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Abstract. For harmonizable symmetric stable sequences we solve
the following prediction problem: Assume that the values of the
sequence are known at all odd integers. Compute the metric projection
of an unknown value onto the space spanned by the known values as
well as the corresponding approximation error. We study several ques-
tions related to this prediction problem such as regularity and sin-
gularity, Wold type decomposition, interrelations between the spaces
spanned by the values at the even and odd integers, respectively.
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1. INTRODUCTION

Let ae(1, 2]. A stochastic sequence X:= {X,: ke Z} of complex random
variables is called a symmetric a-stable (SaS) sequence if the elements of the
linear span I(X) of X, keZ, are SaS random variables.

"In [4] and [1] concepts of a semi-inner product and a corresponding
norm |||, on I(X) were introduced. Of course, random variables coinciding
almost everywhere with respect to the underlying probability measure are iden-
tified. It turns out that convergence with respect to ||*||, is equivalent to conver-
gence in probability and that the closure of I(X) with respect to ||||,, which is
denoted by L(X) and is called the time domain of X, consists of jointly SaS
random variables. One of the main goals of the study of SaS sequences or SaS
processes is to extend properties of the well-known Gaussian processes, which
correspond to the case a = 2, to appropriate classes of SaS processes. We refer
to [15] for a comprehensive treatise on stable processes or to the earlier survey
paper [19] which is enough for our purposes.

Linear prediction theory is one of the most important achievements of the
theory of stationary Gaussian sequences. In order to extend its results to stable
processes with o # 2, one needs a class of sequences which allows to apply
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Fourier analysis. This leads to the notion of harmonizable SaS sequences. An
SaS sequence X is called harmonizable if there exists an independently scat-
tered SaS measure Z on the Borel o-algebra of [0, 2n) =: I such that u():=
Z ()% is finite and X; = L ¢** Z (dx), ke Z. The space I7(u) of (equivalence
classes of) measurable C-valued functions o-integrable with respect to p is
called the spectral domain of X. According to Lemma 1.3 of [17] there exists an
isometric isomorphism j between the time and the spectral domains of X such
that jX, = e*, ke Z. In case a = 2, a harmonizable SaS sequence is stationary
Gaussian and j is the well-known Kolmogorov’s isomorphism.

The isometry j enables us to formulate linear prediction problems posed in
terms of*the rather abstract time domain of X as problems of trigonometric
approximation in I*(y). We emphasize that throughout the paper we shall
work with spectral domains, i.e., we shall state and prove our results in the
language of trigonometric approximation theory. So our assertions could be
easily extended from ae(1, 2] to ae(1, o). However, since the case a (2, o0)
does not seem to be of statistical significance, we confine ourselves to ae(1, 2].

Kolmogorov’s extrapolation problem and the linear interpolation prob-
lem are the most extensively studied linear prediction problems. In Kolmogo-
rov’s problem it is assumed that the whole past of the sequence is known, i.e.,
X, is known at any negative integer k. For harmonizable SaS sequences this
problem was studied in [8], [5] and [3]. The linear interpolation problem
deals with the case that all but one values of X can be observed. For SaS
sequences it was investigated by Pourahmadi [13] and Weron [17]. In the
latter paper, in the more general setting of processes on discrete groups
the problem that an arbitrary finite number of values is unknown is di-
scussed.

The present paper is devoted to another linear prediction problem which
goes back to Yaglom [20]. He assumed that X, is known for all odd (or,
equivalently, for all even) integers k and computed the corresponding predic-
tion error in the stationary Gaussian case ([20], Theorem 1’). Salehi ([14],
Theorem 3.3) extended Yaglom’s result to multivariate stationary Gaussian
sequences and at the same time gave an explicit formula for the best linear

--approximation. One of the authors gave an extension of this result to Hil-
bert—Schmidt operator-valued sequences (see [10], Remark 4.11, and [11]).
Section 5 of the present paper deals with the solution of Yaglom’s prediction
problem for harmonizable S«S sequences. Theorem 5.2 contains a description
of the best linear prediction as well as a formula for the prediction error.
However, we confess that all results just mentioned are somewhat unsatis-
factory from point of view of applications since a series representation of pre-
dicted values by observed values, what is needed in practice, is unknown.
Moreover, for stationary Gaussian sequences there exists a straightforward
generalization to the case where X is observed at all integers of the lattice nZ
for some integer n > 1. Such a generalization could not be given in case o < 2.
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Apart from a linear prediction problem itself there are related questions
worth to investigate. For example, in Kolmogorov’s extrapolation problem the
concepts of regular and singular sequences play an important role. Section 3 of
our paper deals with regularity and singularity with respect to the family _#,, of
translations of the set nZ for some integer n > 1. We characterize #,-regular
and ¢, -singular harmonizable SaS sequences in terms of their spectral mea-
sures; see Theorems 3.2 and 3.4, respectively. In Section 4 these assertions are
used to obtain a Wold type decomposition. If & = 2, results of this kind are
known even for multivariate sequences; see [11], Theorems 5.1 and 5.2.

