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1. INTRODUCTION 

Let a ~ ( 1 ,  21. A stochastic sequence X := {X,: ~ E Z )  of complex random 
variables is called a symmetric a-stable (SaS) sequence if the elements of the 
linear span 1 (X) of X,, ~ E Z ,  are SuS random variables. 

In [4] and [I] concepts of a semi-inner product and a corresponding 
norm ll-lla on i(X) were introduced. Of course, random variables coinciding 
almost everywhere with respect to the underlying probability measure are iden- 
tified. It turns out that convergence with respect to I[.IIa is equivalent to conver- 
gence in probability and that the closure of I(X) with respect to I[.II,, which is 
denoted by L(X) and is called the time domain of X, consists of jointly SaS 
random variables. One of the main goals of the study of SaS sequences or SaS 
processes is to extend properties of the well-known Gaussian processes, which 
correspond to the case a = 2, to appropriate classes of SaS processes. We refer 
to [I51 for a comprehensive treatise on stable processes or to the earlier survey 
paper 1191 which is enough for our purposes. 

Linear prediction theory is one of the most important achievements of the 
theory of stationary Gaussian sequences. In order to extend its results to stable 
processes with a # 2, one needs a class of sequences which allows to apply 
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Fourier analysis. This Ieads to the notion of harmonizable Sols sequences. An 
SccS sequence % is called harmonizable if there exists an independently scat- 
tered Sots measure Z on the Bore1 0-algebra of [0, 234 =: 1 such that p(.) := 
112 (.)11: is fmite and Xk = J, e*" Z (dx), k E 2. The space (p )  of (equivalence 
classes of) measurable G-valued functions a-integrable with respect to p is 
called the spectral domain of X. According to Lemma 1.3 of [17] there exists an 
isometric isomorphism j between the time and the spectral domains of X such 
that jX, = ei", k~ Z.  In case ct = 2, a harmonizable SaS sequence is stationary 
Gaussian and j is the well-known Kolmogorov's isomorphism. 

The isometry j enables us to formulate linear prediction problems posed in 
terrfis ofithe rather abstract time domain of X as problems of trigonometric 
approximation in Lab). We emphasize that throughout the paper we shall 
work with spectral domains, i.e., we shall state and prove our results in the 
language of trigonometric approximation theory. So our assertions could be 
easily extended from a E (1,2] to a E (I, a). However, since the case a E (2, a) 
does not seem to be of statistical significance, we contine ourselves to a E (1, 21. 

Kolmogorov's extrapolation problem and the linear interpolation prob- 
lem are the most extensively studied linear prediction problems. In Kolmogo- 
rov's problem it is assumed that the whole past of the sequence is known, is., 
Xk is known at any negative integer k. For harmonizable SaS sequences this 
problem was studied in [ t i ] ,  [ 5 ]  and [3]. The linear interpolation problem 
deals with the case that all but one values of X can be observed. For SaS 
sequences it was investigated by Pourahmadi [I31 and Weron [17]. In the 
latter paper, in the more general setting of processes on discrete groups 
the problem that an arbitrary finite number of values is unknown is di- 
scussed. 

The present paper is devoted to another linear prediction problem which 
goes back to Yaglom 1201. He assumed that X, is known for all odd (or, 
equivalently, for all even) integers k and computed the corresponding predic- 
.tion error in the stationary Gaussian case ([20], Theorem 1'). Salehi ([14], 
Theorem 3.3) extended Yaglom's result to multivariate stationary Gaussian 
sequences and at the same time gave an explicit formula for the best linear 
approximation. One of the authors gave an extension of this result to HiI- 
bert-Schmidt operator-valued sequences (see [lo], Remark 4.1 1, and [Ill). 
Section 5 of the present paper deals with the solution of Yaglom's prediction 
problem for harmonizable SaS sequences. Theorem 5.2 contains a description 
of the best linear prediction as well as a formula for the prediction error. 
However, we confess that all results just mentioned are somewhat unsatis- 
factory from point of view of applications since a series representation of pre- 
dicted values by observed values, what is needed in practice, is unknown. 
Moreover, for stationary Gaussian sequences there exists a straightforward 
generalization to the case where X is observed at all integers of the lattice nZ 
for some integer n > I. Such a generalization could not be given in case a < 2. 
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Apart from a linear prediction problem itself there are related questions 
worth to investigate. For example, in Kolmogorov's extrapolation problem the 
concepts of regular and singular sequences play an important role. Section 3 of 
our paper deals with regularity and singularity with respect to the family A,, of 
translations of the set nZ for some integer n > 1. We characterize $;,,-regular 
and A,,-singular harmonizable SorS sequences in terms of their spectral mea- 
sures; see Theorems 3.2 and 3.4, respectively. In Section 4 these assertions are 
used to obtain a Wold type decomposition. If a = 2, results of this kind are 
known even for multivariate sequences; see [ll], Theorems 5.1 and 5.2. 

