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the mean squared error of a Linear estimator of the expectation of the 
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1. INTRODUCTION AND NOTATION 

Let Yl, .. ., Y, be a simple sample from the normal distribution 
I N (Kp, a2 KK' + a: I,), 

where p~ W, a2 2 0 and a: > 0 are unknown parameters, K E WJ is a known 
vector, and I, is the n x n identity matrix. Gnot et al. (2001) considered this 
model for spatially located sensors measured intensity of a source of signals in 
discrete instants of time. When K = I,, where 1, denotes the J-vector of ones, 
we obtain the balanced one-way classification random model. Note that Y =  
(Y;, . . . , G)' has the following normal distribution: 

where the symbol @I denotes the Kronecker product. We are interested in 
estimation of the mean squared error of a linear estimator I' Y of where 
1 E gnJ, determined as 

MSE(P Y )  = a2 P(I,@KK')Z+a~ Z'1 +p2(P I,,- 1)'. 

This function is a linear combination of p2, cZ and a:. The natural class of 
estimators of such a function is the class of quadratic forms with respect to k: 
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that is 
{Y' AY: A E YnJ], 

where Yn, denotes the space of nJ x nJ symmetric matrices. To compare quad- 
ratic estimators we use again the mean squared error. 

The problem of quadratic estimation of the mean squared error of a linear 
estimator within the Gauss-Markov model was considered for example by 
Stqpniak (1998), Bojarski and Zmyilony (1998), Gnot and Grzqdziel (2002). 

To characterize the class of admissible quadratic estimators we reduce first 
this problem to linear admissible estimation in a special linear model using 
a result-of Zmyblony (1976). Next we use the theory developed by LaMotte 
(1982) to describe admissible estimators. 

Under the additional assumption that K = 1, Zmyilony (1976), general- 
izing the results of Harville (1969), has shown that if Y'DY is an admissible 
estimator, then D belongs to the quadratic subspace 9 (Jordan algebra) span- 
ned by 

that is, D belongs to the smallest linear space 22 containing n x n symmetric 
matrices such that A2 E 9 for every A E 9. This result implies that a quadratic 
admissible estimator is a linear combination of quadratic forms with respect to 
Y defined by matrices forming a base of 2. 

Under our assumptions the quadratic subspace 22 is the linear space gene- 
rated by (2). As a base of d we choose 

1 
B2 =- 

K'K 
I , @ K K f - 8 1 ,  

Note that 
Bi for i = j = l - , 2 , 3 ,  

BIBj  = {o 
for i # j .  

The result of ZmyiIony (1976) implies that each admissible quadratic es- 
timator is a linear combination of Z = (Y' B1 Y, Y' B2 Y, Y'B, Y)'. It is easy to 
see that 

where 
0 0 bl 0 0 
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ti = tr(Bi), i = 1, 2, 3, b,  = nK' K, b2 = K' K. Moreover, the covariance matrix 
of Z has the following form: 

(a2 b2 + c ? ) ~  + 2p2  bl (a2 b2 + 0;) 0 
(4) cov, ( Z )  = 2 T 0 

0 0 

Of course, the vector 0 is a linear combination of E,(Z), that is, 0 = 
C'Eo(Z) ,  where C = T - I  I f - '  . Consequently, the mean squared error of a line- 
ar estimator L Z  of 8, where L is a 3 x 3 matrix, can be written as 

- 

(5) M ~ Q ( ~ Z ;  0) = tr [ECOV,(Z)L+(L- c)' E.(z) E.(z')(L- a. ' 
This risk depends on the distribution of Z through cova(Z) and E8(Z') E,(Z)  
only, so we take (cov,(~),  EB (2) E8 (z')) as a new parameter. Following La- 
Motte (1982) we denote the new parameter space by 3T We extend the risk 
function (5 )  from F to W = span(T) for each W = (W,, W,)'EW b y  

To begn with, we present LaMotte's theorem in a form most suitable for 
our considerations. 

Let 9 be an affine subspace of 3 x 3 matrices having the following form: 

9 = {L,+UX: XEA, .~ ) ,  

where Lo, II E A,, ,, while A,. , is the space of all 3 x 3 matrices. An es- 
timator E Z  with L E ~  is called best among 9 at a point W E W  if 
Q (E  Z; W )  < Q (M'Z; W) for all M E  2'. Let (W I 9) denote the subset of all 
L E 3 such that I: Z is locally best among 2' at W Notice that k# (W I 9) is not 
empty iff the matrix 17'(Wl + W2)17 is n.n.d. and 

For-a matrix M the symbol g ( M )  denotes the space generated by columns 
of M. If a ( W ]  9) is not empty, then an estimator L: Y is locally best at W 
among 2' iff 

-.- . - 
nyw, + w,) L = nt w2 c. 

The last equation has the unique solution iff W (II' (W, + W2) 17) = $2 ( I l l ) .  

Following LaMotte (1982), an element W in W is said to be a trivial point 
for 9 if i f {W 19) = 9. The set of trivial points for 2' will be denoted by 
9' (9). Obviously, 

Since n'(Wl + W2)II is n.n.d. for each W in the closed convex cone con- 
taining F + 9, to be denoted by [Y + y], it follows that (W 1 9) # 0 for 
W in [F+ 9]\9 8 (7) holds. 
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Define 

d (9) = { W E  [S + 9']\9: 98 (W I 9) is nonempty) . 
LaMotte (1982) has given a stepwise algorithm to characterize admissible 

linear estimators. To formalize this procedure let us introduce the following 
notation. 