Let Ly (X) and L,(X¥) be the spaces spanned by X, for even and odd
integers k, respectively. The second part of Section 4 as well as Sections 6 and 7
are devoted to interrelations between L, (X) and L, (X). For example, we give
conditions on p guaranteeing that L, (X)n L, (X) has finite dimension (Propo-
sition 4.2 (ii)) or has finite codimension (Proposition 4.3), that the metric projec-
tion of Ly (X) onto L, (X) has finite dimension (Proposition 6.2 (i)) or has finite
codimensions with respect to L;(X) or L(X) (Proposition 6.3), respectively.

In Section 7 we describe those sequences for which the gap between L, (X)
and L, (X) is positive.

It would be hoped that these results tell us something about the degree .of
dependence between observations at even and odd integers. Unfortunately, it is
likely that their rigorous probabilistic interpretation is difficult since by a theo-
rem of Hardin, Jr. [6] the prediction in the sense of metric projection agrees
with the prediction in the sense of conditional expectation only for a-sub-Gaus-
sian processes.

In the concluding section we apply our results to sequences with rational
spectral densities which are of particular practical interest. Finally, we mention

-that some of our assertions seem to be new even for stationary Gaussian
sequences. '

2. THE BASIC LEMMA

The main goal of this section is to prove Lemma 2.2 below wh1ch despite
1ts s1mp1101ty, is a cornerstone of our 1nvest1gat10ns

" Lét ae(1, 2]. Let u be a non-zero finite measure on the Borel a-algcbra
B of the interval I:= [0, 2r) and [*(u) the corresponding Banach space of
(equivalence classes of) measurable C-valued functions a-integrable with re-
spect to p. The norm in I#(u) is denoted by ||||,,,. We write 1, for the indicator
function of a set A =I. Let N and N, denote the sets of positive and
non-negative integers, respectively. Throughout Sections 2—4 of the present
paper we assume that ne N\{1}. We set Z,:= {0, 1, ..., n—1}, ne N\{1}, and
consider it as an abelian group with addition modulo n. For meZ, we set

2mi
ém,n .= €Xp (T m>



292 L. Klotz and M. Riedel

Finally, for ne N\{1} and meZ, denote by L}, ,(u) =: L, , the subspace of
I?(u) spanned by functions ¢™**™ keZ.

Here and in the following the notion “subspace” means a closed linear
subspace. Let us finally mention that the dependence on « and p is frequently
suppressed in the notation.

The following lemma is obvious.

LeMMA 2.1. The operator of multiplication by the function ¢ maps L*(u)
onto L*(u) and Ly, onto Lyyy,, meZ,, isometrically. .

To formulate Lemma 2.2 we need some further definitions, notation and
conventions. In what follows we shall consider I as an abelian group with
addition modulo 2w. Let 7, be the shift by 2w)/n, ie., 7,x:=x+(2n)/n, xel.
Moreover, we set 7,4 := {1,x: xe A} for any subset 4 of I,

0= 0 =1 (x-2). e,

for any function f on I, and if Ce®B and v is a measure on BNC, set

(tav)(B):=v(t,'B), BeBnr,C.

For me Z, denote by I,,, the interval [(21t m)/n, (2n(m+ 1))/n) and by g, , the-

restriction of u to BnI,,. The measure
fni= 2, Ta ™ tmpn
meZ,
is a finite measure on B N1, ,, and any 7, ™ i, , is absolutely continuous to f,.
Denote the corresponding Radon-Nikodym derivative by h,,,. Note that

2.1) Y. Bpn(x)=1 for f,-aa. xel.

meZn,

‘We draw the reader’s attention to the fact that we shall not always indicate that

certain relations are satisfied a.e. with respect to the underlying measures.
~ A function ¢el”(f,) is extended to the whole interval I by setting it

identically 0 outside of I,.

LeMMA 2.2. For meZ, the map V,, defined by

22) Vo @:= Y Eotho,  oel*(d),

keZ,

establishes an isometric isomorphism between L*(f,) and L,,. Moreover, if
fel*(w) is a linear combination of functions e™**™ keZ, and ¢ =V, f,

then
23) [y, = ¢ fiace.