Let L,(X) and L,(X) be the spaces spanned by X, for even and odd 
integers-k, respectively. The second part of Section 4 as well as Sections 6 and 7 
are devoted to interrelations between Lo (X) and L, (X). For example, we give 
conditions on p guaranteeing that Lo (X)n L, (X) has finite dimension (Propo- 
sition 4.2 (ii)) or has finite codimension (Proposition 4.3), that the metric projec- 
tion of Lo (X) onto L, (X) has finite dimension (Proposition 6.2 (i)) or has finite 
codimensions with respect to L, (X) or L(X) (Proposition 6.31, respectively. 

In Section 7 we describe those sequences for which the gap between Lo (X) 
and L, (X) is positive. 

It would be hoped that these results tell us something about the degree .of 
dependence between observations at even and odd integers. Unfortunately, it is 
likely that their rigorous probabilistic interpretation is difficult since by a theo- 
rem of Hardin, Jr. [6] the prediction in the sense of metric projection agrees 
with the prediction in the sense of conditional expectation only for a-sub-Gaus- 
sian processes. 

In the concluding section we apply our results to sequences with rational 
spectral densities which are of particular practical interest. Finally, we mention 
that some of our assertions seem to be new even for stationary Gaussian 
sequences. 

2. THE BASIC LEMMA 

The main goal of this section is to prove Lemma 2.2 below which, despite 
its simplicity, is a cornerstone of our investigations. 

" Let a~ (1, 21. Let p be a non-zero finite measure on the Bore1 cr-dgebra 
93 of the interval 1 : = [0, 27c) and La(,u) the corresponding Banach space of 
(equivalence classes of) measurable C-valued functions a-integrable with re- 
spect to p. The norm in JY(p) is denoted by l l - l l a , p .  We write 1, for the indicator 
function of a set A G I .  Let N and No denote the sets of positive and 
non-negative integers, respectively. Throughout Sections 2 4  of the present 
paper we assume that n  EN\(^}. We set Z ,  := (0, 1, . . ., n- 11, n~ N\{1), and 
consider it as an abelian group with addition modulo n. For r n E  Z ,  we set 
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Finally, for n E N\{1) and m E Z ,  denote by LL,, CLI) =: the subspace of 
Lu (p) spanned by functions ei(nk+ " I . ,  k E Z. 

Here and in the following the notion "subspace" means a closed linear 
subspace. Let us finally mention that the dependence on a and f i  is frequently 
suppressed in the notation. 

The following lemma is obvious. 

LEMMA 2.1. The operator of multiplication by the function ei' maps Lu(p) 
onto La (j~) and L,,, onto Lm+ I,n, m E Z,, isometrically. 

To_ formulate Lemma 2.2 we need some further definitions, notation and 
conventions. In what follows we shall consider I as an abelian group with 
addition modulo 2n. Let z, be the shift by (2.rc)/n, i.e., z , x ;  = x+(2n)/nJ x € 1 .  
Moreover, we set z, A := (T ,x :  X E  A) for any subset A of I ,  

for any function f on I ,  and if C E B  and v is a measure on B n  C, set 

For mcZ, denote by I.,. the interval [(ZIT m)/n, (2n(m+ l))/n) and by p m ,  the 
restriction of p to 23 nl,,,. The measure 

is a finite measure on !B n lo,,, and any t;" pm,, is absolutely continuous to ii,. 
Denote the corresponding Radon-Nikodym derivative by h,,,. Note that 

h,,,(x)=I for fin-a.a. X E I .  
maZ. 

We draw the reader's attention to the fact that we shall not always indicate that 
certain relations are satisfied a.e. with respect to the underlying measures. 
. A function YEL"@,) is extended to the whole interval I by setting it 
identically 0 outside of I,,. 

LEMMA 2.2. For ~ E Z ,  the map Vm,, defined b y  

establishes an isometric isomorphism between La@,) and L,,,. Moreover, if 
f E L"(p) is a linear combination of functions ei("k+")' , ~ E Z ,  and cp = Vm;:f, 
then 
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P r o  of. Linearity of Vm,, is clear. For (p E La@,) we have 

which shows that V,,, is an isometry. Since 

we obtain 
- -  -- . 

