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Abstract. This note is concerned with the existence of periodiéal-
ly correlated solutions for the PARMA(p,q) system

xn=¢r}xn71+¢rzlxn—2+
+¢£xn—p+€n+01}§n—l+ +Bﬂén*qs neZ,

where ¢, is a white noise and the varying coefficients ¢} and 0}, are
periodic in n with period T. Conditions which ensure the existence of
periodically correlated solutions for such systems are obtained.
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1. INTRODUCTION

By a stochastic process we mean a two-sided sequence x = {x,: neZ} of

random variables with zero mean and finite variance, i.e. a sequence of func- -

tions in the Hilbert space I% (Q) of some probability space Q. For our purpose
in this note, we will take a stochastic process to mean a two-sided sequence
x = {x,: neZ} of vectors in a general Hilbert space H with inner product (-, )
and norm ||||. Periodically correlated (PC) processes were first studied by Gla-
dyshev in [5] and subsequently by several authors including [37, [6], [9], [10],
and [12]-[14]. Like ARMA and AR systems for stationary processes, PARMA
and PAR systems are important for modelling periodically correlated processes
and have been studied by several authors including [1], [2], [3], [8], and [15].
A PC process x = {x,: neZ} is said to be PARM A(p.q) if it satisfies an autore-
gressive periodic moving average system

(1) xn=¢r}xn—1+¢72|xn—2+
+ @2yt EutOr o+ ... +02E,_,, nEZ,

* Supported by DOD in USA and IPM in Iran.




X, is called ARMA(p,q) if it satisfies an ARMA(p,q) system
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where for each i the sequences {¢%: ne Z} and {0;: ne Z} are periodic in n with
period T and the process ¢ = {£,: neZ} is a white noise, namely a sequence
of uncorrelated complex random variables with mean 0 and variance 1. It is
essential to obtain conditions on the coefficients of the PARMA system (1)
which ensure that it has a periodic solution. Some of such conditions were
given in [15] and other ones can be found in [16] and [11]. Here we will
obtain other conditions of such a kind. All these conditions generalize the
following well-known theorem.

THEOREM 1. Ifyut_‘he polynomials _ N
D) =1—yz— ... —$p2? and 0@)=1+0,z+ ... +0,21
have no common zeros, then the ARMA(p.q) system

Xp =1 X1+ 2%, 2+ ...
+¢pxn—p+£n+01§n—l+ +9qén—qa HEZ,
has a unique stationary solution if ¢(z) # 0 for all complex numbers z with

lzZ|l < 1. In this case the process x = {x,: neZ} has a causal represen-
tation

o0
Xp = Z 'yj&n—j: nEZ:
ji=0

where coefficients vy; are determined by the relation

@ . 6(2
= 77 = —
j=0 é(2)
Next we state a multivariate extension of Theorem 1 which will be needed

in Section 3. A vector process X, = [x}, x2, ..., xi]' consisting of random var-
iables x; is called a multivariate or an r-variate process. The r-variate process

q .
djiX,,_i=A,,+ z @]A"m_,, nEZ, -
i=1

7

e

where @; and @; are some rxr matrices and 4, is an r-variate white
noise.

THEOREM 2 (cf. Theorem 11.3.1 in [4]). If det(I—);_ ®;z)) # 0 for all
complex numbers z with [z| < 1, then the ARMA(p,q) system (2) has a unique
r-variate solution. This solution is stationary and has a causal representation of
the form
X,= )Y I;¢,—;, nelZ.

ji=0




PC solutions of PARMA models 281

2. PRELIMINARIES

In this section we set up the notation and introduce the preliminaries we
need in the next sections. A process x = {x,: neZ} is said to be stationary if its
covariance function R (m, n) = (x,,, x,) depends only on m—n or, equivalently,
if for each integer k its covariance function R(n+k, n) is constant in n. The
process x = {x,: neZ} is said to be periodically correlated with period T (in
short PC-T) if for every ke Z its covariance function R(n+k, n) is periodic
in n with period T. Note that any PC-1 process is stationary and any stationary
process is PC-T: for all-positive integers 7. A multivariate process:X, =
[x1, x2, .., x] is said to be stationary if for each integer k its Gramian covari-
ance function defined by

G(n+ks n) (Xn-Hu ) [(xn+ks I‘I):ll j=1

is constant with respect to n. An r-variate process 4, is called a multivariate
white noise if its Gramian covariance function satisfies

0 if m#n,
I ifm=n.

