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Abstract This note is concerned with the existence of periodical- 
ly correlated solutions for the PARMA(p,q) system 

where [, is a white noise and the varying wefficients r$h and 06 are 
periodic in n with period T. Conditions which ensure the existence of 
periodically correlated solutions for such systems are obtained. 
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By a stochastic process we mean a two-sided sequence x = (x,: n E 2) of 
random variables with zero mean and finite variance, i.e. a sequence of func- 
tions in the Hilbert space (Q) of some probability space O. For our purpose 
in this note, we will take a stochastic process to mean a two-sided sequence 
x = (x,: n EZ) of vectors in a general Hilbert space H with inner product (-, -) 
and norm II.II. Periodically correlated (PC) processes were first studied by Gla- 
dyshev in [5] and subsequently by several authors including [3], [6], [9],  [lo], 
and 1121-[14]. Like ARMA and AR systems for stationary processes, PARMA 
and PAR systems are important for modelling periodically correlated processes 
and have been studied by several authors including [I], [2], [3], [8], and [15]. 
A PC process x = {x,: n EZ) is said to be PARMAf p,q) if it satisfies an autore- 
gressive periodic moving average system 
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where for each i the sequences (4;: n E 2) and (0; : n E Z) are periodic in n with 
period T and the process ( = (5 , :  n EZ} is a white noise, namely a sequence 
of uncorrelated complex random variables with mean 0 and variance 1. It is 
essential to obtain conditions on the coefficients of the PARMA system (1) 
which ensure that it has a periodic solution. Some of such conditions were 
given in [I51 and other ones can be found in [16] and [Ill. Here we will 
obtain other conditions of such a kind. All these conditions generalize the 
following well-known theorem. 

THEOREM 1. If the polynomials 
-A 

-- . 

4 ( z )  = 1 -41z -  .,. -4,zp and B(z) = l+O1z+ ... $O,zq 

have no common zeros, then the ARMA(p,q) system 

has a unique stationary solution if $(z) # 0 for all complex numbers z with 
I z ~  < 1. In this case the process x = {x,: n f Z )  has a causal represen- 
tation 

where coeflcients y j  are determined by the relation 

Next we state a multivariate extension of Theorem 1 which will be needed 
in Section 3. A vector process X, = [x:, xi ,  . . ., x',]' consisting of random var- 
iables x: is called a multivariate or an r-variate process. The r-variate process 
-Xn is called ARMA(p,q) if it satisfies an ARMA(p,q) system 

where ai and ej are some r x r matrices and A, is an r-variate white 
noise. 

THEOREM 2 (cf. Theorem 1 1.3.1 in [4]). If det (I -z;=, ai zi) # 0 for all 
complex numbers z with lzl < 1, then the ARMA(p,q) system (2) has a unique 
r-variate solution. This solution is stationary and has a causal representation of 
the form 

CO 

X = - ~ E Z .  
j= 0 
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2. PRELIMINARIES 

In this section we set up the notation and introduce the preliminaries we 
need in the next sections. A process x = (x,: n E Z) is said to be stationary if its 
covariance function R (my n) = (x,, xn) depends only on m - n or, equivalently, 
if for each integer k its covariance function R(n+ k, n) is constant in n. The 
process x = {x,: n~ Z) is said to be periodically correlated with period T (in 
short PC-T) if for every k E Z its covariance function R (n + k, n) is periodic 
in n with period T Note that any PC-1 process is stationary and any stationary 
process is PC-T= for all--positive integers T. A multivariate process X, = 

[ x : ,  x i ,  1. ., $At is said to be stationary if for each integer k its Gramian couari- 
ance function defined by 

is constant with respect to n. An r-variate process A, is called a multivariate 
white noise if its Gramian covariance function satisfies 

There are several close ties between univariate PC processes and multi- 
variate stationary processes which have been used successfully to study various 
properties of PC processes; cf. for example [12]-[15]. In the next lemma we 
give such a tie which will be needed later. We provide its easy proof here for the 
sake of completeness. For any process x = (x,: n E Z} we define its T-variate 
associate Y, by bundling its blocks of length T as follows: 

One can easily check that when the process 5,  is a white noise, so is any one of 
its multivariate associates. 

LEMMA 1. A process x = {x,: ~ E Z )  is PC-T if and only if its T-variate 
associate Y= (Y,: n E Z) is stationary. - 

Proof. ("only if part") Suppose that x = (x,: n E Z} is PC-T. Then for 
each i ,  j = 0, 2, . . ., T- 1 the (i, j)-th entry of the Gramian covariance function 
G (n + k, n) of Yn can be expressed as 

which shows that each entry Qi(n + k, n) of G ( n  + k ,  n), and hence G (n + k ,  n) 
itself, is constant in n. 