Harmonizable symmetric stable sequences 293

Proof. Linearity of V,,, is clear. For peL*(d,) we have
WV @llin = §| 2 Eonthol du= 3 | Ithol*dun

I keZy, keZn Ic,n
=3 [ loldi *wn= [ loI*df,,
keZn Ion Ion

which shows that V,,, is an isometry. Since
¥ el(nl+m) 1 — 6;,1; ei(nl+m)- 11,‘,",

we obtain

24 - Vin(@®™ 1, )=t el, .. leZ,

which yields

(2.5) Ln S Vi L (f1)

as well as (2.3). Since the trigonometric polynomials are dense in L (), it is not
hard to see that for me Z, the linear span of functions ™™ 1, . IeZ, is

dense in I*(fi,). Thus, by (2.4) and the continuity of V,, ,, we obtain V,, , [*(f,)
€ Ly, and taking into account (2.5) we conclude that V,,, L' (d,) = Ly, ®

3. 4, REGULARITY AND ¢, -SINGULARITY

Let ¢, be the family of translations of nZ, ie., #,:= {nZ+m: meZ,}.In
this section we study #,-regularity and %, -singularity of a harmonizable Sa.S
sequence or, equivalently, of its spectral measure pu.

DEFINITION 3.1. The measure  is called #yregular if () _ Ly, = {0}. 1t
is called #y-singular if L, = L*(u) for some, and hence for any meZ,.

Formally, the definitions of #,)-regularity and #,-singularity depend on
o, but our results will show that these concepts depend only on u and n. If
a = 2, characterizations of #-regular and _,-singular measures can be found
in Theorem 5.1 of [11]. These assertions can be extended to arbitrary ae(1, 2]
For convenience of the reader we give complete proofs.
~ To describe Fm-regularity and f(,,)-smgularlty in terms of y we introduce
the following conditions:

(R) For j,-a.a. xel,, there exists an meZ, such that 0 < h,,,(x) < 1.
(S) For j,-a.a. xel,, there exists an meZ, such that Bpn(x) = 1.
Taking into account (2.1) we can state (R) in two equivalent ways:
(R) For f,-aa. xel,, there exist k, meZ,, k # m, such that

B (%) B () 0.

(R") For f,aa. xel,, and for any meZ, one has h,,(x) <1

7 — PAMS 252
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Similarly, condition (S) can be given in the following two equivalent forms:
(S)) For f,-a.a. xel,, there exists a unique me Z, such that h,, ,(x) = 1.
(S") The measures 7, ™ ty.,, meZ,, are pairwise mutually singular.

THEOREM 3.2. The measure y is fn-regular if and only if condition (R) is
satisfied.

Proof. If (R”) is not satisfied, then there exist some me Z, and Be BnI,,
such that

6y . i i, (B)>0
and
3.2) hpa(x)=1 for j,-a.a. xeB.

For leZ, set ¢;:= ¢, 15. By Lemma 2.2 and (3.1) it follows that
fir= Y Eation

keZ,

belongs to L;, and is not the zero function in I¥(p). From (3.2) and (2.1) we
conclude that h, , = 0 on B for ke Z, and k # m. Thus, for all [ Z, the function
[ coincides with the non-zero element 7 15 of I# (1), which implies that 4 is not
Fm-regular.

Now suppose that (R) is satisfied. We shall show that feL,,NnL,,, im-
plies that f =0 in I*(u), which, of course, yields the Z, regularity of u. If
feLo,nLy,, in view of Lemma 2.2 there exists ¢;eI*(f,) such that

f= Z 6’;’"'[,;(0]', jEZZ'

keZ,
Hence we have
(3.3) T, (f 1 ) =&.0; 1. w-ae, keZ,
For meZ, set
(3.4) By = {x€lon: hmn(x) # 0}.

" Condition (R) implies that for g,-a.a. x€B,, there exists some /e Z,\{m} and

acR such that

(3.5) hnn (X) = ahyp (x)
and that
(36) J7 (Bm) = fi (1 ZL%{ }Bmm Bl)

From (3.3) we infer that _
Eimt, ™ (f 1p,) = &4 (f 1) finace.




Harmonizable symmetric stable sequences 295

on B,n B, le Z,\{m}, je Z,. Hence, using (3.5) for f,a.a. xe B, N B, we get
& (ta ™ (f 18,) ) ) — Eipea(ta  (f 1g) i) () = 0,  jeZ,,

which can be considered as a system of linear equations with invertible coef-

ficient matrix
(é's,n &m) =( 1 1 )
T Cim Tn &in)
It follbws that _
T (" (f 1) ) ) =0 for firaa. xeBnnB,.

Since le Z,\{m} was arbitrary, (3.6) yields 7, ™(f 1p,) hyn = 0 fi,-ac. on B,,
and since me Z, was arbitrary, we get f =0 in [*(u). &

Remark 3.3. The proof of Theorem 3.2 shows that u is #,-regular if and
only if the condition Ly,nL;,= {0} is satisfied.

THEOREM 3.4. The measure p is Jyy-singular if and only if condition (S) is
satisfied.

