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of the square root. Our discussion is based on a variant of the It8 
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1. INTRODUCTION 

The theory of self-decomposability, as developed by Levy, Urbanik, Sato, 
Jurek and Mason, and others, has turned out to be of substantial interest for 
stochastic modelling in finance, turbulence and other fields. See, for instance, 
Barndorff-Nielsen (1998a), Barndorff-Nielsen and Shephard (2001) and Barn- 
dorff-Nielsen and Schmiegel (2004), where (positive) LCvy driven processes of 
Ornstein-Uhlenbeck type have a key role. 

The focus of the present paper is on stochastic differential equation re- 
presentations of square roots of positive definite matrix processes of Ltvy or 
Ornstein-Uhlenbeck type. Such representations are, in particular, of interest in 
connection with the general theory of multipower variation, cf. Barndorff-Niel- 
sen, Graversen, Jacod, Podolskij and Shephard (2006) and Barndorff-Nielsen, 
Graversen, Jacod and Shephard (2006). 
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In the present literature matrix-valued stochastic processes are not com- 
monly used to model multivariate phenomena (see, for instance, the short 
discussion on multivariate stochastic volatility models at the end of Section 4). 
Our introduction of positive-definite Ornstein-Uhlenbeck processes and the 
discussion of the representations of square (and other) roots shows that 
matrix-valued models of considerable generality can be defined in a natural 
way and univariate results can very often be generalized by using notions and 
results from matrix analysis. Furthermore, several results of general interest 
regarding matrix-valued processes (semimartingales) and matrix analysis are 
obtained, as we proceed. 

This paper is organized as follows. Section 2 establishes some notation, 
and in Section 3 we present a convenient version of ItB's formula for processes 
of finite variation. In Section 4 we introduce positive definite processes of 
Ornstein-Uhlenbeck type (OU processes), using the concept of matrix subor- 
dinators discussed by Barndorff-Nielsen and P6rez-Abreu (2007). The question 
of establishing tractable stochastic differential equations for roots of positive 
definite matrix processes is then addressed in Section 5, and in Section 6 the 
results are applied to the case of OU processes. 

2 NOTATION 

Throughout this paper we write R+ for the positive real numbers includ- 
ing zero and we denote the set of real m x n matrices by M,,, (R). If m = n, we 
simply write M,(R) and denote the group of invertible n x n matrices by 
GL,(R), the linear subspace of symmetric matrices by S,, the (closed) positive 
semidefinite cone by S:, and the open (in S,) positive definite cone by SL +. 
Moreover, I, stands for the n x n identity matrix and a(A) for the spectrum 
(the set of all eigenvalues) of a matrix A EM, (R). The natural ordering on the 
symmetric n x n matrices will be denoted by <, i.e. for A, BE S, we have A < B 
if and only if B - A  E S: . The tensor (Kronecker) product of two matrices A, B 
is written as ABB. By vec we denote the well-known vectorisation operator 
that maps the n x n matrices to Rn2 by stacking the columns of the matrices 
below one another. Finally, A* is the adjoint of a matrix AEM,(R). 

For a matrix A we denote by Aij the element in the i-th row and j-th 
column and this notation is extended to processes in a natural way. 

Regarding all random variables and processes we assume that they are 
defined on a given appropriate filtered probability space (9, 9, P, (&)) satis- 
fying the usual hypotheses. With random functions we usually do not state the 
dependence on 0 E i2 explicitly. 

Furthermore, we employ an intuitive notation with respect to the inte- 
gration with matrix-valued integrators. Let A, E M,,,, L, E M,, and B, E M,,, be 
three processes. Then we denote by j A,dL, B, the matrix C in M,,,(R) which 
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has the ij-th element Cij = z=, s=, j a, blj dLk,. Moreover, we always denote 
by J: with a E R U  {- m), bcR the integral over the half-open interval (a, b] 
for notational convenience. If b = c ~ ,  the integral is understood to be 
over (a, b). 

AE FOR FINITE VARIATION PROCESSES 
IN OPEN SETS 

In this section we provide a univariate and a multivariate version of the 
It8 formula from stochastic analysis, which is especially suitable for the pur- 
poses of this paper. Actually, our version is a consequence of standard results, 
but not given in the usual references. Closely related versions for processes 
taking values in Wd instead of an open subset C can be found in Protter (2004), 
Theorem 11.31, or Rogers and Williams (2000), pp. 28-29, for example. 

As we are analysing stochastic processes in general open subsets C of Rd, 
Md(R) or Sd, we need an appropriate assurnption that the process stays 
within C and does not hit the boundary, since this causes problems in general. 
To describe "good" behaviour we thus introduce "local boundedness within C'. 
If C is the whole space, it is the same as "local boundedness". 

DEFINITION 3.1. Let (K ',I-llv) be either Wd, Md(R) or Sd with d c N  and 
equipped with the norm Il-llv, let a E V and let (Xt),,,+ be a Vvalued stochastic 
process. We say that X, is locally bounded away @om a if there exists a sequence 
of stopping times (T,),,, increasing to infinity almost surely and a real sequence 
(d,),, with d, > 0 for all n c N  such that IIXt-allv 2 d, for all 0 < t < T,. 

Likewise, we say that for some open set C c V the process Xt is locally 
bounded within C if there exists a sequence of stopping times (T,),,, increasing 
to infinity almost surely and a sequence of compact convex subsets D, c C 
with D, c D,, , for all n c N such that X, E D, for all 0 < t < T,. 

Obviously, if a process is locally bounded away from some a or is locally 
bounded within some C in one norm, then the same holds for all other norms. 
We will see in the following that these definitions play a central role for our It8 
formulae and that they hold for many processes. 

PROPOSITION 3.2 (Univariate It6 formula for processes of finite variation). 
Let (XJtsR+ be a chdlhg process of Jinite variation (thus a semimartingale) with 
associated jump measure ,ux on (R+ x R\{O) , k% (HZ+ x R\{O))) (see e.g. Jacod and 
Shiryaev (2003), Proposition 11.1.16) and let f : C + W be continuously diferen- 
tiable, where C is some open interval C = (a, b) with a,  b ~ R u { +  m), a < b. 
Assume that (X,),+ is locally bounded within C. Then the process X ,  as well as 
its lejt limit process X,- take values in C at all times t~ R', the integral 
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exists as. for all t E W and 

t t 

f(xt)=f(xO)+jf'(xs-)ax;+{ j ( f ( ~ ~ - + x ) - f ( ~ ~ - ) ) ~ ~ ( d s ~ d x ) ~  
o o a\(o) 

where Xi = X,-S~.~,,,) xpx(ds, dx) is the continuous part of X. 
(Strictly speaking, f (Xs- +x) is not defined for all x ER, as f is only 

I defined on C. But our assumptions assure that p, is concentrated on those x 
for which Xs- + x E C. Therefore we can simply continue f arbitrarily outside 
of C.) 

Proof. As X, is locally bounded within C, the process X, cannot get 
arbitrarily close to the boundary of C in finite time, and hence X, and Xt- are 
in C at all times t€R+. 

Obviously, 
t 

J j ( f ( x s - + ~ ) - f ( ~ s - ) ) ~ X ( d ~ Y  ax)= t: Af(Xs). 
0 R\(O) o i s s t  

That X, is locally bounded within C implies the existence of compact intervals 
D, c C such that X, E D, for all t E [0, T,) for some sequence (T,),,, of stopping 
times increasing to infinity a.s. However, f' is bounded on D,, say by c,, and 
the mean value theorem gives 

Af (Xs) = f (Xs) -f (Xs-) = f' (Cs) (Xs-X8-) = f '  (Cs) AXs with Cs ED,. 

Therefore, 
t 

j j If@,- +x)-f(Xs-)l~x(ds, dx) 
0 R\{O) 

= I Af (Xs)l < Cn l AXsl for all t E LO, T,), 
O < s < t  O < s < t  

which is finite due to the finite variation of Xt. Thus the almost sure existence 
of the integral is shown. 