("if part") Suppose that Jl', is stationary. Take two integers m and n. There 
are integers p, ~ E Z  and i, j ~ [ 0 ,  T-l] such that m = pT-i and n = qT-j. 
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Hence we can write 

Therefore the covariance function R (my n) = (x,, x n )  of x = {x,: n e Z) is pe- 
riodic in n with period 7; which means that x = (x,: n EZ) is PC-T. ia 

3. MAIN RESULT 
d 

-. 

In this section we generalize Theorem 1 and prove our main result Theo- 
rem 4, which establishes sufficient conditions for the existence of PC solutions 
for the PARMA(p,q) system (1). First we prove Proposition 1, which gives 
some conditions for the existence of PC solutions for the PAR(p) system 

and we show Proposition 2, which gives a converse of Proposition 1 that is 
crucial for our proofs. 

In the rest of the paper we work with the notation set in the following 
definition: 

DEPINITION 1. Starting with the PAR(p) system (3) and its autoregressive 
coefficients #I we define A$' for integers n E Z and k E [1, p] to be 

The sum here is over all possible strings (il, i2, . . ., i,) of integers in [I, p] 
which add up to k. We denote A:T simply by Ak, and put 

We now consider @, and for k = 1, 2, . . ., p to be those T x T matrices 
which are (uniquely) defined by the following properties: - 

(a) 6, and 6, are upper triangular, 
(b) and 6, are lower triangular, 
(c) diagonal entries of are all 1, 
(d) the rest of entries of these 2 p  matrices are given by 

P ~ o w s r r ~ o ~  1 .  If the PAR(p) system (3) has a PC-T solution x  = 
{x,: n E Z ) ,  then the multivariate ARMA(p,q) system 

must have a T-variate stationary solution. 
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Proof.  Iterating the system (3) once, we get 

Iterating it T - 1 more times we get 

Using matrices A:.' and A: as in Definition 1 we can write (5)  in the compact 
form 

TP ( T - l ) p  T-1 

16) xn= C A i x n - k + t n +  C ( C  A t ' q e n - k -  
k =  T k = l  r = l  

If in (6) we replace n with n7: nT - 1 ,  ..., nT- T + 1, respectively, we get the 
following system of T equations: 

I PT (T- l ) p  T - 1  

AT-1 = C 4 T - I x T - k - 1  + x (C  A%-l)tnT-k-1 t n T - 1 ,  
k= T k = l  r = l  

-The system of T equations in (7) can be written as the single matricial 
equation 
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In terms of the associated T-variate processes 

of x, and 5, the equation (8) becomes (4) and completes the proof. 

The following converse of Proposition 1 is crucial in our proof of the next 
theorem. 

PROPOSITION 2. If the multivariate ARMA(p,p) system (4) has a unique 
stationary solution, then the PAR(p) system (3) has a PC-T solution. 
- - P r o  of. Suppose that Y = (Y,: n  E Z )  is the unique T-variate-stationary 
solution of the ARMA(p,p) system (4). We unbundle this process to get the 
univariate PC-T process x = {xn : n E 2) to which Y = { Y,: n E Z )  serves as the 
associate (cf. Lemma 1). We want to show that x = {x,: n E Z )  is a solution for 
the PAR(p)  system (3). To show this it is natural to try to follow steps in the 
proof of Proposition 1 backward, and that is how we are going to pro- 
ceed. Since Y =  (Y,:  ~ E Z }  satisfies the system f4), its unbundled process 
x = {x,: n E Z }  must satisfy the matricial equation (X), which is the same as the 
system of T equations in (7). Since these T equations are clearly equivalent to 
the single equation (6), the process x = (x, :  n f  Z )  satisfies (6). Finally, since (6) 
is the compact form of (5), x = (x,: nE Z )  must satisfy (5). It remains to show 
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the last step of going from (5) to (3). But, in general, a solution for (5) is not 
necessarily a solution for (3). However, in our case this is true. To verify ths  
claim we need to introduce some more notation. For any process x = 

{x,: ~ E Z )  we define Lx to be the process given by 
P 

(Lx), = C af x , - ~ + C , .  
i =  1 

With this notation, x = (x,: ~ E Z }  being a solution of the PAR(1) system (3) 
means x = (x,: n E Z) being a fixed point for L, and y = ( y , :  n E 2) being 
a solution of (5) means y-= (y,: ~ E Z )  being a fixed point for LT, We showed 
that our PET process x satisfies IS), which means that x = (x , :  n E Z) satisfies 
the equation 