(2.4) ' 

r v (e t (n l  +m). 1 10,n) = ei[n' +"I' 
m,n EL,,,, I E Z ,  

which yields 

as well as (2.3). Since the trigonometric polynomials are dense in La&), it is not 
hard to see that for m~ Z, the linear span of functions ei[n'+m)' I E  Z ,  is 
dense in LUl'jii). Thus, by (2.4) and the continuity of Vm,,, we obtain Vm,, La(P,) 
c L ,,,, and taking into account (2.5) we conclude that Vm,, La @,J = L,,, . H 

Let A,, be the family of translations of nZ, i.e., $;,, : = (nZ + rn: rn E Z,). In 
this section we study $;,,-regularity and $;,)-singularity of a harmonizable Sols 
sequence or, equivalently, of its spectral measure p. 

DEFINITION 3.1. The measure p is called A,,-regular if n,,, L m ,  = {O>. It 
is called $;,,-singular if L , ,  = Lab)  for some, and hence for any rn~Z,. 

Formally, the definitions of An)-regularity and A,,-singularity depend on 
a, but our results will show that these concepts depend only on ,u and n. If 
a =2 ,  characterizations of An,-regular and A,,-singular measures can be found 
in Theorem 5.1 of [ll]. These assertions can be extended to arbitrary o: E (1, 21. 
For convenience of the reader we give complete proofs. 

To describe An)-regularity and A,,-singularity in terms of p we introduce 
the following conditions: 

(R) For Ci,-a.a. XEI,,,~ there exists an ~ E Z ,  such that 0 < hm,n(x) < 1. 

(S) For ii,-a.a. x E lo,, there exists an m €2, such that h,,, (x) = 1. 

Taking into account (2.1) we can state (R) in two equivalent ways: 

(R') For p,,-a.a. x E I,,, there exist k, m E Z,, k # rn, such that 

(R") For A-a.a. x E I, , ,  and for any rn E Z,  one has h,,, (x) < 1. 

7 - PAMS 25.2 
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Similarly, condition (S) can be given in the following two equivalent forms: 

(S') For A-a.a. x E there exists a unique m E Z, such that h,,n (x) = 1. 

(Sf') The measures r;"pm,,, r n ~ Z , ,  are painvise mutually singular. 

THEOREM 3.2. The measure p is 4,)-regular if and only if condition (R) is 
satisfied. 

P r o  of. If (R") is not satisfied, then there exist some m E Z, and BE 23 n I,,, 
such that 

and 
L 

(3 -2) h,,,(x)=l for pn-a.a. X E B .  
For I E Z ,  set cp, := (2 1,. By Lemma 2.2 and (3.1) it follows that 

belongs to L,,, and is not the zero function in LQ(p). From (3.2) and (2.1) we 
conclude that hk,, = 0 on B for k E Z, and k # m. Thus, for all 1 E 25, the function 
f i  coincides with the non-zero element z: 1, of La (p), which implies that p is not 
fin,-regular. 

Now suppose that (R) is satisfied. We shall show that f E Lo,, n L1,, im- 
plies that f = 0 in E h ) ,  which, of course, yields the An)-regujarity of p. If 
f E L , , , ~ L ~ , , ,  in view of Lemma 2.2 there exists cpj~La(pn) such that 

Hence we have 

(3.3) 
- k - k 

z n  (f II*,,) = 5 i .n  Vj  zn ~ic-a-e., k E Zn- 

-For r n ~  Z ,  set 

(3.4) B, : = {x E I D , , :  h,,, (x) # 0). 
- 

Condition (R) implies that for pn-a.a. x €3, there exists some 1 E Z,\{rn) and 
~ E R  such that 

and that 

(3.6) m =  BmnB,). 
I ~ z d t m )  

From (3.3) we infer that 

ti,," z," If IB,) = ti; (f 1 ~ ~ )  Pn-a.e- 
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on Bmn Bi, 1~Z, \ (m) ,  j € Z 2 .  Hence, using (3.5) for @,-a.a. x ~ B , n  B1, we get 

which can be considered as a system of linear equations with invertible coef- 
ficient matrix 

It follows that 
-d 

7 .  
-- - 

- , ( ~ ~ ~ ( f I ~ ~ ) h , , , ) ~ x ) = O  for $,-a.a. x ~ B , n 3 , .  

Since 1 E Z,\(na) was arbitrary, (3.6) yields T," (f lBm) h,,,, = 0 fin-a.e. on B,, 
and since m E Z, was arbitrary, we get f = 0 in La (p) .  H 

Remark  3.3. The proof of Theorem 3.2 shows that fi is An,-regular if and 
only if the condition Lo,, n L,,, = (0) is satisfied. 

THEOREM 3.4. The measure p is #(,,-singular v' and only if condition (S) is 
satisfied. 