Proof. For meZ,, let B, be defined by (3.4). Assume that L, , = L*(u).
Since 71y, € L*(u), from Lemma 2.2 it follows that there exists some ¢@,€
I (fi,) such that

Z: Tﬁ (pm = T;;" le-
keZy,
This means that ¢, = 1 ji,-a.e. on B,, and ¢, =0 fi,-a.e. on B, leZ,\{m}.
Therefore, fi,(B,NB) =0, |, meZ,, | # m, which is equivalent to (S").
Conversely, if (S) is satisfied, then for any feL*(u), the function

3.7 p:= ) trf1,
- . keZ,

belongs to I*(f,). Since (3.7) implies f = Zk z, ¢ qJ, an application of Lem-

ma 2.2 gives Lo, = L(y). a =

The space L2 (u) is a Hilbert space. The following result contains necessary
and sufficient conditions on the measure y for the pairwise orthogonality of
Ly meZ,, in the case a = 2.

THEOREM 3.5. The subspaces Ly, meZ,, of I? (u) are pairwise orthogonal
if and only if h,,=n"' fi,-ae., ie., if and only if p is a periodic measure of
period 2m/n.

Proof. Lemma 2.1 implies that the subspaces L, ,, meZ,, are pairwise
orthogonal if and only if L, , is orthogonal to any L, ,, le Z,\{0}. From Lem-
ma 2.2 we see that Lo, and L,, are orthogonal if and only if for ¢, Y € I* (,)

ik




296 L. Klotz and M. Riedel

we have
Ozj Z Tn (Z élurn ) d[.l.= Z j (p'rl’*fl;lkdrr:kﬂk.n
I keZ, keZn - keZnTon
= .[ QDIII* Z éi,_nk hk,n dﬁn
IO,n keZ,.

This in turn is equivalent to

(3.8) Y, S Pew(x) =

keZy
for fi,-a.a. xely,, leZ\{0}. If xel,,, the equations (2.1) and (3.8) can be
considered as a system of linear equations with unknown quantitics by o (x). The
identity Zk z. &k =0, le Z,\{0}, implies that h,,,(x) =n~', meZ,, is a solu-
tion. It is unique because the coefficient matrix of the system is invertible.

4. WOLD TYPE DECOMPOSITION
AND DIMENSION RESULTS

The descriptions of #,-regular and _#,-singular measures in the preced-
ing section give rise to a Wold type decomposition of the spectral space L (u) of
an SaS sequence into its #,-regular and _#,-singular parts; see (4.1)(4.3) and
(4.5) below. We start with the following settings:

R, :={xely,: hp,(x) <1 for any meZ,},

Spi={x€lpn hpa(x)=1 for some meZ,},

= () %R, S,:= ) #S.
keZy keZ,
Of course, the sets R, and S, are defined only within to ,-equivalence. We
shall not mention this fact in the following and hope this will not cause con-
fusion.
Let g, and @, be restrictions of the measure u to R, and S, respectively,
i€, 0,(B) = u(BNR,) and o,(B) = p(BnS,), BeB. According to Theorems 3.2

_and 3.4 the measures g, and o, are #,-regular and _#,-singular, respectively.

Moreover, 2. and o, are mutually singular and y = ¢,+ 0,;. In a canonical way
I*(g,) and I*(s,) can be considered as subspaces of I*(u), and I*(u) becomes
a direct sum of I*(g,) and I*(oc,), ie.

4.1) L () = g+ I (o).

For meZ,, let ‘2, and L2, be the subspaces of I*(¢g,) and I?(a,), respectively,
spanned by the functions '™ *™" ke Z. Note that I?,, is spanned by functions
getm ., and I, by ™™ 15 , keZ. Let us remark that

4.2) N 12, = {0}

keZn
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and
4.3) 2, =1Io,), meZ,.

Let feL'(u. Since [ |fPPdp= [ |fI*dp+[s |fI*dy, for meZ, we get
1g, Lnn = 2, and 15 L, , < I),. Therefore, from the decomposition f=

'm,n

f an+ f IS,. it follows that
(44) Lm,n < I‘(Sl),n + IS:I),IH me Zn'

To see that in (4.4) one has equality, introduce measures 0, and &, which are
restrictions-of i, to R, and §,, respectively. If f@ eI, according to Lem-
ma 2.2 it cah be written in the form
f@=3 &Gatol for some ¢ €L (g,).
keZn

Defining the function feI?, by f:= Zkez" K Te 0@ we have f = f@ on
R, and f= 0 on I\R,. In other words, I!2, can be considered as a subspace of
Ly, meZ,. Similarly, I}, < L,, ,. Combining these results with (4.4) we con-
clude that

4.5 Lp,=I2,+I2,, meZ,
We shall show now that the relation '
4.6) (\ Luw = L(0,)

meZ,

is a consequence of the preceding constructions. To see that (4.6) is true note
first that

N [9a+E@) = () 190+ E,

meZ, meZy,
since I*(g,) and the algebraic sum of I9,, me Z,, have intersection {0}. Now
from (4.5), (4.3), and (4.2) we obtain (4.6).