The standard It6 formula (see Bichteler (2002), Theorem 3.9.1 together 
with Proposition 3.10.10, for an appropriate version) gives 

on observing that, since Xt is a finite variation process, we can move from 
a twice continuously differentiable f to an only once continuously differen- 
tiable one, as in Protter (2004), Theorem 11.31. Noting further that 



I Positive-definite matrix processes of Jinite variation 7 

and that the integral JR\lor (f (Xs- + x) -f (Xs-)) g, (ds, dx) exists, we obtain 

Remark 3.3. (a) The assumption that X, remains locally bounded 
within C ensures that ff(X,) is locally bounded. This reflects the boundedness 
of the derivative needed in the proof of Protter (2004), Theorem 1.54, which is 
a special case of the above result. 

(b) It is straightforward to see that Xt is locally bounded within C = (a, b) 
if and only if Xt is in C at all times and locally bounded away from both a 
and b, where for a = -0 or b = this has to be understood as meaning 
locally bounded. Recall in this context that any finite variation process is 
locally bounded. 

In the multivariate version we use the notion of (total) differentials, some- 
times also called Frichet diferentials (see Rudin (1976), Chapter 9, or Bhatia 
(1997), Section X.4, for an overview focusing on the matrix case), rather than 
partial derivatives for notational convenience. Recall, however, that a function 
is continuously differentiable if and only if' all partial derivatives exist and are 
continuous, and that the derivative, which is a linear operator, simply has the 
partial derivatives as entries. The derivative of a function f at a point x is 
denoted by Df (x). In particular, we have the following multivariate version of 
Proposition 3.2. We state it only for processes in Rd, but it should be obvious 
that Rd can be replaced by Md(R) or Sd. 

PRQPQSI~QN 3.4 (Multivariate It6 formula for processes of finite varia- 
tion). Let (XtkeR+ be a cadlag Rd-valued process of Jinite variation (thus a semi- 
martingale) with associated jump measure gx on (R' x Rd\(O}, 9 ( R +  x Rd\(O})) 
and let f : C + Rm be continuously di&rentiable, where C G Rd is an open set. As- 
sume that the process (Kt),,+ is locally bounded within C. Then the process Xt as 
well as its left limit process X,- take values in C at all times t E R', the integral 

t 

j j (f(Xs-+x)-f(Xs-))~x(ds, dx) 
0 Rd\vJ1 

exists a.s. for all t el? and 

where X: = X, - so J,d\m, xpx (ds, dx) is the continuous part of X. 

P r o  of. The proof is a mere multivariate rephrasing of the one for Propo- 
sition 3.2 using an appropriate general multidimensional version of It6's for- 
mula (e.g. Bichteler (2002), Proposition 3.10.10, M6tivier (1982), Theorem 27.2, or 
Protter (204), Theorem 7.33) and standard results from multivariate calculus. 
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4. POSITIVE S E D E  E MATRIX PROCESSES OF QU TYPE 

In this section we briefly review one-dimensional processes of Ornstein- 
Whlenbeck (OU) type (cf. Applebaum (2004), Cont and Tankov (2004) or 
Barndorff-Nielsen and Shephard (2001, 2007), among many others) and then 
introduce Ornstein-Uhlenbeck processes taking values in the positive semidefi- 
nite matrices. For the necessary background on Ltvy processes see Protter 
(2004), Section 1.4, or Sato (1999). 

In univariate financial modelling, it has become popular in recent years 
to specify the variance (~,2), ,~+ as an Ornstein-Uhlenbeck process (see in 
particular the works of Barndorff-Nielsen and Shephard). We assume given 
a Ltvy process (LJtER+ and consider the SDE 

(4.1) do; = -A& dt +dLt 

with some AER. The solution can be shown to be 

and is referred to as an OU (type) process. Note that for univariate OW type 
processes one often applies a time transformation on the Ltvy process and then 
has dLAs instead of dL, above, but this is not possible in the multivariate case 
below. Provided the L6vy process L, is a subordinator (as. non-decreasing 
Ltvy process), the solution 0; is positive and thus can be used as a variance 
process. After extending the L6vy process to one, (LJtsR, living on the whole 
real line in the usual way, one can show that (4.1) has a unique stationary 
solution given by 

- m  

provided /Z > 0 and the Lkvy process has a finite logarithmic moment, i.e. 
E (log + (L,)) < co. 

There is a vast literature concerning the extension of OW processes to 
Rd-valued processes (for instance, Sato and Yamazato (1984), Chojnowska-Mi- 
chalik (1987) or Jurek and Mason (1993)). By identifying Md(R) with lZd2 one 
immediately obtains matrix-valued processes. So for a given Ltvy process 
(LJtfR with values in Md (R) and a linear operator A : Md (R) + Md (R) we call 
some solution to the SDE 

(4.3) dX, = AX,- dt + dL, 

a (matrix-valued) process of Ornstein-Uhlenbeck type. 
As in the univariate case one can show that for some given initial value 

Xo the solution is unique and given by 
t 

(4.4) X, = ekXXo+SeA('-"dL,. 
0 
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Provided E(logf llLtll) < co and a(A) E(- oo, 0) + iR, there exists a unique sta- 
tionary solution given by 

t 

Xt = J e*(t-s) d~ s - 
-a 

In order to obtain positive semidefinite Ornstein-Uhlenbeck processes we need 
to consider matrix subordinators as driving LCvy processes. An Md (R)-valued 
LCvy process L, is called "matrix subordinator" if Lt - L,ES~+ a.s. for all t 2 S; 

see Barndorff-Nielsen and Ptrez-Abreu (2002,2007), Rocha-Arteaga (2006) and 
the references therein for further details. 

PROPOSITION 4.1. Let Lt be a matrix subordinator, assume that the linear 
operator A satisJies exp (At) (Sf) s Sf for all t E R+ and let Xo E Sdf . Then the 
Ornstein-Uhlenbeck process (XJtER+ with initial value Xo satisfying (4.3) takes 
only values in $2. 

If E (log+ IILtll) < oo and a (A) E (- oo , 0) + iR, then the unique stationary 
solution (XJtSR to (4.3) takes values in S: only. 

P r o of. The first term eAt X o  in (4.4) is obviously positive semidefinite for 
all t s R+ due to the assumption on A. Approximating the integral So eA(t-s) dLs 
by sums in the usual way shows that also the second term is positive semi- 
definite, since all approximating sums are in Sd+ due to the assumption on A 
and the Sf-increasingness of a Ltvy subordinator. 

The very same argument implies the positive semidefiniteness of the 
unique stationary solution. 

An important question arises now, namely, which linear operators A can 
one actually take to obtain both a unique stationary solution and ensure 
positive semidefiniteness. The condition exp (At) (Sf) c Sd+ means that for all 
t E R+ the exponential operator exp (At) has to preserve positive definiteness. 
So one seems to need to know first which linear operators on Md(R) preserve 
positive definiteness. This problem has been studied for a long time in linear 
algebra in connection with the general topic "Linear Preserver Problems" (see, 
for instance, the overview articles Pierce et al. (1992) and Li and Pierce (2001)). 
We have the following: 

PROPOSITION 4.2. Let A : Sd + Sd be a linear operator. Then A(Sd+) = Sdf if 
and only if there exists a matrix BE GLd(R) such that A can be represented 
as X H  BXB*. 

Proof. This was initially proved in Schneider (1965). A more general 
proof in a Hilbert space context may be found in Li et al. (2003). 

Remark 4.3. No explicit characterization of the linear operators map- 
ping Sdf into S:, i.e. A($',+) E S:, is known for general dimension d. 

Naturally, all linear maps on Sd can be extended to mappings on M d .  
From this linear algebraic result we obtain the following result, introducing the 
linear operators preserving positive semidefiniteness which we shall employ. 
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PROPOSITION 4.4. Assume the operator A : Md (R) + Md (W) is representable 
as XH A X + X A X  for some A E  Md(R).  Then eA' has the representation 
XI-+ eA'XeA*' and &'(Sd+) = Sd+ for all t E R. 