P r o  of. For m E Z,, let B, be defined by (3.4). Assume that Lo,, = C(,u). 
Since Z: in, ~ C ( j i ) ,  from Lemma 2.2 it follows that there exists some Y,E 

L"(@,,) such that 

C ~ f :  @", = z:: Ism. 

This means that cp, = 1 @,-a.e. on B, and cp, = 0 p,-a.e. on B1, l~Z, \ {m) .  
Therefore, fin [B, n BJ = 0, I, rn E Z,, 1 # rn, which is equivalent to (Sf'). 

Conversely, if (S) is satisfied, then for any f E La (p), the function 

belongs to La(jln). Since (3.7) implies f = zkEZn~k (P, an application of Lem- 
ma -2.2 gives Lo,, = L" (p). - 

The space L2 (p )  is a Hilbert space. The following result contains necessary 
and suficient conditions on the measure p for the pairwise orthogonality of 
L,,,, rn E Z,, in the case a = 2. 

THEOREM 3.5. The subspaces L,,,, rnf Zn, of L2 (p) are painvise orthogonal 
if and only if h,, = n-I fin-a.e., i.e., if and only if p is a periodic measure of 
period 2n/n. 

Proof .  Lemma 2.1 implies that the subspaces L,,,, rnEZ,, are pairwise 
orthogonal if and only if L o ,  is orthogonal to any L,,,, 1 E Z,\{O). From Lem- 
ma 2.2 we see that Lo,, and L , ,  are orthogonal if and only if for q ,  I) E L2 @,) 
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we have 

0 = j  c ~ ; a ( z  G . < $ ) * ~ P =  J ~ $ " ~ ~ ~ d ~ ; ~ ~ k , n  
I keZ. k ~ Z n  k ~ Z n  10,n 

This in turn is equivalent to 

for p,=a.a. x ~ l ~ , , ,  1 -~ .2 . \ (O ) .  If X E I ~ , , ,  the equations (2.1) and (3.8) can be 
considered as a system of linear equations with unknown quantities h,,, (x). The 
identity kE,n- tc: = 0, 1 e Z,\{O), implies that hm,.(x) = n - l ,  m E Z,, is a solu- 
tion. It is umque because the coeficient matrix of the system is invertible. 

4. WOLD TYPE DECOMPOSITlON 
AND DIMENSION RESULTS 

The descriptions of An,-regular and An,-singular measures in the preced- 
ing section give rise to a Wold type decomposition of the spectral space Lab) of 
an Sols sequence into its A,-reguIar and An,-singular parts; see (4.1H4.3) and 
(4.5) below. We start with the following settings: - 

R, : = (X E I*,,: h,,, (x) < 1 for any m E Z,}, - 
Sn : = {X E I,,,,,: h,,, (x) = 1 for some m E Z,), 

Of course, the sets R,, and f,, are defined only within to A-equivalence. We 
shall not mention this fact in the following and hope this will not cause con- 
fusion. 

Let p, and an be restrictions of the measure p to R, and S,,, respectively, 
i.e., Q, (B) = p (B n R,) and t ~ ,  (B) = p (B n SS,), B E b. According to Theorems 3.2 
and 3.4 the measures en and a, are &,-regular and %;,,-singular, respectively. 
Moreover, p, and t ~ ,  are mutually singular and p = Q, + an. In a canonical way 
E (en) and L" (a,) can be considered as subspaces of E (p), and E (p) becomes 
a direct sum of E (0,) and E (a,), i.e., 

For m E Z,, let L!:,, and Jl!;!, be the subspaces of La(@,) and E (a,), respectively, 
spanned by the functions ei("k+m)', k E Z. Note that I!$,, is spanned by functions 

+ a). 1 
R, 9 and LlE!, by ei(nk+m)' 1 S n  9 ~ E Z .  Let us remark that 
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and 

(4.3) g!, = La (on), rn G Z,. 

Let f E L. (PI. Since I f  ladp = If la d p  + lsn If la d 7  for m E Z,, we get 
I,, L,,, G fi$,, and 1," L,,, E fig!,. Therefore, from the decomposition f = 
f IR,+ f IS,, it follows that 

To see that in (4.4) one has equality, introduce measures on and C,,, which are 
restrictions-of jinii,; tb En and f,,, respectively. If f ( Q ' ~ f i $ t , ,  according to Lem- 
ma 2.2 it cah be written in the form 

f (Q) = &,, $ ,$) for some E La (&). 
kEZ, 

Defining the function f G L($,, by f : = LEZn 5&,. ri &), we have f = f (e) on 
Rn and f = 0 on I\&. In other words, fig,, can be considered as a subspace of 
L,,, rn E 2,. Similarly, ,ti:!, E L,,,. Combining these results with (4.4) we con- 
clude that 

We shall show now that the relation 

is a consequence of the preceding constructions. To see that (4.6) is true note 
first that 

n (as,,, 4- @ (an)) = 0 I!$,,, i La (aJ ,  
mcz, mzn 

since La (G,,) and the algebraic sum of I$$,,, m E Z,, have intersection (0). Now 
from (4.3, (4.3), and (4.2) we obtain (4.6). 