Putting w = L x  we can write (9) as 

(10) X = L ~ - ~  w. 
Applying L to both sides of (10) we get Lx = L(LTA1 w), which clearly gives 

(1 1) w = LTw. 
Therefore (9) and I l l )  show that both x and w are solutions of (9, and hence 
they must be the same: 

(12) x = w ;  

otherwise they generate two different solutions to the ARMA(pg) system (4), 
contradicting the uniqueness assumption. Finally, substituting w = Lx in (12), 
we get x = Lx, which means that the unbundled process x = {x,: ~ E Z )  is 
a solution for the PAR(p) system (3). nl 

An application of Theorem 2 followed by an application of Proposition 2 
proves the following result: 

- THEOREM 3. With the notation of De$nition 1, $ det(1-x;=, e i z i )  # 0 
fop. all complex numbers z with JzJ < 1 ,  then the PAR (p )  system (3) has a unique 
solution which is PC-T. 

In the rest of this section we establish our main result Theorem 4 which 
extends Theorem 3 to the general case of the PARMA(p,q) system (1). We start 
with the following extension of Proposition 1. 

PROPOSITION 3.  Suppose that the PARMA(p,q) system ( 1 )  has a PC-T soh- 
tion x = {x,: ~ € 2 ) .  Then there exists a positive integer s and some T x T 
matrices Yk, k = 0 ,  1, 2 ,  .. ., s, such that 

where 1.',, A ,  and bi are as before. 
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Proof .  The proof of this proposition is similar to that of Proposition 1, 
modified by replacing each T. by z=, Pi {m-j. To be more precise, starting 
with a solution x = (x,: n G Z) of the PARMA(p,q)  system (1) and following 
the first four steps in the proof of Proposition 1 ,  modifying each step as men- 
tioned earlier, we arrive at the modified version of the system (7). Now, group- 
ing the coefficients here in matrices #i as before and some new matrices !Pk we 
arrive at the multivariate ARMA(p,s) system (131, which completes the proof. m 

. One can similarly modify the proof of Proposition 2 to get the following 
converse of Proposition -- - 3: 

- .  

-P&?osmo~ 4. With the notation of Proposition 3 and Definition 1,  if 
the multivariate ARMA(p,s) system (13) has a unique solution, then the 
PARMA(p7q)  system ( 1 )  must have a PC-T solution. 

Now we state our main result, which extends Theorem 3 to the genera1 
case of PARMA(pYq) system (1). Its proof is a consequence of an application of 
Theorem 2 foIIowed by an application of Proposition 3. 

THEOREM 4. If det ( l - C ~ = ,  aizi}  # 0 for all complex numbers z with 
lzl < 1 ,  then the PARMA(p,q) system (1) has a unique PC-T solution. 

In this section we examine some specific examples. The first example 
establishes Theorem 3 in [7]. 

EXAMPLE 1 (PAR(1) system). If {a,) is periodic with period T and 
[aTaT- . . . all > 1, then the PAR ( 1 )  system 

has a unique solution which is PC-T. 

We note that in this case there is only one autoregressive coeficient matrix 
@ and it is given by 
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where P is used to denote ~ ~ r a , - ,  . . . a,. Hence we get 

1-PZ -A%' ... 
0 1-Pz ... 

det ( I  - @z) = det 
, . . . . . . . . . . . 

Now all we need to do is to apply Theorem 3. 

EXAMPLE 2 (PAR(1,q) system). Suppose that (a,) is periodic with period 
T and ]aTaT- ,  ;. .-. all 2- 1. Then the PARMA(1,q) system .. . 

L 

q 

has a unique solution which is PC-?: 

This can be verified exactly as in Example 1 except here we need to invoke 
Theorem 4 instead of Theorem 3. 

EXAMPLE 3 (PARMA(2,q) system). Consider the system 

where the sequences {a,) and (b,) are periodic with period 2. In this case there 
are two autoregressive coefJicients and G2 given by 

The PARMA(2,q) system (14) has a unique PC-2 solution ij 

0 b 2  (14 det (I - [Y2 0 al b z ]  [ul 0 a,  b l ]  Z- [ b2 
b l ]  

bq] z') i 0- 
a1 +bl 

for all complex numbers z with lzl < 1. 

This can be seen by using Theorem 4. 

EXAMPLE 4. I f  Ibll 2 1 and Ibzl 2 I ,  then the PARMA system 

has a unique PC-2 solution. 
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Note that this example is a special case of Example 3 and now the equa- 
tion (15) reduces to 
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