For a subspace L of a Banach space X, denote by dim L its dimension and
by codim (L | X) its codimension with respect to X. Since g, and g, are concen-
trated on disjoint sets, it is easy to derive from the Wold type decomposition of
I#(p) characterizations of those measures u ®ith finite dimensions or codimen-
sions of L,,, or ﬂmez" L. n, respectively. It is somewhat more convenient to
state these results in terms of the support supp /i, of the measure fi,. Moreover,
we use the following convention. We say that a certain subset B < suppf, is
a finite set or has exactly d elements, de N, if B consists only of a finite number
of jumps or has exactly d jumps of ji,, respectively, and does not have other
mass points of f,.

We start with a standard fact.

LemMA 4.1. Let deNy. Then dim I*(u) = d if and only if supp u consists
of exactly d elements.
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empty Then (ii) and (iii), respectively, are equlvalent to:

By Lemma 2.1 it follows that dimL,, and codim(L,,| ()} do not
depend on meZ,. Moreover, since L,,, is a subspace of I (u) and since the
algebraic sum of L, ,, meZ,, is dense in I*(u), we obtain the inequalities

@.7 dimL,,, < dimI*(y) < ndim L,, ,.
In particular, dim L, , < oo if and only if dim I*(u) < co.

PROPOSITION 4.2. Let deNgy. Then

(i) dmL,,=d, meZ,, if and only 1f supp fi, has exactly d elements.

(i) dlmﬂ Lys=4d if and only if S, or, equivalently, S, has exactly
d elements

Proof. (i) is a consequence of Lemmas 2.2 and 4.1.
Using definitions of ¢, and &, we see that dim I(g,) = dim [*(§,). Now
from (4.6) and by virtue of Lemma 4.1 we get the assertion (ii). =

Proposition 4.2 (ii) is a refinement of Theorem 3.2. The next result contains
a refinement of Theorem 34.

PROPOSITION 4.3. The following assertions are equivalent:
(i) codim(Ly,,| () < 00, meZ,;

(ii) codim(ﬂkez Ly o1 £ (W) < o0;

(iii) codim ((),_ 2, Licn| Lm, ,,) < 0, meZ,;

(@iv) R, or, equwalently, R, are finite sets.
If for deN, the set R, has exactly d elements, then

4.8) d < codim(Ly,,| E (W) < (n—1)d, meZ,
4.9) 2d < codim( () Ly, | I (W) < nd
keZ,
4.10) codlm( (\LinlLyy) =d, meZ,
keZp,

Proof. Since all codimensions under consideration do not depend on the
Fw-singular part of u, we can and shall assume that p is ¢, -regular, ie., §, is
(i) dim I# (u) < o0; )
(iii') dim L, , < o0, meZ,.
()= (ii"). By Remark 3.3, we have L, ,nL,, = {0}, and hence

dimL,,, —d1mL1,,\cod1m(L0,,|E(u))< w, mekZ,

Now apply (4.7) to obtain (ii).

(ii') = (iii") is trivial.

(iii") = (iv) follows from Proposition 4.2 (i) and the fact that R, is finite if
and only if R, is finite.

(iv)=>(i) is an immediate consequence of Lemma 4.1.

Now we suppose that R, has exactly d elements. Then equality (4.10) is
a consequence of Proposition 4.2 (i). From the definition of R, it follows
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that R, does not have less than 2d and more than nd elements. Applying
Lemma 4.1 we get (4.9). Finally, it is easy to see that (4.8) follows from (4.9),
(4.10) and the relation dim I?(y) = dim L,, ,+codim (Ly,, | L' (%). =&

If the set R, is empty, codim (("),_, Li.»|L* (1)) = 0 by Theorem 3.2. There-
fore, (4.9) leads to the following corollary.

COROLLARY 4.4. The codimension codim(ﬂkean_hm | I (w)) cannot be equal
to 1. :

5, METRIC PROJECTIONS ONTO L,

To the end of the paper we are mainly concerned with the case n = 2. To
simplify the notation we shall frequently suppress the dependence on n =2 in
the notation, ie., we set L;:= L;s, hj:=hj,, I;:=1;,, puj:= pja, j€Z,,
T—TZaﬂ_“ZﬁR RZ’S_SDR R29S_S2:Q_Q2’G_62

Since I7(u) is a strictly convex reflexive Banach space, for any subspace
L of I¥(u) and any felI*(u) there exists a unique P feL such that

min {|| f —gllau: gL} = If —Pr fllan

([16], Corollaries 2.4 and 3.3 of Chapter I). The operator Py is called the metric
projection onto L and the element P; f is called the metric projection of f
onto L. Of course, if o« = 2, the operator Py, is the orthoprojector onto L. Recall,
however, that for a« # 2 the operator P, need not to be linear. .