For a subspace L of a Banach space X, denote by dim L its dimension and 
by codim (L I X) its codimension with respect to X. Since Q, and a, are concen- 
trated on disjoint sets, it is easy to derive from the Wold type decomposition of 
L"b) characterizations of those measures p-itb finite dimensions or codimen- 
sions of L,, or n,,, Lrn,n, respectively. It is somewhat more convenient to 
state these results in terms of the support supp li, of the measure P,. Moreover, 
we use the following convention. We say that a certain subset B E suppp,, is 
apnite set or has exactly d elements, d E No, if B consists only of a finite number 
of jumps or has exactly d jumps of ji,, respectively, and does not have other 
mass points of p,. 

We start with a standard fact. 

LEMMA 4.1. Let d E No. ?hen dim L a Q  = d f and only if supp p consists 
of exactly d elements. 
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By Lemma 2.1 it follows that dim L,,, and codim (L,,, I L* (p) do not 
depend on rn E Z,. Moreover, since L,,, is a subspace of L" (p) and since the 
algebraic sum of L,,,, r n ~ Z , ,  is dense in La(p), we obtain the inequalities 

14-71 dim L,,, < dim La (p) < n dim Lm,n. 

In particular, dimL,?, < co if and only if dimL"(p) < m. 

PROPOSITION 4.2. Let d E No. Then 
(i) dim L,, = d, P ~ E  Z,, if and only if supp,ii, has exactiy d  elements. 
(ii) diq nwzn L , ,  = d and only if fn or, equivalently, S ,  has exactly 

- ,d elements. 

Proof.  (i) is a consequence of Lemmas 2.2 and 4.1. 
Using definitions of a, and 6, we see that dim La (a,) = dim L" (6,). NOW 

from (4.6) and by virtue of Lemma 4.1 we get the assertion (ii). s 

Proposition 4.2 (ii) is a refinement of Theorem 3.2. The next result contains 
a refinement of Theorem 3.4. 

P R O ~ I ~ O N  4.3. The following assertions are equivalent: 
(i) codim (L,,, 1 E (p)) < m, m E 2,; 

(ii) codim (nkZnLk, 4 b)) < m ; 
(iii) codim (n kE,nLk,n I L,,.) < a, m 2,; 
(iv) R, or, equivalently, Rn are finite sets. 

If for d € N o  the set l?, has exactly d ekmnts, then 

(4.8) d < codim(~,,, I L" (p)) < (n - 1) d, rn E Z,, 

2d < codim ( n L,,, I E (p)) 6 nd, 
AEZ, 

- Proof.  Since all codimensions under consideration do not depend on the 
$(,)-singular part of p, we can and shall assume that p is 8,)-regular, i.e., f, is 
empty. Then (ii) and (iii), respectively, are equivalent to: 

.- . 
(ii') dim E (p) < 00 ; 
(iii') dim L , ,  < a, m E Z,. 
(i) 3 (ii'). By Remark 3.3, we have Lo,, n L1,, = { O ) ,  and hence 

dim L,,, = dim L1,, < codim (Lo ,  I L" (p)} < co , m E 2, 

Now apply (4.7) to obtain (ii'). 
(ii') * (iii') is trivial. 
(iii') =(iv) follows from Proposition 4.2 (i) and the fact that R, is finite if 

and only if En is finite. 
(iv) =(i) is an immediate consequence of Lemma 4.1. 
Now we suppose that Rn has exactly d elements. Then equality (4.10) is 

a consequence of Proposition 4.2 (i). From the definition of R, it follows 
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that R, does not have less than 2d and more than nd elements. Applying 
Lemma 4.1 we get (4.9). Finally, it is easy to see that (4.8) follows from (4.9), 
(4.1 0) and the relation dirn l" (p) = dim l,,, + codim (L,,, I L" (p)).  ra 

If the set R,, is empty, codim (nkE,&,,, I La (F)) = 0 by Theorem 3.2. There- 
fore, (4.9) leads to the following corollary. 

C o n o ~ u n ~  4.4. The codimension codim ( n k Z n L h ,  I C (p)) cannot be equal 
to 1 .  

7 .  