(Am: An) = {

There are several close ties between univariate PC processes and multi-
variate stationary processes which have been used successfully to study various
properties of PC processes; cf. for example [12]-[15]. In the next lemma we
give such a tie which will be needed later. We provide its easy proof here for the
sake of completeness. For any process x = {x,: neZ} we define its T-variate
associate Y, by bundling its blocks of length T as follows:

'
Yn = [ana XpT 15 «+» an—T+1] .

One can easily check that when the process &, is a white noise, so is any one of
its multivariate associates.

LemMA 1. A process x = {x,: neZ} is PC-T lf and only if its T-variate
associate Y= {Y,: neZ} is stationary. -

Proof (“only if part”) Suppose that x = {x,: neZ} is PC-T. Then for
eachi,j=0,2,..., T—1 the (i, j)-th entry of the Gramian covariance function
G(n+k,n) of ¥, can be expressed as

G”(n+k n) = (Y1, n)ij=(x(n+k)T—is an—j)5

which shows that each entry G¥(n+k, n) of G(n+k, n), and hence G(n+k, n)
itself, is constant in n.

(“if part”) Suppose that Y, is stationary. Take two integers m and n. There
are integers p, g€ Z and i, je[0, T—1] such that m = pT—i and n = qT—j.
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Hence we can write
(xms xn) = (xpT—i7 qu——j) = (Yi Yj) )ll =GY (p: ‘I) Gij(p"_ 1: q+ 1)
= (Y41, q+1)1 (*@+1r- is X(g+1)T - J) = (XT4m> XT4n)

Therefore the covariance function R (m, n) = (X, x,) of x = {x,: neZ} is pe-
riodic in n with period T, which means that x = {x,: neZ} is PC-T. m

3. MAIN RESULT
" In this section we generalize Theorem 1 and prove our main result Theo-
rem 4, which establishes sufficient conditions for the existence of PC solutions
for the PARMA (p,q) system (1). First we prove Proposition 1, which gives
some conditions for the existence of PC solutions for the PAR(p) system

) Xn = PaXpo1+PE Xzt oo +PEXu_ &,

and we show Proposition 2, which gives a converse of Proposition 1 that is
crucial for our proofs.

In the rest of the paper we work with the notation set in the following
definition:

DerFmTioN 1. Starting with the PAR (p) system (3) and its autoregressive
coefficients ¢% we define A%" for integers neZ and ke[l, p] to be

Ak,_{qb" o if r=1,
Yoo, ..oy, Hr=2,3..T
The sum here is over all possible strings (iy, is, ..., i;) of integers in [1 r]
which add up to k. We denote A%T simply by A" and put
T—1
Sk= Y Ak
r=1

We now consider @, and &, for k=1, 2, ..., p to be those T x T matrices
~_which are (uniquely) defined by the followmg ‘properties:

(a) @, and @, are upper triangular,

(b) @, and @, are lower triangular,

(c) diagonal entries of @, are all 1,

(d) the rest of entries of these 2p matrices are given by

O = AT ad OF = ST
PROPOSITION 1. If the PAR(p) system (3) has a PC-T solution x =
{x,: neZ}, then the multivariate ARMA(p,q) system

P P
“) ' Y,— Z DY, ;= Z @jAn—j

i=1 j=0
must have a T-variate stationary solution.

S
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Proof. Iterating the system (3) once, we get
p 4
xn= Z ¢:I(Z ¢£l*ixn7i7j+£nfi)+én Z Z ¢l n— l-xn i— ]+ Z ¢l én l+§n
=1 j=1 i=1j=

Iterating it T —1 more times we get

P
) Z Z PP o DI iy ir 1 Xty —iam iz

ir=1

u M’u

-+ Z Z L Z on i iy oee- ()b;-l’r—_i;ﬁiz...i-rfzén*il;izf...;i-rfl

voii=1i=1 ir-1=1
p .
.+ Z ¢;€n—i+§n'
i=1

Using matrices A" and A% as in Definition 1 we can write (5) in the compact
form
(T—-1)p T—1

(6) Z Ak Xp— k+£ + Z (Z Alli'r)gn—k'

If in (6) we replace n with nT, nT—1, ..., nT— T + 1, respectively, we get the
following system of T equations:

7
( ) pT T-1)p T—1
(Xur =Y, AfrXur—i + 3, (Z A )énT k+énT:
k=T k=1
pT (T—l)pT 1 )
XpT—1 = Z Abp 1 X1 + Z (Z An‘;'——l)énT—k—lénT-la
p k=T k=1 r=1
; B a—bp -1
( XnT-T+1 = Y Ak 71 X741k Y. (Z An’;—T+1)fnT—T+1—k+fnT—T+1'
k=T k=1 r=1 ‘ .-

--The system of T equations in (7) can be writtén as the single matricial
equation

T T+1 2T-1
XnT Awr  Ant o Anr XnT—-T
T 2T-2 .
©) XnT—-1 _ | 0 Ay .o Al XnT-T-1
x 0 0 AT x
nT—T+1 <+ AaT-T+1 nT—-2T+1
2T 2T+1 37T-1
AnT A ‘e A XnT—2T
2T-1
+ Asr=i AmT 1 e A3 XpT—2T-1

T+1 T+2 2T '
Ant =141 Aat 41 -0 AdT—T41 XpT—3T+1
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AZT 0

0 an—pT
+ AnT 1 An —1 0 XnT—pT~1
Aﬂ%‘ %‘-H A,’f% ;if A —-T+1 | XaT~pr—T+1
1Sk Sh S . SEU ]
0 1 Sar—1 STz, 5"
+ nT-1
-~ -{0 -o 0 0 1 S,,._,_”2 P
. o o 0 0 1 nT-T+1
S:TT ST+1 SZT ! anT;T
+ SnT 1 SnT 1 S - . énT—T—l
1 .
_SnT—T+1 SI%T—T'FI SZ'T——T+1 _6nT—2T+1
Sﬁg_T 0 0 énT—pT-!-p
— — T_
4 Sg;—lT ! SP —T 0 énT—pT+p-—1
- 1 T 2T 2 C 'T—‘
_Sg%'_%ij- SII:T T+-; e SﬁT—%:+1_ énT—(p+1)(T—1)

In terms of the associated T-variate processes

Y, = [Xars Xar—15 oo 0s Xur-7+1]  a0d Ay =[ars Sar—15 s Sar—1+1]
of x, and &, the equation (8) becomes (4) and completes the proof. =

The following converse of Proposition 1 is crucial in our proof of the next
theorem.

PRrOPOSITION 2. If the multivariate ARMA(p,p) system (4) has a unique
stationary solution, then the PAR(p) system (3) has a PC-T. solution.

-~ ... Proof. Suppose that Y= {Y,: neZ} is the unique T-variate-stationary

solution of the ARMA(p,p) system (4). We unbundle this process to get the
univariate PC-T process x = {x,: ne Z} to which Y= {Y,: neZ} serves as the
associate (cf. Lemma 1). We want to show that x = {x,: neZ} is a solution for
the PAR (p) system (3). To show this it is natural to try to follow steps in the
proof of Proposition 1 backward, and that is how we are going to pro-
ceed. Since Y= {Y,: neZ} satisfies the system (4), its unbundled process
x = {x,: ne Z} must satisfy the matricial equation (8), which is the same as the
system of T equations in (7). Since these T equations are clearly equivalent to
the single equation (6), the process x = {x,: ne Z} satisfies (6). Finally, since (6)
is the compact form of (5), x = {x,: ne Z} must satisfy (5). It remains to show
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the last step of going from (5) to (3). But, in general, a solution for (5) is not
necessarily a solution for (3). However, in our case this is true. To verify this
claim we need to introduce some more notation. For any process x =
{x,: neZ} we define Lx to be the process given by

P .
(Lx)n = Z a:lxn—i_l_én'
i=1

With this notation, x = {x,: neZ} being a solution of the PAR(1) system (3)
means x = {x,: neZ} being a fixed point for L, and y = {y,: neZ} being
a solution of (5) means y.= {y,: neZ} being a fixed point for L. We showed
that our PC-T process x satisfies (5), which means that x = {x,: neZ} satisfies
the equation

o) x=ITx.

Putting w = Lx we can write (9) as

(10) ' x=L'"1w.

Applying L to both sides of (10) we get Lx = L (L~ w), which clearly gives
1) w=ITw.

Therefore (9) and (11) show that both x and w are solutions of (5), and hence
they must be the same:

(12) X =W

otherwise they generate two different solutions to the ARMA(p,p) system (4),
contradicting the uniqueness assumption. Finally, substituting w = Lx in (12),
we get x = Lx, which means that the unbundled process x = {x,: neZ} is
a solution for the PAR(p) system (3). =m

An application of Theorem 2 followed by an application of Proposition 2
proves the following result:

- THEOREM 3. With the notation of Definition 1, if det(I—Y .  @;z')#0
for all complex numbers z with |z| < 1, then the PAR(p) system (3) has a unique
solution which is PC-T. )

" In the rest of this section we establish our maiﬁ result Theorem 4 which
extends Theorem 3 to the general case of the PARMA(p,g) system (1). We start
with the following extension of Proposition 1.