The present section deals with properties of the metric projection onto the
space Ly. It will be denoted by P. We mention that because of Lemma 2.1
properties of P immediately lead to the corresponding properties of P;,. We
wish to derive a formula for Pf, felI?(u). Since PfeL,, according to Lem-
ma 2.2 there exists a unique Y € I#(j7) such that Pf = ¢ — 7y and it suffices to
compute . To do this we need the following lemma.

_LemMA 5.1. Let ay, a,€R,a0>0,a, =0, a,+a, >0, and zy, z, €C. The
function

.1 ’ u(2):=|z—zol"ao+lz+2z,"a,, zeC,

attains its minimum at the point (ag'® Y zo—ai’®*™Vz,)(ag/*" P +ai/e" V)7L

Proof. Geometrical arguments show that the minimum of u is attained
at a point of the form z = tzo—(1—1t) z4, te [0, 1]. Putting this expression into
(5.1) and computing the minimum of the corresponding function of ¢, we get the
assertion. m

THEOREM 5.2. For any fe€I*(u), the function Pf can be computed by Pf =
Yy —1fy, where

L e RO L
(5.2) 1= e Fae.
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Moreover,

(5.3) If =Pfllzp= §1f+77 fPho by (hg!®™ P+ R/~ 1)1 =% dg.
Io

Proof. By Lemma 22 for gelL, there exists yel*(i) such that
g =y —1y. It follows that

If —gllew = J1f —¥I"dpo +If |f +o|*dp,

= [(f =yl ho+1z™1 f+y|*hy)dji.

. Io

To minimize the integral on the right-hand side it is enough to minimize the
integrand for fi-a.a. xel,. From Lemma 5.1 we conclude that this minimum is
attained at y; given by (5.2). In order to prove that Pf:= y; — 7y, belongs
to L;, according to Lemma 2.2 it suffices to show that y,eI*(f). Since
ho+hy =1, we have h¥®~1 < h;, jeZ,, and there exists a positive constant
¢ such that hi/- 1)+h”“" 1 > ¢. Therefore, we get

J Wyl dit < 22~ [ 1A= (hle=D 4 B~ ) ™ d
Io Io
+ 1 SR 0+ ) ]
Io

<27 e [fIfPhodf+ [ It fI*hdp] =227 ¢ || fll%, < oo

Io Io
Finally, the relation (5.3) follows by a straightforward computation. =
If o = 2, the denominator on the right-hand side of (5.2) equals 1 and the
formulas of Theorem 5.2 simplify themselves to known results (see [20], Theo-

rem 1°; [14], Theorem 3.3; [10], Remark 4.11).
If f €Ly, then we have f = @ +1¢ for a unique ¢ e I*(f). Hence (5.2) and

(5.3) take the forms

@ (/@D _ pila=1)

| (54) Yy = R D 1 piie=1) )
and
(5-5) If —Pfllzn = 2 [ lol* ho by (h3/®™ D+ hi/* ™ D)1 72 dji,
To )
respectively.

We have another immediate consequence of Theorem 5.2.
CoOROLLARY 5.3, The metric projection onto L, is a linear operator.

It would be of some interest to determine the norm ||P]| of P, but this
problem seems to be difficult unless « = 2. If (1, 2), all we can say is that from
general Banach space geometry one obtains the estimate 1 < ||P| < 2%/+1




Harmonizable symmetric stable sequences 301

(see [12], Corollary 2.3). We mention that the results of [12] established for
real Banach spaces remain also true for complex spaces.*

6. DIMENSION RESULTS FOR PL,

For a subset M of a Banach space, denote by M its closure. From Co-
rollary 5.3 it follows that PL, is a linear space. We have the inclusions

.+ {0}=LonL, S PLo< L, € E(u.

It is of interest to describe those measures for which one or another space
occurring in this chain of inclusions has a finite dimension or a finite codi-
mension. We do not recall the results which can be obtained by choosing n = 2
in Propositions 4.2 and 4.3. We only mention that (4.9) leads to the following
corollary. '

COROLLARY 6.1. The codimension codim (Lo Ly | I () is either infinite or
equal to an even non-negative integer.

Now we establish dimension results for PL, using Theorem 5.2. Note that
R and § determined in Section 4 can be defined in case n=2 by

R:= {xesupp fi: ho(x) hy(x) # 0}, S:={xesuppji: ho(x)hy(x)=0}.
Set R,:= {xeR: ho(x) = hy(0)}. '
PROPOSIEI 6.2. Let deNy. Then
(@) dimPLy, =d if ﬂl only if supp\R, has exactly d elements.
(i) codim(Lon L, |PLo) =d if and only if R\R, has exactly d elements.