P r o  of. The equality eAt X = eA' XeA*' for all X E Md (W) follows from 
Horn and Johnson (1991), pp. 255 and 440, and eA'(Sd+) = Sd+ for all ~ E R  
is then implied by Proposition 4.2, since eB is invertible for any matrix 
B E  Md(R).  

Note the close relation of this kind of operators to Kronecker sums and 
the so-called "Lyapunov equation" (see Horn and Johnson (1991), Chapter 4). 
For a linear operator A of the type specified in Proposition 4.4 formula (4.3) 
becomes 

(4.5) dX ,  = ( A X ,  - + X ,  - A*) dt + dL, 

and the solution is 

Confer also Horn and Johnson (1991), p. 440, for a related deterministic dif- 
ferential equation. 

Using the vec transformation and Horn and Johnson (1991), Theo- 
rem 4.4.5, we see that a (A) = a ( A )  + a (A),  where the addition of two sets 
A,  B G R is defined by A + B  = (a+b:  ~ E A ,  b s B } .  Thus 

THEOREM 4.5. Let (LJtsR be a matrix subordinator with E (log+ IILtll) < 
and A E M I  (R) such that a (A)  c (- a, 0) + iR. Then the stochastic dgerential 
equation of Omstein-Uhlenbeck type 

d X ,  = ( A X ,  - + X t  - A*) d t  + dL, 

has a unique stationary solution 
t 

X ,  = j eA(t-s) d~ eA*(t-s) 

- m 

or, in vectorial representation, 
t 

vec (X,) = j exp ((1, @ A  + A @ Id)  ( t  - s)) dvec (Ls). 
-00 

Moreover, X ,  E S ~ +  for all t E L  

Recall from Barndorff-Nielsen and PBrez-Abreu (2007) that any matrix 
subordinator (L,), has paths of finite variation and can be represented as 

f 

(4.7) L t=y t+J  j xp(ds ,dx) ,  
0 sd \{o) 
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where y E Sd+ is a deterministic drift and p (ds, dx) an extended Poisson random 
measure on R+ x Sd+ (regarding the definitions of random measures and the 
integration theory with respect to them we refer to Jacod and Shiryaev (2003), 
Section 11.1). Observe in particular that the integral exists without com- 
pensating. Moreover, the expectation of p factorises, i.e. E (p(ds, dx)) = 

Leb (ds) v (dx), Leb denoting the Lebesgue measure and v the LBvy measure 
of L,. The above equation (4.7) can be restated in a differential manner as 

(4.8) d l t  = ydt+ f xp(dt, dx). 
S,+\{OI 

The obvious extension of this to a LBvy process (LJ,,, having been started in 
the infinite past gives another representation of the above stationary OU 
process. 

PROPOSITION 4.6. The positive semidefinite Omstein-Uhlenbeck process 
Xt as given in Theorem 4.5 can equivalently be represented as 

where B- l is the inverse of the linear operator B : Md (R) + Md (R), X w 

AX +XA* which can be represented as vec- ' o ((I~QA) +(A@I&)-' o vec. 

P r o of. The invertibility of B and the positive semidefiniteness of - B- y 
follow immediately from the standard theory on the Lyapunov equations 
(Horn and Johnson (1991), Theorems 2.2.3 and 4.4.7). Now only the second 
equality remains to be shown, but this is immediate as 

d - B- 1 - e A ( t - ~ )  yeA*(f -s) = eA(t - 5 )  YeA*(t -s) and lim eA('-" = 0. rn 
ds s+ - m 

The next proposition provides a characterization of the stationary distri- 
bution. To this end observe that tr (XY) (with X, Y €Md(R) and tr denoting 
the usual trace functional) defines a scalar product on Md(R). Moreover, the 
vec operator is a Nilbert space isometry between Md(R) equipped with this 
scalar product and R~' with the usual Euclidean scalar product. This, in par- 
ticular, implies that the driving Gvy process Lt has characteristic function 
(cf. also Barndorff-Nielsen and PBrez-Abreu (2007)) 

(4.9) (2) = exp (it tr (yZ) + t J (exp (i tr (XZ)) - 1) v ( d ~ ) ) .  
sd+ \I01 
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PROPOSITION 4.7. The stationary distribution of the matrix Ornstein- 
Uhlenbeck process X ,  is infinitely divisible with characteristic function 

(4.10) fix (2) = exp (i tr (yx Z) + I (exp (i tr (YZ)) - 1) vx (dl?)), 
s t  \I01 

where yx = -B-l y with B defined as in Proposition 4.6 and 

m 

vx (E) = j j I, (eAs xeA"" v (dx) ds 
0 st \{0) 

for all Bore1 sets E in S$\(O}. 
Assume that the driving LLvy process is square-integrable. Then the second 

order moment structure is given by 

(4.1 1) E(Xt) = y x - ~ - l  I yv (dy) = -B-I E(L1), 
st \{O) 

(4.12) Var (vec (Xt)) 
m 

= exp ((A@ Id + Id@A) t )  Var (vec (L,)) exp ((A* @I I, + Id@A*) t )  dt 
0 

(4.13) Cov (vet (-%+I,), vec (X,)) = exp ((A@ Id + Id6A) h) Var (vec (x,)), 
where t 6 R  and h e R + ,  and 

The linear operator B can be represented as 
I 

vec-10((~d2@(~@~d+ I~@A))+((A@I,+ I ~ @ A ) @ I ~ ~ ) ) o v ~ c .  
I 

! We used the vec operator above, as this clarifies the order of the elements 
of the (co) variance matrix. 

P r o of. The characteristic function is standard, cf. Barndorff-Nielsen, 
Pedersen and Sato (2001), p. 178, for instance. Regarding (4.1 1) a general result 
for infinitely divisible distributions implies that 

Using the explicit representation for v, and evaluating the integral as in the 
proof of the last proposition immediately establish (4.11). The proof of the first 
equality in (4.12) and of (4.13) is standard, see e.g. Marquardt and Stelzer 
(2006), Proposition 3.13, and the second equality in (4.12) follows by an ex- 
plicit integration as before. 

Remark 4.8. In the existing literature for Rd-valued processes only the 
analogue to the first equality in (4.12) is stated and an identity is given 
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that becomes 

- Var (vet (LI ) )  = ( A  @Id+ I d 6 A )  Var (vec (X,)) + Var (vec (x,)) (A*@Id + I,@ A*) 

in our case. That identity is, of course, equivalent to our second equality in (4.2), 
but usually obtained by a very different approach (cf. Arat6 (1982), for instance). 
Our version involving 23-I stresses that the variance can be calculated by solv- 
ing a standard linear equation and fits in nicely, as inverse operators of this type 
appear in many of our results. 

Moreover, conditions ensuring that the stationary OU type process X, is 
almost surely strictly positive definite can be obtained. 

M 4.9. If y E S: + or v (5: +) > 0, then the stationary distribution 
Px of  X ,  is concentrated on S:+, i.e. P,(S:+) = 1. 

Proof. From Proposition 4.6 and its proof we have X,  2 - B-I y.  In the 
case y ES;+  this proves the theorem immediately, as then -B-' y is strictly 
positive definite due to Horn and Johnson (1991), Theorem 2.2.3. 

Assume now that v(S:+)  > 0. From Proposition 4.6 we know that 

Since ZI-, eA" zeA*" preserves positive definiteness for all s ER, it is obviously 
sufficient to show that (Ls),,,+ has at least one jump that is positive definite. 
Choose now E > 0 such that 

Then the process 

L , s  : = C lIxcs2 : x 3 el (ALs) ALs 
O<s<t 

is a Levy process with Levy measure 

where we denoted by I,(-) the indicator function of a set M. The process L, is 
obviously a compound Poisson process and the probability that a jump of L,  is 
in S:\Sd++ is given by 

q : = v, (S: \s: +)/v& (S:) < 1 .  