5. ,METRIC PROJECTIONS ONTO L, 
-d 

To the end of the paper we are mainly concerned with the case n = 2. To 
simplify the notation we shall frequently suppress the dependence on n = 2 in 
the notation, i-e., we set LJ := Lj,27 hj := hj ,2 ,  Ij := l j .Z, pj : = pjt2, j € Z Z ,  - - - 
z : = T ~ ,  j i :=f ia ,  R : =  Rz,  S : =  S 2 ,  R : = R z ,  S : = S 2 ,  Q : = Q ~ ,  o : = c ~ .  

Since E(p)  is a strictly convex reflexive Banach space, for any subspace 
L of E(p) and any f ~ L a ( p )  there exists a unique P, f E L  such that 

(1161, Corollaries 2.4 and 3.3 of Chapter I). The operator PL is called the metric 
projection onto L and the element P, f is called the metric projection of f 
onto L. Of course, if a! = 2, the operator PL is the orthoprojector onto L. Recall, 
however, that for ol # 2 the operator P, need not to be linear. 

The present section deals with properties of the metric projection onto the 
space L1. It will be denoted by P. We mention that because of Lemma 2.1 
properties of P immediately lead to the corresponding properties of P,,. We 
wish to derive a formula for PJ; f €L"(p). Since Pf E L,,  according to Lem- 
ma 2.2 there exists a unique $ E E ( A  such that Pf = $ - z $  and it suffices to 
compute $. To do this we need the following lemma. 

.LEMMA 5.1. Let a,, a l ~ R ,  a. 2 0, aI 2 0, ao+al > 0, and z,, z 1 € C .  The 
function 

attains its minimum at the point (a:/('- '1 zo -a:/('- z,) (a;/("- ' 1  + a:/("- I))- l .  

Proof.  Geometrical arguments show that the minimum of u is attained 
at a point of the form z = tz, - ( 1  - t) zl, t E [0, 11. Putting this expression into 
(5.1) and computing the minimum of the corresponding function oft, we get the 
assertion. 

THEOREM 5.2. For any f EL" (p), the function Pf can be computed by Pf = 

i,hf - z$,-, where 
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Moreover, 

Proof. By Lemma 2.2 for g~ L1 there exists t,b such that 
g = I,IJ - t$. It follows that 

-d 

-- = 1 (If -*Iaho+lz-' f +I,IJIuhl)dp. % 

I0 . 
To minimize the integral on the right-hand side it is enough to minimize the 
integrand for jl-a.a. x E IO. From Lemma 5.1 we conclude that this minimum is 
attained at i,bf given by (5.2). In order to prove that Pf: = $ J - ~ $ J  belongs 
to L1, according to Lemma 2.2 it suffices to show that $ f ~ L " ( p ) .  Since 

- 

ko + h, = 1, we have hi"/("- l )  < hi, j €Z2, and there exists a positive constant 
c such that htl("-l)+h:fla-l) 2 c. Therefore, we get 

< 2"-l c-" [I If l a  ho dp+ 1 12 - I  f 1" hl d p ]  = 2"-l c-a I l f  IIE,, < a 
I0 I0 

Finally, the relation (5.3) foIIows by a straightforward computation. H 

If a = 2, the denominator on the right-hand side of (5.2) equals 1 and the 
formulas of Theorem 5.2 simplify themselves to known results (see [20], Theo- 
rem 1'; [14J Theorem 3.3; [10], Remark 4.11). 

I f  f E Lo, then we have f = cp + zcp for a unique rp E I2 (9. Hence (5.2) and 
45.3) take the forms 

and 

respectively. 
We have another immediate consequence of Theorem 5.2. 

COROLLARY 5.3. The metric projection onto L1 is a linear operator. 

It would be of some interest to determine the norm (IP(( of P, but this 
problem seems to be difficult unless u = 2. If a E (1, 2), all we can say is that from 
general Banach space geometry one obtains the estimate 1 < IlPll < 22/a-1 
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(see [12], Corollary 2.3). We mention that the results of [12] established for 
real Banach spaces remain also true for complex spaces.* 

For a subset M of a Banach space, denote by M its closure. From Co- 
p 

rollary 5.3 it follows that PL, is a linear space. We have the inclusions 
, . 

I 

It  is of interest to describe those measures for which one or another space 
occurring in this chain of inclusions has a finite dimension or a finite codi- 
mension. We do not recall the results which can be obtained by choosing n = 2 
in Propositions 4.2 and 4.3. We only mention that (4.9) leads to the following 
corollary. 

COROLLARY 6.1. The codimension codim (lo n L1 1 L" (p)) is either infinite or 
equal to an even non-negative integer. 

Now we establish dimension results for PL, using Theorem 5.2. Note that 
a and $ determined in Section 4 can be defined in case n = 2 by 

a:= {XESUPP$ ho(x)hl(x) # O), 5:= {x~supp j i :  ho(x)hl(x) = 0). 