PROPOSITION 3. Suppose that the PARM A(p,q) system (1) has a PC-T solu-
tion x = {x,: neZ}. Then there exists a positive integer s and some T x T
matrices ¥, k=0,1,2,...,s, such that

4 s
(13) L,—2 &Y= ) Vidiy,
i k=0

i=1

where Y,, A, and ®; are as before.
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Proof. The proof of this proposition is similar to that of Proposition 1,
modified by replacing each &, by Z —o 04, &p—;. To be more precise, starting
with a solution x = {x,: neZ} of the PARMA(p,q) system (1) and following
the first four steps in the proof of Proposition 1, modifying each step as men-
] tioned earlier, we arrive at the modified version of the system (7). Now, group-
ing the coefficients here in matrices ¢; as before and some new matrices ¥, we
' arrive at the multivariate ARMA(p,s) system (13), which completes the proof. =

. One can similarly modify the proof of Proposition 2 to get the following
converse of Proposmon 3:

-PROPOSITION 4. With the notation of Proposition 3 and Def nition 1, if
the multivariate ARMA(p,s) system (13) has a unique solution, then the
PARMA(p,q) system (1) must have a PC-T solution.

Now we state our main result, which extends Theorem 3 to the general
case of PARMA(p,q) system (1). Its proof is a consequence of an application of
Theorem 2 followed by an application of Proposition 3.

THEOREM 4. If det(I-Y_ ®;z) #0 for all complex numbers z with
|z| <1, then the PARMA(p,q) system (1) has a unique PC-T solution.

4, EXAMPLES

In this section we examine some specific examples. The first example
establishes Theorem 3 in [7].

ExampPLE 1 (PAR(1) system). If {a,} is periodic with perwd T and
larap—1 ... a;| > 1, then the PAR(1) system

Xy = anxn*1+én
has a unique solution which is PC-T.

We note that in this case there is only one autoregresswe coefficient matrlx
QD and it is given by

A AT . AT
R T s
00 L A
P At . AN
o P oA
o o P
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where P is used to denote ardar—q ... a;. Hence we get

1—Pz —ATF1 ... —AX-!
det(—@dz)=det| 0 17F7 - — A = (1—P2)".
0 0 .. 1-Pz

Now all we need to do is to apply Theorem 3.

EXAMPLE 2 (PAR(I,q) system). Suppose that {a,} is periodic with perlod
T and |aTaT 1%+ ay| > 1. Then the PARMA(l,q) system -

q
Xn=GpXp1+ &t Y 0;En—;

j=1
has a unique solution which is PC-T.

This can be verified exactly as in Example 1 except here we need to invoke
Theorem 4 instead of Theorem 3.

ExXAMPLE 3 (PARMA(2,q) system). Consider the system
q
(14) Xn = anxn—1+bnxn—-2+§n+ Z Gjén—js
ji=1

where the sequences {a,} and {b,} are periodic with period 2. In this case there
are two autoregressive coefficients @1 and &, given by

. T4z a3 a,a; axby+axb a, bylfa b
_r4rti-i1— |42 2| _|@0d1 Gb371a202) 14z D2 1 D
@1 [ T+1 1] [0 Ai.] I: 0 a,aq 0 a, 0 a, »

= (AT = A3 0 _ b,b, 0 _ b, 01]]lb, O
e A? A‘I ale blbl a; b1 a; b]_ )

The PARMA(2,q) system (14) has a unique PC-2 solution if

[ay b |[as b b, 0B, 0 )
15 det(1—|"2 AT Tt{z—| 2 ’ 2
(15) e < I:O a1:||:0 a z a,+b, by ||la, b z¢ )1 #0

for all complex numbers z with |z] < 1
This can be seen by using Theorem 4.
Exampik 4. If |by| =1 and |b,| = 1, then the PARMA system
q
Xp=DpXp_2+ ), #E,-;
j=0

has a unique PC-2 solution.
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Note that this example is a special case of Example 3 and now the equa-
tion (15) reduces to

b, b, 0
I— 2) g B |
det( l:b1 b, b, bl]z ) (1—byb,2)(1—by by 2) #0
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