As the individual jump sizes and the jump times are independent and (LE,s)sER+ 
has a.s. intinitely many jumps in R+,  this implies that with probability zero all 
jumps of (L,,s)sER+ are in Sd+\Si +. In other words, (LE,S)SER + and thus (LS),,+ 
has a.s. at least one jump in S t + .  rn 

The positive-definite Ornstein-Uhlenbeck processes introduced above can 
be used as a multivariate stochastic volatility model in finance, as an extension 
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of the one-dimensional approach proposed in Barndorff-Nielsen and Shephard 
(2001). A different kind of generalization has been discussed by Hubalek and 
Nicolato (2005) and Eindberg (2005), who have specified different multivariate 

I stochastic volatility models using factor models, where the individual factors 
are univariate positive Ornstein-Uhlenbeck type processes. The d-dimensional 
volatility model of Wubalek and Nicolato is of the form C: = ASt A*, where 
St is an Ornstein-Uhlenbeck process in S; (actually only on the diagonal 
matrices) and A E Md,,, (R). The results for the roots of positive definite proces- 
ses which we obtain in Section 5 are with a minor obvious adaptation im- 
mediately applicable to processes of this type. Another proposal put forth 
in Gourieroux et al. (2004) specifies a d x d volatility process F as a sum J( = 

zr= xL with the processes x , ~  being i.i.d. Gaussian Ornstein-Uhlenbeck 
processes in Rd and KEN. These processes are referred to as Wishart autore- 
gressive processes, as the distribution of is the Wishart distribution (see also 
Bru (1991)). This specification is not amenable to the type of SDE represen- 
tations of the root processes that we shall discuss in Section 5, under a general 
set-up, and in Section 6 for positive definite OU processes. Note also, in this 
connection, that the Wishart law is not infinitely divisible, hence, in particular, 
not self-decomposable (see LCvy (1948)). 

In stochastic volatility models the integrated variance process is of par- 
ticular interest (see e.g. Barndorff-Nielsen and Shephard (2001, 2003)). The 
same reasoning as in the univariate case (Barndorff-Nielsen (1998b)) leads to 
the following explicit result for the integrated variance of a positive definite 
Ornstein-Uhlenbeck stochastic volatility process: 

PROPOSITION 4.10. Let X ,  be a positive semidefinite Ornstein-Uhlenbeck 
process with initial value Xo ~ S d f  and driven by the Ltvy process L,. Then the 
integrated Omstein-Uhlenbeck process X: is given by 

for t€R+,  where B is the linear operator defined in Proposition 4.6. 

5. ROOTS OF POSITIVE SEMIDEFINITE PROCESS= 

In this section we obtain stochastic representations of general roots of 
processes in R+ and later on of the square root of stochastic processes taking 
values in 5':. Recall that every positive semidefinite matrix A has a unique 
positive semidefinite square root All2 defined by functional calculus (see, 
for instance, Horn and Johnson (1990, 1991) for a comprehensive introduc- 
tion). 

The interest in such representations comes, in particular, from the the- 
oretical works on the properties of multipower variation; see Barndorff-Nielsen, 
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Graversen, Jacod, Podolskij and Shephard (2006), for instance. In that paper 
the limit theorems are obtained under the hypothesis that the square root of 
the covariance matrix process is a semimartingale of a special type. Moreover, 
in many cases the additional assumption is needed that it takes values in the 
strictly positive definite matrices, as this ensures that the covariance matrix 
process is of the same type (and vice versa). However, as there are no formulae 
given relating the characteristics of the covariance matrix process with those of 
its square root, we shall derive the relations explicitly and discuss whether the 
invertibility assumption is indeed always necessary. Under the invertibility 
assumption It8's lemma is the key tool, but as we see later on we can move 
away from this prerequisite. On the other hand, we restrict ourselves to the 
study of processes of finite variation. The reasons are that the processes we 
intend to apply our results to are naturally of finite variation and that in the 
infinite variation case it seems impossible to obtain results for processes 
that may reach the boundary 8s: = S:\S:+. As a consequence, all our 
"stochastic" integrals coming up can actually be computed pathwise as Lebes- 
gue-Stieltjes integrals. 

In the following we start by analysing univariate processes, where we 
study general r-th powers and then move on to multivariate processes. 

5.1. The lanivdte  case. Now we shall first present the univariate case, as it 
involves no advanced matrix analysis, but allows one to understand the be- 
haviour of root processes. Due to the applications we have in mind, we state 
the following results for finite variation processes, whose discontinuous part is 
of the special form 

j j s ( s - , x ) P ( ~ ~ , ~ x )  
0 R + \(O) 

with some extended Poisson random measure p on R+\{O} (in the sense of 
Jacod and Shiryaev (2003), Definition 1.20). Moreover, 

g(s, x) = g(o, s, x): Q x R+ x R+\{O} + W+\{O) 

is a (random) function that is Fs x 93' (R +) measurable in (o, x) and cddliig in s. 
For such a process the jump measure is 

where g-I (s- , -) is to be understood as taking the preimage of the set dx with 
respect to the map Rf \{O} + R+\{O}, x I-+ g (s- , x). We frequently refer to the 
dependence on o E Q in the following, but keep suppressing it in the notation. 

THEOREM 5.1. Let (XJ,,+ be a given adapted cddldg process which takes 
values in R+\{O}, is locally bounded away $-om zero and can be represented as 

dX,=c,dt+ j g(t-,x)p(dt,dx), 
+ \I01 
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where c, is a predictable and locally bounded process, p an extended Poisson 
random measure on R+ x W+\{O), and g (s, x )  is x (R+ \{O)) measurable in 
(o, x )  and cadlag in s. Moreover, g(s ,  x )  takes only non-negative values. 

Then for any 0 < r < 1 the unique positive process I; = X: is represen- 
table as 

Yo = xl,, 

where the drift at := r x I 1  c, is predictable and locally bounded and where 

w(s ,  X )  := (X,+g(s, x))r-(x,)' 

is 9, x B ( R + )  measurable in (w, x )  and cddl& in s. Moreover, w (s ,  x )  takes only 
non-negative values. 

Proof.  Remark 3.3 implies the local boundedness of X ,  within R+ and 
restating Proposition 3.2 in a differential manner gives 

I 

dX:  = rX::lc,d,+ J ((x,- +x)'-X:-)px(dt, dx). 
R + \to1 

Using the relation between px and p stated before the theorem, we obtain 

d X = r X : ~ l c , d , +  1 ( ( ~ , - + ~ ( t - , x ) ) ' - ~ ; - ) ~ ( d t , d x ) .  
R + \(O) 

I 

The positivity of w(s,  x )  is a consequence of an elementary inequality 
recalled in the following lemma and the additional properties stated are now 

I 

I straightforward. 
For the sake of completeness and since it is essential to our results, we 

recall the following elementary inequality and give a proof. 

LEMMA 5.2. For a ,  x E R + and 0 < r < 1 it follows that (a + x)' -ar is mono- 
tonically decreasing in a and 

(a+$-a' < xr. 

In particular, for a ,  b E R+ the inequality lar- brl < la- blr holds true. 

Proof.  Define for fixed x the function f :  R+ 4 R ,  a ~ ( a + x ) ' - a ' .  Then 

f l (a )  = r ( ( a + ~ ) ' - ~ - a ~ - ~ )  < 0 

since the (r - 1)-st power is monotonically decreasing. Hence, f is monotonic- 
ally decreasing and f (a) = (a + x)' - a' < f (0) = xr. For the second inequality 
we assume without loss of generality that a 2 b. Then 

Jar-brl = (b+(a-b)r-br < (a-b)' = la-blr, 

due to the first inequality. se 
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Remark 5.3. Actually the representation stated in Theorem 5.1 holds for 
arbitrary powers X: with r e R .  If r 2 1, the assumption that X, is locally 
bounded away from zero is no longer necessary. 

