. 

-If-V(u) is a non-Gaussian semistable process, then, using the Levy re- 
presentafion, one can show that X (u) = V (u) - b (u) is semi-selfsimilar if 

( u ) ( c l  - 1 '  - 1 for b: # 1, 
b (u) = 

(Ku log u)/(log c) for o: = 1, 

where 

. Therefore we can apply Theorem 2.1 to the process X(u) to obtain the 
following almost sure limit theorem for semistable processes. We remark that 
the second part of Theorem 1 in [I51 is an a.s. limit theorem for stable pro- 
cesses. 

THEOREM 3.1. Let V(u), u > 0, be a non-Gaussian semistable process, i.e. let 
the characteristic function of V(u) be given by (3.1H3.3) with a = 0, b = 0, and 
0 < a < 2. Let X (u) = V (u) - b (u) be semi-selfsimilar, i.e. let b (u) be given by 
(3.4) and (3.5). Then (2.1) and (2.4) are satisjled for almost all W E Q .  

4. DISCRETE VERSIONS OF THE LIMIT THEOREMS 

We start with some preliminary results. 

LEMMA 4.1. Let XEDLO, 11. If lim,,l-olx(u)-x(l)l < E ,  the% 

lim sup Q (x,, X) < E . 
t - t l - 0  

I n  particular, if x(u) is continuous in 1, then limt+ -o  Q (x,, x) = 0. 

P r o  of. We follow the lines of [15], pp. 293-294. Let t* (t) = 1 -,/i--t, 
t ~ [ 0 ,  I]. Let 



Then A,: [O, 11 + 10, I ] ,  A, (0) = 0, A, (1) = 1, R, (u) i s  strictly increasing and 
continuous. Moreover, 

lim sup Ix, (u)- x (A,(u))l = lim Ix (u)- x (l)l < s. 
t - 1 -0  0 < u < l  u - t l - 0  

These relations imply the result. I 

LEMMA-?.~. L& x (tj-be a process with trajectories in D LO, 11, and k t  p be 
a probability on D [0, 11. Assume that for any bounded measurable functional 
P :  D[O,  11 + R  

= F [x]  d p  (x) for almost all o G Q. 
D[O,ll 

Than p almost all functions in D [0, 11 are continuous at 1. 

Proof. Let 6 > 0 and let 

F ( x )  = I ( x E D [ O ,  11: Ix(l)-x(1--O)I > E ) .  

Then F is a bounded measurable functional defined on D [0, 11. Applying (4.1) 
to this functional, we obtain 

Now let ~ 1 0 .  Then the continuity of the measure p gives the result. 

The following result is an extension of Theorem 2 in [15]. 

THEOREM 4.1. Let us assume that for any bounded measurable functional 
F: D [0, 11 -, R 

(4.2) '- lim 1 F (x) d p , ,  (x )  = 1 F (x )  dp (x )  for almost all w E a,- 
T+ca D[0 ,1]  DCO,11 

where p,,, are probability measures depending on w E D and TE R. Assume that 
p almost all functions in D [O,  11 are continuous in 1. Then for almost all o E 52 

(4.3) hn 1 p {x :  sup Q ( x l ,  x,) > E )  = 0 for any E > 0. 
q + O  T - t m  1 - q C t C l  

Proof. Let q > 0 and E > 0 be fixed. Let 

F , , ( x ) = I { x ~ D [ 0 , 1 ] :  sup g ( x l , x t ) > & ) .  
1 - q C t C  1 
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Then F,,, is a bounded measurable functional defined on D [O, 11. (To see 
the measurability of F , ,  one can apply the fact that x + x, is a measu- 
rable mapping which can be checked by using projections; see [4], Theo- 
rem 14.5.) 

By Lemma 4.1, 

lim j F,,, (x) d p  (x) = limp {x: sup Q (xl, x,) > e )  = 0. 
vl0 D[0,11 ~3 0 I - q < t < l  

This implies the result because, by (4.2), for almost all w E fl 
d 

-- . 

The last quantity converges to 0 as q + 0. rn 

COROLLARY 4.1. Assume that the conditions of Theorem 3.1 are satisfied. 
Let p ~ , ~  be de$ned b y  (2.3). Then for almost all m e 0  the relation (4.3) is 
satisfied. 

Proof .  We check the conditions of Theorem 4.1. Let p be defined 
by (2.2). 