Set Re:= (xER": ho(x) = hl(x)). 
PROWSITION 6.2. Let d EN, . Then - 
(i) dim PL, = d if and only if s u p p j i \ ~ e  has exactly d elements. - 

(ii) codim(LonLl I PL,) = d if and only if I?\& has exactly d elements. 
- - 

Proof .  (i) Since PL, is a subspace of L1, Lemma 2.2 shows that dim PL, - 
is equal to dimension of the subspace V1,; PL, of E(P). Thus, the result h -  
mediately follows from (5.4) and Lemma 4.1. 

(ii) From (5.2) we conclude that P is a direct sum of the corresponding 
metric projections in La (Q) and E (0). Since for fc2,-shgular measures the asser- 
tion is trivial, we can assume that p is #(,,-regular, i.e., S" is empty. Then - - 
codim(L, n L, ] PL,) = dim PL, and an application of (i) completes the proof. 

Note that by setting d = 0 in Proposition 6.2 (i) one obtains a result which 
can be considered as an extension of Theorem 3.5 to arbitrary ix E (1, 21 for the 
case n = 2. 

- 
PROPOSITION 6.3. (i) Let d E N , .  Then codim (PLo I L1) = d if and only if 

Re consists of exactly d elements. 

* Helpful discussions with F. Mazzone and P. Wojtaszczyk are gratefully acknowledged. 
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- 
(ii) codim(PLo 1 La(p)) < m $ and only if R" or, equivabntly, R is a Jinite 

- 
set. If Re has dl  elements and R\Re has d2 elements, then codim(PL , ( La ( p ) )  = 

2 4 4 -  dz, d l ,  d 2 ~ M o .  

Proof.  (i) As in the proof of Proposition 6.2 (i) we can and shall assume 
that f i  is $,,-regular. Since by Lemma 2.2 

- - 
codim (PL, I L,) = codim (VG PLo I C (m), 

- 
from (5.4) we infer that codim(PLo 1 Ll) can be finite only if R", is finite. More- 
over, if-& has exactly d elements, we obviously have codim (% I L,) & d .  In 
order to'complete the proof it is enough to show that any cp E L" (b) such that - 
50 = 0 on X", can be approximated by fuctions of V C ~  PLo. Define h :  = 

hl/h,, which is possible because ho # 0 on K, For  EN, set 

B , : =  {x~R": . l l -h (x ) l  > l/k and II+h(x)l < k). 

Since UU, B, = I?\l?. and rp = 0 on Re, for e > 0 there exists j e  N such that 

jkjB, Iqta dfi < E.  Define a function (PIE E Q setting 

Then we have 

Now (5.4) shows that V,r,l P q j  is the desired approximation. 
(ii) Taking into account (i) and (4.8) we obtain all results from the equality 

- - 
codim (PL, ] L* (p)) = codim (PL, ( Ll)  + codim (L1 ( E (p)). 

7. TNE GAP BETWEEN Lo AND L, 

Let M be a subset of a Banach space X, whose norm is denoted by 11-ll. For 
f E X set dist ( f ,  M) : = inf { ( I  f- gll: g E M). If L and N are subspaces of X such 
that L is not a subspace of N, the gap y (L,  N )  between L and N is defined by 

y(L, := inf{ 
dist (f, N )  f eL\N). 

distU; LnN) '  

We recall some facts on y (L, N) and refer to [9] for details and proofs. Clearly, 
0 d y (L, N) 6 1. According to Theorem 4.2 of Chapter IV in [9],  y (L, N) > 0 
if and only if the algebraic sum of L and N is closed. Although in general 
y (L ,  N) + y (N, L) (see [9]), the result just mentioned implies that y (L, N) > 0 
if and only if y (N, L) > 0. To get an idea of what relation y (I,, N )  > 0 means 
assume that X is a Hilbert space. If L n N  = { O ) ,  the angle 3 ~ [ 0 ,  n/2] 
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between Land N can be defined by 

If L n N # (01, let E and N' be the orthogonal complements of L n N in L and 
N, respectively. Since y (L, N )  = y ( E ,  N') (see [9], p. 2201, from (7.1) and (7.2) 
we easily obtain y (L, w2 = 1 -cosZ 8, where 9' denotes the angle between L: 
and Nr. Thus, y (L, N) > 0 if and only if the angle between L: and N' is positive. 

Since the algebraic sum of Lo and L1 is dense in La&), we obtain Lo G L1 
if and only if ,i is A2,ysingular. 