For processes that start at zero or may become zero, we obviously cannot 
use It8's formula in the above manner, since there is no way to extend the r-th 
power for 0 < r < 1 to an open set containing [0, co) in a continuously dif- 
ferentiable manner. Likewise, all advanced extensions of It6's formula we know 
of (e.g. Bardina and Jolis (1997), Ghomrasni and Peskir (2003), Peskir (2005)) 
cannot be applied. For instance, the Boleau-Yor formula (Protter (2004), Theo- 
rem IV.77) allows for a non-continuous derivative, but still demands it to be 
bounded, however for r-th roots it is unbounded at zero. The Meyer-It6 for- 
mula (Protter (2004), Theorem IV.70) needs a left derivative, which again can- 
not be defined at zero. But by using the very standard It8 formula and applying 
a tailor-made limiting procedure, we can indeed verify an extension to proces- 
ses that may become zero: 

THEOREM 5.4. Let (Xt)tER+ be a given adapted cddldg process which takes 
values in R+ and can be represented as 

dX,=c,dt+ J g ( t - , x ) p ( d t , d x ) ,  
R + \I01 

where c, is a predictable and locally bounded process, p an extended Poisson 
random measure on R+ x R+\(O), and g (s,  x )  is g8 x 9 ( R f  \(O)) measurable in 
(w, x) and cddldg in s. Moreover, g(s,  x )  takes only non-negative values. Assume 
that the integrals 

t 

1 rXIS: l cs ds (in the Lebesgue sense) 
0 

and 
t 

J j ( x , - + g ( ~ - , ~ ) ) ~ - ( X s - ) ' ~ ( d s , d x )  
0 R + \{O) 

exist a.s. for all t E R + .  
Then for any 0 < r < 1 the unique positive process I: = Xi is represen- 

table as 

Yo = x;, 
(5.1) 

dI: = a,dt+ J w ( t - ,  x)p(dt ,  dx), 
R+\tOl  

where the drift a, : = r x :  l ct is predictable and where 

w(s,  x )  = (X,+g(s, x)) '-(x~' 

is Fs x B (Rt') measurable in (a, x) and cddltig in s. Moreover, w (s,  x) takes only 
non-negative values and I: is a.s. of finite variation. 

2 - PAMS 27.1 
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Note that ct = 0 implies at = 0 above, even if Xt- = 0, using the conven- 
tions of Lebesgue integration theory. 

P r o  of. We first show that = X; is representable by (5.1). Recall below 
that all integrals can be viewed as pathwise Lebesgue-Stieltjes ones. 

For any E > 0 the process X,,t : = Xt + E is bounded away from zero and 
t t 

X,, = X ~ + E + ~ C , ~ S + ~  J g(s-, x)p(ds, ax). 
0 0 R + \ W  

From Theorem 5.1 we obtain 
t 

(5.2) ( X t + ~ ) ' = X ~ , t = ( X o + ~ ) ' + j r ( X , - + ~ ) ' - l c , d s  
0 

t 

+j j ( ( X , - + & + g ( s - , ~ ) ) r - ( ~ s - + & ) ' ) p ( d s , d ~ ) .  
0 R + \lo) 

For SE  R+ we clearly see that (X,- +e)' -, Xi- pointwise as E + 0. Moreover, 
since r - 1 E (- 1, 0), it follows that (X,- + E)'- is decreasing in E. Thus, 

I r ( X s + ~ l c s r X 1 c s  for all E>O.  

By assumption, IrX;: c,l is Lebesgue-integrable over [0, t ] ,  and so majorized 
convergence gives 

t t 

j r ( ~ , - + ~ ) ' - ~ c , d s + j r X ~ ~ ~ c , d s  a s ~ + O .  
0 0 

From Lemma 5.2 we see that (x, - + E + g (s - , x))' - (X, - + E)' is positive and 
also decreasing in E. So our assumptions and majorized convergence ensure 
that 

t 

= j  J ( ( ~ ~ - + ~ ( s - , x ) ) ' - x : - ) p ( d s , d x ) .  
0 R+\{O) 

Combining these results we obtain, from (5.2) and by letting E -+ 0, 

t t 

X:= X l , + j r ~ ~ ~ c , d s + J  J ( ( ~ ~ - + ~ ( s - , x ) ) r - ~ ~ - ) p ( d s , d ~ ) ,  
o 0 R+\lOl 

which concludes the proof of the representation for x. 
To establish the finite variation of the process it suffices now to argue 

that both integral processes 

t t 

j r ~ ; ~ ~ c , d s  and j j ( X , - + g ( s - , x ) ) r - ( ~ , - ) ' p ( d s , d x )  
0 0 R + \ W  
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are of finite variation. For the second this is immediately clear and for the first 
we only need to observe that the existence in the Lebesgue sense implies the 
existence of ib lrX:I1 c,l ds. The latter is strictly increasing (thus of finite varia- 
tion) when viewed as a process in t and its total variation is an upper bound for 
the total variation of the first integral. 

Remark 5.5. (a) Inspecting the proof it is clear that Theorem 5.1 remains 
valid when replacing the square root with any continuously differentiable func- 
tion f : R' -, R. If additionally 

for all x, y, EER', where K and R are some constants, the same is true for 
Theorem 5.4. 

Then f (X,) is representable by (5.1) with 

(6) In general, r-th powers with 0 < r < 1 of finite variation processes do 
not have to be of finite variation, as the following deterministic example 
exhibits. Let X, be given by: 

X --- 1+- t - l+-  for t~ I--, I-- l ),  EN, 
- 2  ( ) (  I) [ n + l  

X, = 0 for t E [I, a). 

Then X1 - = l/n2 and X(, - ,,(,+ ,,,- = 0 for all n E N  and in each interval 
[I - l/n, 1 - l/(n + 1)) the process X, is linearly decreasing. From this it is im- 

m 
mediate to see that the total variation of (X,),,,+ is given by 2 En= l/n2 - 1, 
which is finite. Likewise, we see that for 0 < r < 1 the process Xi has jumps of 
size l/nzr at the times 1 - lln. As CLl l/na is infinite for all m < 1, this shows 
that for r < 1/2 the process Xi is not of finite variation. Note, moreover, 
that X ,  is of the form studied in Theorem 5.4 where c, = - ( l+  l/n) for 
t E [1 - l/n, 1 - l/(n + 1)), which is trivially predictable and locally bounded, 
g(s, x) = x and 

with 6, denoting the Dirac measure with respect to v.  

Naturally, the next step is to give some readily checkable conditions for 
the existence of the integrals. 

LEMMA 5.6. The integral so [,+\{, w (s- , x) p (ds, dx) exists a.s. in the 

usual sense, if the integral so f,+\I,,, (g (s - , *)Ir p (ds, dx) exists a.s. or there is 
some a.s. jinite random variable C > 0 such that X ,  2 C for all t E R'. 
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Proof. In the first case the existence follows by a standard majorization 
argument from 0 < w (s, x) = (X, + g (s, x))' - (X,)' d (g (s, x))r (Lemma 5.2). 

Likewise, we observe in the second case that we can argue w-wise and the 
function x I+ xr is Lipschitz on any interval of the form [a, a) with a E R+\{O). 
Thus there is a (possibly random) K E R+ such that 0 < (X, + g (s, x))' - (X,)' < 
Kg (s, x). Hence, the claim follows by a dominated convergence argument, 
since the integral So jR+,m g (s - , x) p (ds, dx) exists. 

The condition X, 2 C actually means that Theorem 5.1 applies. 

LEMMA 5.7. The integral jb jR+ ,{,, ((x,- + g (s - , x)r -x:-) p (ds, dx) exists 
in the usual sense, provided c, 2 0 for all t E R + .  In particular, the process X, is 
monotonically increasing then. 

Proof.  The monotonicity of Xt is obvious. We assume c, = 0 for all 
t E R+ first. As the mapping x H xr is monotone, also the process Xi has cadlkg 
monotonically increasing paths. Thus X: is necessarily of finite variation. 
Denoting the variation of a function f over a time interval [tl, t2] with 
0 < t, < t2 by var (f; tl , tz), one deducts that 

But, obviously, 

and hence the finite variation of Xi implies the existence of the integral. 
If c, does not vanish, we obtain XL-XL 2 xl<ssrz A (X@ and can then 

basically argue as before. 