Proof. (i) Since PLyisa subspace of L,, Lemma 2.2 shows that dim PL,

is equal to dimension of the subspace V2 PLy of I*(ji). Thus, the result im-
mediately follows from (5.4) and Lemma 4.1.

(i) From (5.2) we conclude that P is a direct sum of the corresponding
metric projections in I (g) and I¥ (o). Since for #(;-singular measures the asser-
tion is trivial, we can assume that y is #-regular, ie.,, § is empty. Then

codim (Lyn L, lf’fo) = dim I’fo and an application of (i) completes the proof. =

Note that by setting d = 0 in Proposition 6.2 (i) one obtains a result which
can be considered as an extension of Theorem 3.5 to arbitrary ae(1, 2] for the
case n = 2.

_ PrOPOSITION 63. (i) Let deNo. Then codim(PLo|L;) = d if and only if
R, consists of exactly d elements.

* Helpful discussions with F. Mazzone and P. Wojtaszczyk are gratefully acknowledged.
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(i) codim (I’L—OIL“ (1)) < oo if and only if R or, equivalently, R is a finite

set. If R, has d, elements and R\R, has d, elements, then codim(FL_O | lf‘(,u)) =
2d,+d,, d,, d,eN,.

Proof. (i) As in the proof of Proposition 6.2 (i) we can and shall assume
that u is _#,,regular. Since by Lemma 2.2
" codim (PLq | L) = codim (V7 PLo | L* (),

from (5.4) we infer that codim (PL, | L;) can be finite only if R, is finite. More-

over, if-R, has exactly d elements, we obviously have codim (PL,|L,) > d. In
order to‘complete the proof it is enough to show that any ¢ e I*(j) such that

@ =0 on R, can be approximated by functions of ¥ 7, PL,. Define h:=
hi/he, which is possible because hy # 0 on R. For keN, set

By:= {xeR: |l—h(x)| > 1/k and |1 +h(x)| < k}.
Since | J,_» B, = R\R, and ¢ = 0 on R,, for ¢ > 0 there exists je N such that
S, 101" dji < &. Define a function ¢;eI*(u) setting
~ {(p(l+h1/("‘1’)(1—h1/("'1))‘1 on Bj,
770 _ on R\B,.
Then we have

[lo;(he/e~ D —h{e V) (i~ D pie D) 1—grdg = | |pl*di<e.
R R\Bj

Now (5.4) shows that V3 Po; is the desired approximation.
(i) Taking into account (i) and (4.8) we obtain all results from the equality

codim (PLq | I (w)) = codim (PLg | L1)+codim (L, | I ().

7. THE GAP BETWEEN L, AND L,

Let M be a subset of a Banach space X, whose norm is denoted by |||. For

feXsetdist(f, M):=inf{||f—gl|: ge M}. If L and N are subspaces of X such

that L is not a subspace of N, the gap y(L, N) between L and N is defined by

dist(f, N)
dist(f, LnN)’

We recall some facts on y (L, N) and refer to [9] for details and proofs. Clearly,
0 < y(L, N) € 1. According to Theorem 4.2 of Chapter IV in [9], y(L, N) >0
if and only if the algebraic sum of L and N is closed. Although in general
p(L, N) # y(N, L) (see [9]), the result just mentioned implies that y(L, N) > 0
if and only if y(N, L) > 0. To get an idea of what relation y(L, N) > 0 means
assume that X is a Hilbert space. If LnN = {0}, the angle 3€[0, n/2]

(7.1) y(L, N):= inf{ feL\N}.
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between L and N can be defined by

1Pz £l
(vl

If LA N # {0}, let L and N’ be the orthogonal complements of LN N in L and
N, respectively. Since y(L, N} = y(LL, N’) (see [9], p. 220), from (7.1) and (7.2)
we easily obtain y(L, N)?> = 1—cos? &, where & denotes the angle between L
and N'. Thus, y(L, N) > 0 if and only if the angle between L and N’ is positive.

Since the algebraic sum of L, and L, is dense in I* (), we obtain Lo =4 N
if and only 1f 4 is Fpy-singular.

Now we wish to describe all non-_#,y-singular measures u such that the
inequality y (Lo, L;) > 0 holds. From (7.1) and the definition of the metric
projection we conclude

(7.2) cosd 1= sup{ : fel, f# 0}

=Pfln
=P, Sl EF0M }

Since LonL, = I¥(0), it follows that
(7.4) Proer, f=fls, fel'(p).