For i = 1,  2, 3, define the following families of affine sets in & 3 x 3 :  

-. ; V i  = { W  2): - W E ) .  
I 

The set of admissible linear estimators of C'B can be described as 

{X 2: {L) E Wi) for some i = 1,2, 3) 

(see also Zontek (1987) or Klonecki and Zontek (1985)). 

2. A CONSTRUCTION OF ADIWISSI5LE LINEAR ESTIMATORS 

In this section we use the above-described stepwise procedure to construct 
all admissible linear estimators of 0 in the linear model given by (3) and (41, that 
is, all admissible quadratic estimators of 0 in the linear model given by (1). 

It is easy to see that each point W = (W,, W2) E W is uniquely determined 
by a matrix A = Idij)  E SP3. Indeed, 

where 01, = ~22+(d12+dzi)bi  bz+(d13+d3i)bl, ~ 2 2  = 4 2  b$+(d23 +d3z)b2+ 
.d33 and v3, = d33, and 

W2 = W2 (A) = TH'AHT. 

The set [S] corresponds to matrices A's from the set of all n.n.d. matrices in 
2Y3 with nonnegative entries. 

2.1. The first type of admissible estimators (three steps). In the first step we 
take 

A = [ 1 ,  d l ,  > 0. 
0 0 0  

Simple calculations show that 
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where 
1 0 0  0 0 0 

Note that M I  does not depend on dl,, so we would take for example dl, = 1. 
The set 5a(2if1) corresponds to the set 

and d(LF1) Lorresponds to the set 

In the second step we take 

where instead of symboIs x we can put any numbers. As before, without loss of 
generality we can take d2, = 1. Then 

9 2  = g(31 I W(A2)) = ( M 2 C + n 2 X :  X E & ~ . , ) ,  
where 

0 0 0 0 
0 l7,= 0  0 0  . 
o 013 Iooll 

The set Y (diP,) corresponds to the set 

and d (p2) corresponds to the set 

In the last step we take 

5 - PAMS 25.2 
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Then 

9 3  = 3 ( 2 2 I W ( A 3 ) ) =  ( M 3 C } ,  

One can verify that the matrix M ,  C is the unique solution of the following 
equation: 

3  3 

(1 1 )  C n i - ~ [ ~ ( d i ) + K ( A i ) I L =  C 17,-I W z ( A i ) C ,  
i=1 i= 1  

where 

where 

M 3  = 

- A  

. - 

2.2. The second type of admissible estimators (two steps). There are two 
situations. In the first step we can take as before 

- - 
1 0 0 

0 t 2  

2 + t 2  
0 

0 2 i b 2  d 3 2  + 1) t2 t3  

- ( 2+ t2 ) (2+ t3 )  2+t3 - 

Consequently, the sets LYl = 93 (A3, , I  W ( A  ,)), Y (z) and d (2,) are given by 
(8), (9) and (lo), respectively. 

In the second step we choose A ,  in the following form: 

- Then 
=g(21i w ( A 2 ) ) =  { M 2 c } 7  

where 
0 

M2 = I W [L2. 
O m32 

and 
m 2 2  = t z  [2 + 4 d 3 2  b 2  + b? ( - d Z 2  t 3  + d 2 2  (2 + t 3 ) ) ] ,  
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Similarly to the previous situation, the resulting matrix defining admissible 
linear estimator is the unique solution of the equation 

There is another way of constructing the admissible estimators in two 
steps. In- the ,first step we take 

1 ,  dll 2 0, d12 b 0,  d:2 $ dl; .  dl= dl2 
0 0 

Then 

9; = g ( & 3 x g I W ( A l ) )  = ( M ~ C + n i x :  X E M ~ , , ) ,  

where 

and 
mll = tl [2b;+4bl bzdlz+bf (-dlzt2+dll(2+t2))],  

while 
- .- 

In the second step we take 

Then 



264 K. Neumann 

where 
mil m12 0 

M2 =- m21 m22 0 
w 

m31 m32 wt3M2+t3) 1 
and 

Again a matrix being the unique solution of the equation 

defines an admissible estimator of 8. 
Note that this equation is a copy of (12) but matrices nl, dl  and A2 are 

different. 

23. The third type of admissible estimators (one step). As A ,  we take a 3 x 3 
n.n.d. matrix with nonnegative entries and with d3, = 1. Then an estimator L: Z 
locally best among d3 .  at W ( A , )  is unique and, of course, admissible for 6. 
So L is the unique solution of the equation 

2.4. The main results. LaMotte's theorem implies that there is no other 
possibility of constructing the admissible estimators. Therefore we get the fol- 

. lowing characterization of admissible linear estimators of 8. 

THEOREM 1. An estimator E Z  is admissible for 9 if and only if L is the 
solution of ( l l ) ,  (12), (13) or (14). - 

The model described by (3) and (4) is regular in the sense of Zontek (1987) 
(see also Klonecki and Zontek (1985)). For regular models, admissible estima- 
tors of a linear parametric function can be characterized by admissible es- 
timators of the vector of parameters. So we have the following theorem where 
f is a 3-dimensional vector. 

THEOREM 2. An estimator g'Z is admissible for f '0  if and only $ 

g E ( L  f : E Z is admissible for 8 ) .  

This method of constructing the admissible estimators can be applied to 
estimation of the mean squared error of a linear estimator 1' Y of p, where 
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E E  gRJ, in the model (1). The mean squared error is a linear combination of p2, 
ahand a,Z for f given by 
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