LEMMA 5.8. Suppose the function g (s, x) = g (x) is deterministic and inde- 
pendent of s and the extended Poisson random measure p is the jump measure of 
a Livy subordinator with Uvy measure v. Then the integral 

t 

j j ( ( ~ ~ + g ( x ) r - x : - ) ~ ( d s , d x )  
0 R + \(O) 

is a.s. defzned for all t€Rf  provided jOsx,, g(x)'v(dx) is finite. 

P r o of. Recall that E (,u (as, dx)) = ds x v (dx) in the given set-up. The exist- 
ence of the integral follows immediately by combining Lemma 5.6 and the fact 
that 1, ,x,l g (x)" v (dx) < m implies the existence of So h +,,,, g (x)' p (ds, di) for 
all ~ E R +  (cf. Marcus and Rosinski (2005), p. 113). rn 

Regarding the existence of the integral with respect to the Lebesgue 
measure, we only present the following criterion (a standard consequence of 
dominated convergence), which is applicable to many processes of interest. 
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LEMMA 5.9. Assume that there exists a (possibly random) function 
f : Rt + Rt with io f (t)dt < m a.s. such that IrX~:' c,l 4 f (tj for all t e R t .  
Then the integral ~ o r X ~ Z ' c , d t  exists in the Lebesgue sense. The latter is in 
particular the case i f  there are (possibly random) constants C > 0 and a > - 1 
such that lrX:Z1c,( < Ct". . - 

For positive Lkvy processes, i.e. LCvy subordinators, one can immediately 
apply the above results and obtain the following 

COROLLARY 5.10. Let (LJtER+ be a Livy subordinator with initial value 
Lo E R + ,  associated drift y and jump measure p. Then for 0 < r < 1 the unique 
positive root process Et is of finite variation and 

where the drift ry&' is predictable. Moreover, the drift is locally bounded if and 
only i f  Lo > 0 or y = 0. 

P r o  of. If y is zero, the integrability condition imposed on the drift in 
Theorem 5.4 is trivially satisfied and in the case of a non-vanishing y we 
know that L, 2 yt for all t e l l t .  The latter gives ryEL1 < ryrtr-l, and so 
an application of Lemma 5.9 establishes the existence of So ryEF1dt in the 
Lebesgue sense. Finally, noting that Lkvy subordinators are monotonic- 
ally increasing and using Lemma 5.7, we infer the corollary immediately 
from Theorem 5.4. The result on the local boundedness of the drift is im- 
mediate. H 

5.2. The multivadate case. The aim of this section is to generalise the above 
univariate results to processes taking values in the cone of positive semidefinite 
d x d matrices. For reasons becoming clear later we only take square roots, but 
generalizations to general roots are straightforward and we shall indicate them. 
Before giving rigorous results and proofs, we want to give intuitive but 
non-rigorous arguments showing what the results should be. The reason is that 
for the rigorous proof we will need the multidimensional It6 formula and the 
derivative of the matrix square root, whereas the following two elementary 
lemmata immediately allow for an intuitive argument implying what the result 
should be. Though these lemmata are rather elementary, we decided to give 
complete proofs, as they seem to be unavailable in the standard literature, but 
should be useful in many situations. 

The first result generalizes the representation for the product of two 
one-dimensional semimartingales (confer e.g. Protter (2004), p. 68) to 
matrix products of semimartingales and is briefly stated, without proof, in Ka- 
randikar (1991) (for the continuous case already in Karandikar (1982a, bjj. 
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LEMMA 5.1 1. Let m,  n, d E N and A, E Ma,, (R), Bt E Mm,, (R) be semimartin- 
gales. Then the matrix product A,Bt EM,,, (R) is a semimartingale and 

t t 

A,Bt = J A , - ~ B , + J ~ A , B , -  + [ A ,  B ] y ,  
0 0 

where [ A ,  B]? E Ma,,, (R) is defined by 
I 

I f  the continuous part of the quadratic covariation of A and B is zero, we have 

[ A ,  B ] y =  AoBo+ C AAsABs. 
O<sQt  

P r o  o f. Applying the univariate result componentwise to A, Bt we obtain 
for 1 < i < d ,  l d j q n :  

m m t t 

(At BJij = C At,ik Bt,kj = C ( f  As-,ik dBkj,s S J Bs-,kjdAik,s+ [Aik, ~ k j l t )  
k=  1 k = l  0 0 

u " 

In particular, we see immediately that all components of At B, are semimartin- 
gales being sums of products of semimartingales. Thus A, B, is a matrix-valued 
semimartingale. 

If the continuous quadratic covariation is zero, we have 
m m 

[Ay B]? = [Aik, Bkjlt = (AO,ik~O,kj+A~s,ik ABs,kj) 
k =  1 k=  1 

= (A0 Bo + C AAs ABs)ij, 
O<s<t 

since AAs = (AAs,k,)l 6 k Q d , l  Q ,6m and likewise for B. a 

Re mark 5.12. Obviously, the operator [a ,  .IM plays the same role for 
the matrix multiplication of matrix-valued semimartingales as the quadratic 
variation does for ordinary multiplication of one-dimensional semimartingales. 
Therefore we call the operator [-, .IM the matrix covariation. Note that in 
general it can be decomposed into 

[A, B]? = AoBo+[A,  B]?,~+ AA,AB,, 
O<sSt  

where [A, B I : ~  : = Cr=l [A,, skj]f , i.e. into a continuous part and a pure 
jump part. 

Our next result concerns quadratic equations of positive semidefinite 
matrices. 
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I LEMMA 5.13. Let A, B ES;. The equation 
I 

I 

has a unique positive semideJinite solution given by 

I x = J m - A .  
I 
i Proof.  We start by establishing the positive semidefiniteness of 

J'Z-A. It is clear that A2+B > A2. Observing that the matrix square 
root is a matrix monotone function (i.e. preserves the ordering on S;, see e.g. 
Bhatia (1997), Proposition V.1.8), we have ,/= 3 A, which is equivalent 
to the claim. 

Solving the equation can actually be done using the standard trick for 
complex quadratic equations : 

Taking any "square root" on the right-hand side equation would now lead to 
a solution X. However, we consider only positive sernidefinite solutions, and 
thus X + A has to be in Sd+ , which is the case if and only if we take the unique 
positive semidefinite square root. Therefore there is one and only one solution 
in Sz which is given by X = Jz- A. s 

Let now a positive sernidefinite process X ,  be given by 

dX, = c,dt+ g(t-, x)p(dt, dx), 
S~\IO} 

where c, is an &-valued, predictable and locally bounded process, ,u an extend- 
ed Poisson random measure on R+ x S:\{O) and g(s, x) is % x .%3(Sd+\(O)) 
measurable in (a, x) and cddlig in s. Moreover, g(s, x) assumes only values 
in S l  . Suppose I: : = & is representable as 

dX=a,dt+ J w(t-,x)p(dt,dx) 
sf 

for some appropriate and w(t, x) being of the same type as c, and g(t, x). 
Using a differential version of Lemma 5.11 we obtain 

dx2 = x- dI;+dx I;- +d[Y, Y]? = I;- d q + d x  Z;- +(AKI2 

= I:-(%dt+ j w(t-,x)p(dt,dx))+(a,dt+ j w(t-,x)p(dt,dx))x- 
sf \wt Sf\{O} 

+ j w2(t-, x)p(dt, dx) 
sf \to1 

= ( & I . , + y J X , , d t  

+ J ( & w ( t - , x ) + w ( t - , x ) & + w 2 ( t - , x ) ) p ( d t , d x ) .  
Sd \W) 
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As one clearly needs to have d x 2  = dX,, the equations 

c, = z a t + a t $ C  
and 

&w(t- ,  x )+w(t - ,  x ) Z + w 2 ( t - ,  X )  = g ( t - ,  x )  

have to hold. Assuming the necessary invertibility, we obtain a, = X;-'c,, 
where X, - : Md (R) + MI (R)  is the linear operator Z c &Z + Z 6, 
and w (s - , x )  = ,/x,- + g (s - , x )  - 6 - by Lemma 5.13. In the following 
we show that this representation for f i  is indeed true. It will also turn out 
that we implicitly obtained the derivative of the positive definite matrix square 
root, which is given in the next lemma. Here and in the following we regard 
Sd++ as a subset of the vector space Sd,  which we identify with Rd(d+1)12. 