By Theorem 3.1, the relation (2.1) is satisfied. But in our case 

Consequently, the relation (4.2) is satisfied. Therefore (2.1) and Lemma 4.2 
imply that p almost all functions in D [0, 11 are continuous at 1. So Theo- 
rem 4.1 implies the result. ta 

- Now we prove discretized versions of Theorem 2.1. In the following 
theorem we consider random probability measures concentrated on some 
trajectories X,, (my w). The result is a version of the first part of Theorem 3 

'-in [15]. - 

THEOREM 4.2. Let X ( t )  be a process with trajectories in D [0,  11, and let 
p be a probability on D [0, 11. Assume that for any bounded measurable func- 
tioaal F :  D [0, 11 + R 

= 1 F [x] dp (x) for almost all o E a. 
Dl0,lI 
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For any n kt 1 = bl,. < b2,n < . . . < bk,,,, = bn be an increasing sequence of real 
numbers with the following properties: 

14-61 lim bn = m , lim !?@@ = D for any firxed j ,  
n + m  n+m logb, 

and 

(4.7) 
b k + l , n  lim sup - - - 1. 

j+m ( k , n ) : j C k < k n  bk,,, -- - -- 

- For any'fixed o and n define the random probability measure @,,, on D [O, 11 
to be concentrated on the trajectories Xb,,.(., a), j = 1, . . ., kn- 1, and satis- 

fy ins 

Then for almost all w 

lim /I.,, = p. 
n+m 

I We need the following lemma. 

LEMMA 4.3 (Lemma B in [15]). Let (M, g) be a complete separable metric 
space, let denote the a-algebra of its Bore1 sets. Let p, p,, and @,, 
n = 1, 2 ,  . . ., be probability measures on ( M ,  a). Assume that lim,,, p,, = p. 
Assume also that for any E > 0 and for any compact set F 

where F" {x E M :  Q (x,  F )  < E ) .  %en lim,, , P n  " = P- 

P r o  of of The  o re  m 4.2. First we remark that, by (43, for the probabili- 
ty measures p ~ , ~  defined by (2.3) we have limn,, pbn,@ = p for almost all o E S2. 
Therefore, by Lemma 4.3, it is enough to prove that for almost all w, any r > 0, 
and any compact set I; 

Define a probability measure on [I, a as follows: 
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for any Borel set C s [ l ,  TI. Then for any Borel set 3 G D [O, 11 we have 

~b.,m(B) = vbn {s:  S E [ ~ ,  bn), Xs(., u)EB}, 

Pnim(B) = vb, ( s :  31, 1 < j  < kn, such that bj,, < j < bj+l,,, Xbj,n(-, w ) E B ) .  

For > 0 and E > 0 let 

A ( E , ~ ) = { x E D [ O , ~ ] :  sup p ( x l , x t ) < ~ } .  
1 - t / C t < l  

By Lemma 4.2, p almost all functions in D [0, 11 are continuous at 1. Therefore 
we'can apply Theorem 4.1. ConsequentIy, for almost all w we have: for fixed 
E > 0 and 6 > 0 we can find r j  > 0 and no such that . 

For the above fixed E > 0, 6 > 0, q > 0, and no we choose jo = j ,  ( q )  and 
n, > no such that 

b k +  1.n 1 <- rl < I + -  if n > n l  and j o < k < k , ,  
bk.n 2 

(This is possible because of (4.6) and (4.7).) Now we have 

F n , m  (FE) = vbn {s: 3 j ,  1 d j < kn, such that bj,n < s  < bj+l,n, x b j , , ~ ,  O)E F ~ }  

2 vbn ( s :  3 j ,  jo d j  < kn, such that bj,, < s  < bj+l,n, Xbj,n(., w ) ~  FE} 
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3 Pb,.m (F)  - v b ,  (C1, bjo)) - ~ b , , , w  (A) 3 ~ b , , w  (F)-26.  

In the last steps we have used (4.12), (4.13), and (4.14). s 

In the following theorem we consider random probability measures con- 
centrated on step functions constructed from the trajectories XbJ,,(-, w). The 
result is a generalization of the second part of Theorem 3 in [15]. 

THEORZM 413. Let x ( t )  be a process with trajectories in D [O, 11, and let 
p be a probability on D [O, 11. For any n let 0 = b ,,,, 1 = b,,, < b,, ,  < . .. < 
bkn,, = b, be an increasing sequence of real numbers. For any fixed KI and 
n de3ne the rundorn probability measure P,,, on D LO, 11 to be concentrated on 
the trajectories Xbj, ,  ( a ,  w), j = 1,  . . ., k ,  - 1. For any w E O define the random 
step lines Rb,,n (-, w), j = 1 , . . . , k ,  - 1, as 

and 

Xbj." (1 r 4 = Xbj,, (1, w).  

Let the random probability measures f in, ,  be concentrated on the aboue random 
step lines such that 

Suppose that for each $xed j the sequence {bj,,: k, 2 j )  is bounded, 

lim -inf bj,n = co 
j+ m {n:k, 233 

and-conditions (4.6) and (4.7) are satisfied. Assume that for almost all w 

lim p.,, = p. 
n-r m 

Then for almost all u, 

To prove this theorem we need the following preparation. 