Now w; wish to describe all non-A,,-singular measures p such that the 
inequality y (Lo, L1) > 0 holds. From (7.1) and the definition of the metric 
projection we conclude 

y (Lo, L1) = inf 

Since Lo n L, = L" (a), it follows that 

By Lemma 2.2 a function f E Lo can be written as f = ~p + zrp, cp E C (p). Hence 
(7.4) yields 

Taking into account (7.3) and (5 .3 ,  we infer that y (Lo, L,) > 0 if and only if 

which in turn is equivalent to the existence of a positive constant el such that 

on-R". Setting h := hl/ho on R" and using (2.1), we easily infer that-(7.5) is 
satisfied if and only if there exists a positive constant c such that 

or, equivalently, such that for any B E B n R" 

Thus we have proved the following theorem. 

THEOREM 7.1. Assume that p is not ~ 2 1 - s i n g u l a r .  Then the gap between 
Lo and L1 is positive $ and only $ (7.7) is satis3ed. 
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TWREM 7.2. The relations Lon L,  = (0) and y (Lo, L1) > 0 hold if and 
only if (7.7) is true for any 3 E !B nsupp b. 

Proof. The assertion follows from Proposition 4.2 (ii) and Theorem 7.1. 

8. RATIONAL SPECTRAL DENSITIES 

A harmonizable SuS sequence as well as its spectral measure p are called 
to have a rational spectral density if' p is of the form 

where p and q are polynomials which can and will be assumed to have no 
common zeros, and A denotes the normalized Lebesgue measure on I .  Note 
that since p is a finite measure, q does not have zeros on the unit circle T. In the 
present section we specify some of the preceding results for sequences with 
rational spectral densities. 

THEOREM 8.1. If p has a rational spectral density, then for n ~ N \ ( l )  
(i) p is $I,)-regular; 
(ii) dim L, = co , rn E 2,; 

(iii) codim (L,,, ( @ (p)) = m, m E Z,. 

Proof. The assertions (i), (ii) and (iii) follow from Theorem 3.2, Proposi- 
tion 4.2 (i) and Proposition 4.3, respectively. 

THEOREM 8.2. Let p be of the form (8.1). Then y (Lo, L,) > 0 if and only if 
the set of zeros of p on T including muttiplicities is symmetric with respect to the 
real axis. 

Proof. It is not hard to see that under the assumption (8.1) the function 
h = h,/ho can be written as 

on I o .  Here for a function g on C the function g- is defined by g- (z) := 
g (- z), z E G. Therefore, (7.6) is satisfied if and only if qp- and pq- have the 
same zeros on T including multiplicities. Since q does not have zeros on Tand 
since z is a zero of p if and only if -2 is a zero of p- ,  the assertion holds true. EI 

To apply the results of Section 6 to sequences with rational spectral den- 
sities we need the following lemma. 

LEMMA 8.3. Let r and s be polynomials. If there exists a set A E I such that 
A has an accumulation point and 
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then 
(i)  Irl = Is1 on T; 
(ii) the zeros of r and s on C\(O) coincide including multiplicities. 

Proof.  From (8.3) and the existence of an accumulation point of the set 
A we conclude that the trigonometric polynomials lr(e'')12 and Is(ei')12 are iden- 
tical. This yields (i). Considering polynomials r and s as elements of a Hardy 
space, we see from (i) that their outer parts coincide. Since the outer part of 
a polynomial, whose zeros on C\(O) are denoted by z, and w,, where lzjl 2 1 
and lw,l < 1, respectively, -- is equal to IJ (z - zj)  n, (1 -Gi z), z E C, the assertion 
(ii) follows.-~ 

THEOREM 8.4. i f  p has a rational spectraE density, then either PL, = (0 )  or 
- 
PLo = L1. 

Proof.  The relation (8.2) and Lemma 8.3 imply that either h = 11, or 
h + l,, ji-a.e. According to Propositions 6.2 (i) and 6.3 (i)  the first and the - 
second cases are equivalent to PL, = (0) and PL, = L,, respectively. rn 

It  is not difficult to describe the set of polynomials such that h = I,,. In 
fact, from (8.2) and Lemma 8.3 we infer that in this case pq- and q p -  have the 
same zeros on C\{O) including multiplicities. Since p and q do not have com- 
mon zeros, the polynomials p and p -  have the same zeros on C\(O) including 
multiplicities, which implies that p is either an even polynomial or an odd one. 
Similarly, q is either even or odd. Since p and q can be odd polynomials only if 
p(0) = q(0) = 0, which is excluded, we get the following result. 

PROPOSITION 8.5. Suppose that p has the form (8.1). Then PLo = (0) if and 
only if either both polynomials p and q are even or one of them is even and the 
other is odd. 
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