LEMMA 5.14. The positive definite square root J: S: ' + S: + is continu- 
I ously dgerentiable and the derivative D @ is given by the inverse of the linear 
1 operator z I+ &f z + z fi. 

Proof. The square root is the inverse of the bijective function f : Sd+ + -, 
S: +, X H X 2 ,  It is easy to see that Df ( X )  is the linear operator Z c XZ + ZX 
(see also Bhatia (1997), Example X.4.2). Using the relation o ( ~ f  (x)) = 
o ( X )  +a ( X )  c R+\{O}, we see that Df (X) is invertible for all X E $2 +. Thus, 
Rudin (1976), Theorem 9.24, shows that the square root is continuously dif- 
ferentiable and the derivative is given by the claimed linear operator. a 

With the above considerations, we can now generalize our results on the 
behaviour of univariate square roots in a straightforward manner to the multi- 
variate case. 

THEOREM 5.15. Let (XJtSR+ be a given adapted cadldg process which takes 
values in Sd++, is locally bounded within Sd+ + and can be represented as 

where c, is an Sd-valued, predictable and locally bounded process, ,u an extended 
Poisson random measure on R+ x Sd+ \(0}, and g (s ,  x )  is 9, x 3 (Sd+ \{O)) rneasur- 
able in (o, x )  and ctidldg in s. Moreover, g(s ,  x )  takes only values in s:. 

Then the integral So j,: \{o} (Jx, - + g (s - , X )  - z) p (ds, dx) exists a.s. 
- 

for all t € R +  and the unique positive definite square root process Y;  = ,/X, is 
given by 

dY, = a,dt+ j w ( t - ,  x),u(dt, dx) ,  
st \@I 
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with a, = c,, where X, - is the linear operator Z M & z + Z on 
Md(R). The drift process a, is predictable and locally bounded and 

is PS x B(Sf \(O)) measurable in (w,  x) and cadlag in s. Moreover, w (s, x) takes 
only positive semidefinite values. 

Proof.  The representation of I: follows from Proposition 3.4 and Lem- 
ma 5.14 by the same arguments as used for Theorem 5.1. 

Using the vec-transformation and the Kronecker product, we easily 
see that the linear operator X,- is symmetric (self-adjoint) and has a spec- 
trum that is positive and locally bounded away from 0, since a(Xt-) = 

a (z) + a (z), the function f : Sf + + Sf +, 2 c min (cr (2)) is continu- 
ous and is locally bounded within S: +. The variational characteriza- 
tions of the eigenvalues of a self-adjoint operator (cf. Horn and Johnson (1990), 
Section 4.2, for a matrix formulation) imply that 

min (a (X, -)) = min 

Hence, IlX;-'l15 $ (min(o(~,-)))-I is locally bounded. Here ll-llr denotes the 
norm on M,(R) given by 

with 1 1 . 1 1 2  being the Euclidean norm on lTd2, and the associated operator norm 
on the linear operators over M,(R). This establishes the local boundedness 
of a,. 

That w(s, x) takes only positive semidefinite values follows from Lem- 
ma 5.13, and the additional properties stated are straightforward. 

Remark 5.16. In principle we could immediately extend the above result 
to arbitrary r-th powers with 0 < r < 1 again. Yet, this would mean that we 
need to calculate Df,, where f, denotes the unique positive definite r-th power 
and a, would become Df, (X,-) ct. In general, there seems to be no useful for- 
mula for Df,. Arguing as in Lemma 5.14 was possible for r = lln with n G N, but 
then Df, (X)  would be characterized as the inverse of the linear operator 

Although in principle this can be applied, it appears to be infeasible for gene- 
ral n. 

Assuming the existence of the relevant integrals, the strict positivity con- 
dition can again be relaxed. To be able to argue as in the univariate case we 
need two new technical results, the first one involving the so-called trace norm 
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Il.lltr of matrices. For AE Md (R) it is defined as llAlltr = tr ((AA*)li2) and it is easy 
to see that llAlltr = tr(A) for AES;. 

LEMMA 5.17. Let A, BES; and 0 < r < 1. Then the function R+ 4 R', 

E++II(A+EI~+B)~-(A+ &Id)rlItr 

is monotonically decreasing. In particular, 

I I ( A + E I ~ + B ) ~ - ( A + E I ~ ) ~ ~ ~ ~ ~  < II(A+ BY- ArlI, for all EER'. 

P r o  of. Denote for some matrix Z E 5'; by ,I1 (Z), I z  (Z), . . ., 1, (2) the 
eigenvalues of Z sorted in ascending order. 

Choose now some arbitrary E, E"ER+ with E 2 E: From Horn and Johnson 
(1990), Corollary 4.3.3, we obtain li (A + B) 2 I i  (A) for i = 1, 2 ,  . . . , d. This 
implies, by Lemma 5.2, that 

d 

= C ((ii(A+~)+E^)~-(ii(~)+-$l').  
i =  1 

Noting that the trace of a matrix is the sum of its eigenvalues and that 
li (Z  + &Id) = Ai (2) + E and li (Z)' = I i  (2') for all Z E Sd+ and E > 0, we conclude 
that 

tr ((A + &Id + B)3 - tr ((A + &Id)3 < tr ((A + E"ld +BY) - tr ((A + E"ld)r). 

This immediately implies 

This shows the claimed monotonicity and inequality, choosing E" = 0. 

LEMMA 5.18. Let AES;, EER+ and denote by A, the linear operator 

Then IIA;' xllz is decreasing in E for every x E Md (R). 
Here II.1Iz denotes again the norm on Md(R) given by llxlls = Ilvec(x)ll, = 

Ji;(;;i, with 11-112 being the Euclidean norm on Rd2, and the associated operator 
norm on the linear operators over Md(R). 

We understand IIA;' xllz = co in the case A E S:\Sd+ + above. 
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Proof. Note first that 

and that 
J ' @ I , +  I,@JZT&ES& 

and in particular is self-adjoint. Thus we have 

Since taking the inverse reverses the ordering on Sd:, this implies that it is 
sufficient to show that ( J ~ @ I , +  I,@ is increasing in e in the 
ordering on Sd. But let now U e M d  (R) be a unitary matrix such that U*AU is 
diagonal; then 

(u*@u*)( J ~ B I , +  ~ , e J m ) ~ ( u e u )  
is diagonal and obviously increasing in e. Observing that U@U is again uni- 
tary and that such transformations preserve the ordering on S; concludes the 
proof. 

PROPOSITION 5.19. Let (X,),,+ be a given adapted cadldg process which 
takes values in S; and can be represented as 

where c, is an Sd-valued, predictable and locally bounded process, p an extended 
Poisson random measure on R+ x 5'; \{O) and g (s ,  x )  is 9, x 99 (Sdf\(O)) measur- 
able in (a, x )  and cddldg in s. Moreover, g(s,  x) takes values in S f .  Let X,- be - - 
the linear operator Md (R) + Md (R), Z H ,/x, - Z + Z ,/x, - and assume that 
the integrals 

1 X l 2  c, ds (in the Lebesgue sense) 
0 

and 

j 1 ( J X , - + ~ ( S - , X ) - ~ ) P ( ~ ~ ~ ~ ~ )  
0 s: \(01 

exist a.s. for all t E R'. 
Then the unique positiue sernide$nite square root process I: = & is re- 

presentable as 

yo = ,E, 
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where the drijl ft = lfl;;- c, is predictable and where 

is SS x (Sd+ \{O}) measurable in (w, x) and cddldg in s. Moreover, w (s,  x )  takes 
only positive semidefinite values and is a.s. of finite variation. 