By Lemma 2.2 a function f € L, can be written as f = ¢+ 1¢, ¢ € I*(). Hence
(7.4) yields

(7.3) ¥ (Lo, L;) = inf {

I f=Pronta fIlEs = { Il di.
R

Taking into account (7.3) and (5.5), we infer that y(L,, L,) > 0 if and only if
y {2" ol ho by (B~ D 4 hte= D)1 =2 4

T

[zlol* dit
which in turn is equivalent to the existence of a positive constant ¢; such that

(1.5) hohy (B~ D L plie=yl-e 5 0 fae

: (peE(ﬁ)} >0,

on-R. Setting h:= hy/h, on R and using (2.1), wé easily infer that-(7.5) is
satisfied if and only if there exists a positive constant ¢ such that

(7.6) c<h<c ! fae

or, equivalently, such that for any Be BnR

(7.7) cito (B) < (t71 py)(B) < ¢ * po(B).
Thus we have proved the following theorem.

THEOREM 7.1. Assume that p is not Jy)-singular. Then the gap between
Ly and L, is positive if and only if (7.7) is satisfied.
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THEOREM 7.2. The relations Lon L, = {0} and y (Lo, L,) > 0 hold if and
only if (1.7) is true for any BeBnsupp ji.

Proof. The assertion follows from Proposition 4.2 (ii) and Theorem 7.1.

8. RATIONAL SPECTRAL DENSITIES

A harmonizable SaS sequence as well as its spectral measure ,u are called
to have a rational spectral density if u is of the form

8.1 . d,l,

P
du = |=(&
q( )

where p and g are polynomials which can and will be assumed to have no
common zeros, and 4 denotes the normalized Lebesgue measure on I. Note
that since u is a finite measure, g does not have zeros on the unit circle T In the
present section we specify some of the preceding results for sequences with
rational spectral densities.

THEOREM 8.1. If u has a rational spectral density, then for ne N\{1}

(@) p is Fyyregular;
(it) dim L,,, = o, meZ,;

(iii) codim (Ly,, | I* (1)) = o0, meZ,.
Proof. The assertions (i), (ii) and (iii) follow from Theorem 3.2, Proposi-
tion 4.2 (i) and Proposition 4.3, respectively.

THEOREM 8.2. Let p be of the form (8.1). Then y (Lo, L;) > 0 if and only if
the set of zeros of p on T including multiplicities is symmetric with respect to the
real axis.

Proof. It is not hard to see that under the assumption (8.1) the function
h = hy/hy can be written as

(8.2) h = ,@;(ei') ’
pq

‘on I,. Here for a function g on C the function g~ is defined by—g‘(z) =

g(—2), zeC. Therefore, (7.6) is satisfied if and only if gp~ and pq~ have the
same zeros on T including multiplicities. Since g does not have zeros on Tand
since z is a zero of p if and only if —z is a zero of p~, the assertion holds true. =

To apply the results of Section 6 to sequences with rational spectral den-
sities we need the following lemma.

LEmMMA 8.3. Let r and s be polynomials. If there exists a set A = I such that
A has an accumulation point and

(83) r @) =Is(€™), xed,

Lok
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then
@ Irl=1sl on T;
(i) the zeros of r and s on C\{0} coincide including multiplicities.

Proof From (8.3) and the existence of an accumulation point of the set
A we conclude that the trigonometric polynomials |r (¢")|?> and |s(e")|? are iden-
tical. This yields (i). Considering polynomials r and s as elements of a Hardy
space, we see from (i) that their outer parts coincide. Since the outer part of
a polynomial, whose zeros on C\{0} are denoted by z; and w,, where |z}| > 1
and |w| < 1, respectively, is equal to l_[j (z—2z;)]],(1—w;2), zeC, the assertion
(i) follows. m '

THEOREM 8.4. If u has a rational spectral density, then either PLy = {0} or
PLO = L1 .

Proof. The relation (8.2) and Lemma 8.3 imply that either h = 1;, or
h # 1;, f-ae. According to Propositions 6.2 (i) and 6.3 (i) the first and the

second cases are equivalent to PL, = {0} and PL, = L, respectively. m

It is not difficult to describe the set of polynomials such that h = 1;,. In
fact, from (8.2) and Lemma 8.3 we infer that in this case pg~ and gp~ have the
same zeros on C\{0} including multiplicities. Since p and ¢ do not have com-
mon zeros, the polynomials p and p~ have the same zeros on C\{0} including
multiplicities, which implies that p is either an even polynomial or an odd one.
Similarly, q is either even or odd. Since p and g can be odd polynomials only if
p(0) = ¢(0) = 0, which is excluded, we get the following result.

PROPOSITION 8.5. Suppose that p has the form (8.1). Then PLy = {0} if and
only if either both polynomials p and q are even or one of them is even and the
other is odd.
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