LEMMA 4.4 (Corollary of Lemma B in [15]). Let ( M y  g )  be a complete 
separable metric space, let denote the G-algebra of its Bore1 sets. Let p, p,, and 
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jn ,  n = 1, 2, . . ., be probability measures on ( M ,  g). Assume that for any e > 0 
and 5 > 0 there exist probability measures P:', n = 1 ,  2, . . ., on the product 
space (M x M ,  $8 x 8) such that 

(i) the marginal distributions are pn and fin, i.e. P',.'(A x M )  = p,(A) and 
E 6 ( M x A ) = i i , ( A )  for each A E ~ ,  n =  1,2 ,  ...; 

(ii) lim sup,-, Ed( { I x ,  y) :  Q (x, y) > E)) < 6. 
If lim,,,p, = ~ 1 ,  then lim,,,ii, = p. 

I f  ( i)  and (ii) are satisfied, then we say that p, and ii, have a good coupling. 

LEMMA -4.5 (Le-ma C in [15]). For x E D LO, 11 and 6 > 0 let -- 

where 2 ,,,.., ts(t)  = x ( t j -1)  $ t j -  1 < t < t j ,  j = li . . . r  s, and x t  ,,..., *,(I) = x(1)- 
Then for any x E D  [0, 11 we have 

lim g (x, 6) = 0. 
8-0 

Moreooer, for any compact set K c D [0, 11 we have 

lim sup g (x, 5) = 0. 
8-r0 XEK 

Proof  of Theorem 4.3. Apply Lemma 4.4 with pn = b,,, and ii, = ,L 
Define P:d = P ,,,, n = I ,  2, . . ., on the product space (D [0, 11 x D [0, 11) such 
that 

Then the marginal distributions of P,,, are @,,, and fin,,. So it is enough to 
-prove that for almost all o 

(4.19) 
.- . . 

where 

lim P,,,(A*(&, 4) = 0, 
n-r m 

where E > 0 is arbitrary. As the sequence fin,, is convergent, it is tight; therefore 
for any q > 0 there exists a compact set K such that fin,,(K) > 1 -q  for all 
n = 1, 2, .. . Therefore, to prove (4.19), it is enough to establish 

for any compact set K. 
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Now for any fixed q > 0 define m(n) = m(n, g) = max {j: log bj, ,  < 
y log b,). By (4,6), we have lim,, , rn (n) = m, and by (4.18) 

Let 

A!(&, WI = ((Xb,,,(-, 4, Xbj,,(., 4): m(n, g) < j < k,, 
Q (Xbj.,C, 01, Xbj,, (., 4) > E ) .  

We have P,, (A, (E, w)\A:(E, w)) < q.  Consequently, instead of (4.20) we have 
to prove 

(4.21) lirn P,,,(A:(E, w)n(K x D [ O ,  11)) = 0. 
n+ m 

Conditions (4.61, (4.7), (4.17) and the boundedness of the sequence {b,,,: k, 2 j )  
imply that for any 6 > 0 

if n and m are large enough. This relation and Lemma 4.5 imply that 

for each compact set K E D  LO, 11. Thus we obtain (4.21). i 

5. A FUNCTIONAL LIMIT THEOREM 
FOR SEMISTABLE DISTRIBUTIONS 

The following theorem is an a.s. functional limit theorem for semistable 
distributions. 

THEOREM 5.1. Let t,, t2, .. . be independent identically distributed random 
variables with nun-Gaussian semistiable distribution, i.e. the characteristic func- 
tion of ti is $ (1, x, 0, 0, L(y), R (y)) ,  where t/~ is defined by (3.1), L (y) and R (y) 
satisfy (3.2) and (3.3), respectively. For the exponent assume 0 < cx < 2 and for 
the period c > 1. Let b (u) be deJined by (3.4j43.5). Let Sn = tl + . . . + 5,  - 
b(n), n =  1, 2, ..., So = O .  Let 

and (1, w) = S, (u)/nl/". Let the measure p,,, on D [0, 11 be defined by 

a,, (A) = - Clog ( 2  + 1) - 1% 11 I* (Y. ( - 9  4) 
logn ,=, 



254 I. Fazekas  and Z. Rychlik 

for any Boref set A c D [0, I]. Then for almost all w 

1h.n Pn,m = P, 
n-tm 

where p is defined b y  
1 ' 1  

p = - j -ptdt ,  
loge , t 

and p, is the distribution of Xt (-1 = X (t .)/tlia while X (u) is  the semistable process 
de$ned in Theorem 2.1. 

P-roof: Let bj,; = j for j = 0, 1, . . ., n (in particular, k, = n) and 
n = I ,  2; . . . It satisfies the conditions of Theorems 4.2 and 4.3. 

Let X (t) be the semistable process defined in Theorem 3.1. We can choose 
S, = X ( n ) ,  n = 0, 1 ,  2, . . . Theorems 3.1, 4.2, and 4.3 give the result. 
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