Due to the conventions of Lebesgue integration theory we always have 
a, = 0 if ct = 0 above. 

P r o  of. We first show that = & is representable by (5.4). Recall 
below that the integral of an Md(R)-valued function exists if and only if the 
integral of the norm exists for one and hence all norms on M,(R). 

For any E > 0 we define the process X,,t : = X ,  + &Id.  Obviously, X , ,  2 &Id 
for all t € R +  and the process X,,, is of finite variation, and hence locally 
bounded. Observing that for all 6, K > 0 the set { x ~ S d f +  : x 2 61d, llxll d K }  
is convex and compact, we infer that X , ,  is locally bounded within S: + and 

t t 
I 

, I x,, = X , + S I ~ + ~ C ~ ~ S + ~  J g(s- ,  x)p(ds,  dx). 

i 0 0 s: \to) 

From Theorem 5.15 we obtain 

I where X,,s- denotes the linear operator 

M ~ ( R )  + M ~ ( R ) :  Z H  J=z+z J-. 
For s s Rt we clearly see that Jz -r & and XE,s-  Xs- pointwise 
as E 0. Moreover, Lemma 5.18 ensures IIX,T,f- csllz < IIXs-. csllz for all E > 0. 
By assumption, IIX;:- cslli is Lebesgue-integrable over [0, t ] ,  and so majorized 
convergence gives 

t t 

Xe2- C, ds + j XS--' c, ds as E + 0. 
0 0 

From Lemma 5.17 we see that I I J X , -  + eld + g (s - , x)  - J-11, is de- 
creasing in E. SO our assumptions and majorized convergence ensure that 

t 

limJ ( J x , - + ~ ~ ~ + g ( s - , x ) - J ~ ) p ( d s , d x )  
8'0 0 Saf \(o) 

t 

= I  I ( Jx ,+g(s - ,x ) -JX , )p (ds ,dx ) .  
0 s: \(Ol 
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Combining these results we obtain, from (5.5) and by letting E + 0, 

which concludes the proof of the representation for x. 
To establish the finite variation of the process it suffices now to argue 

that both integral processes 

j x;? C. d~ and j J (,,/x.- + (S - , X) - &) (ds, d ~ )  
0 0 sd \ P I  

are of finite variation. For the second this is immediately clear and for the first 
we only need to observe that the existence in the Lebesgue sense implies the 
existence of so IIX;? c.11 ds for any norm II- I I .  The latter is strictly increasing (thus 
of finite variation) when viewed as a process in t and its total variation is an 
upper bound for the total variation of the first integral calculated using the 
same norm I I - I I .  

Remark 5.20. When replacing the square root with an arbitrary con- 
tinuously differentiable function f : $: -, Sd, the above proposition remains 
valid if IlDf (x+~I~)z l l  < KllDf (x)zll and 

(5.6) Ilf ( ~ + & l d + ~ ) - f  (x+&Id)ll < KIIf ( x + Y ) - ~  (x)ll 

for all x, YES:, z cSd and E ER+, where K and are some constants. 
Then f (X, )  is representable by (5.4) with a, = Df (X, -) c, and w (t, x) = 

f (xt + s (t7 x)) -f 
For general r-th powers with 0 < r < 1 condition (5.6) holds due to Lem- 

ma 5.17. In particular, this implies that the above theorem applies immediately 
to the r-th power if c, = 0 for all t € R + .  Furthermore, the square root can be 
replaced by the r-th power in the following Lemma 5.23, Corollary 5.24, and 
Lemmata 5.25-5.27. 

Before giving criteria for the existence of the integrals assumed in the 
above theorem, we establish some auxiliary results. The first one establishes 
that §:-increasing functions are always of finite variation. 

LEMMA 5.21. Let f : R+ -+ S: be an $:-increasing function, i.e. 
f (a) < f (b) for all a, b E W+ with a < b. Then f is of Jinite variation on corn- 
pacts. 

Proof. Obviously, we are free to choose any norm on Md(R). Let thus 
II.I),, again denote the trace norm and recall that llAlltr = tr(A) for all A€§: .  
For s, teR+, t 2 s, we obtain 

Ilf (0-f (s)lltr = t r(f  (0-f (4) = tr(f 0))-tr(f @I), 
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due to the linearity of the trace. From this we can immediately conclude that 
the total variation of f over any interval [a, b] with a,  b€R+, a < b, cal- 
culated in the trace norm is given by tr (f (b))- tr (f (a)), which is finite. Hence, 
f is of finite variation on compacts. 

I The trace norm has also been used in PCrez-Abreu and Rocha-Arteaga 
I (2005) and Barndorff-Nielsen and PCrez-Abreu (2007) and thus seems to be 

very well adapted to the structure of matrix subordinators. The lenuna could 
alternatively be easily established using the theory for general cones developed 
in Duda (2005) and the properties of the trace functional/norm. 

Moreover, we need to consider an appropriate matrix extension of the 
inequality @-A < f i  for all a, b c R + . Actually, the question whether 
Jm-fi < f i  for A, BES: seems not to have been discussed in the 
literature yet. However, the following norm version suffices for our purposes. 

I DEFINITION 5.22. Let A, BEM,(R). Then IAI = (A*A)'12 is called the 
i 
! 

modulus (absolute value) of A. 
A norm I I . I I  on Md (R) is said to be unitarily invariant if 11 UAVll = IlAll for 

all unitary matrices U, VE Md(R). 

For more information see e.g. Bhatia (1997) and for unitarily invariant 
norms also Horn and Johnson (1990). 

LEMMA 5.23 (Ando (1988), Corollary 2). Let A, B E S ~ +  and I I . I I  be any 
unitarily invariant norm. Then 

I 
I This result has originally been obtained in Birman et al. (1975). We can 

simplify the result somewhat by using the operator norm associated to the 
usual Euclidean norm on Rd. 

COROLLARY 5.24 (cf. Bhatia (1997), Section X.l). Let A, BES: and let 11-11; 
denote the operator norm associated with the Euclidean norm. Then 

l l f i - f i 1 1 2  < JiFWK. 
In particular, ~~,/m-fi~~ < a. 

Armed with these prerequisites we can now state criteria for the existence 
of the integrals in Proposition 5.19. 

I 
I 

LEMMA 5.25. The integral so Is;\{, w (s - , x) p (ds, dx) exists a.s. for all 
I 
1 t€R+ in the usual sense if the integrals 

exist as. for all t E R+ or there is some S: +-valued random variable C such that 
X , >  C for all ~ E R + .  
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Due to the equivalence of all norms one can actually use any other norm 
instead of 11.11,. Moreover, the second case corresponds to Theorem 5.15. 

P r o  of, First of all we note that so Is:\{, ,,/- p (ds, dx) exists if 

and only if the integral 6 Is: p (ds , dx) exists. This follows im- 

mediately, since according to the definition of integration with respect to Pois- 
son random measures the integral So Isd\:\,, p (ds, dx) exists if and 

only if So ISi\{,~~Js(s-.x)ll p(ds, dx) exists for one and hence all norms II.((, 

and  fill, = a for all x ~ § z .  
Noting that Corollary 5.24 gives 1 1  w (s - , x)l12 < ,/-, a simple 

majorization argument establishes the existence of So I,: ,,,, w (s - , x) p (ds, dx) 
in the first case. 

Assume now that X, 2 C for all t E R+ holds with some C E 8;. Then we 
once again argue lo-wise. The square root function is Lipschitz on any set 
d c S: + for which there is some Co E §: + such that C 2 Co for all C E d (see, 
for instance, Bhatia (1997), p. 305). Thus there exists a constant K (possibly 
depending on C) such that 

II&- + g ( ~ - ,  d -GI1 6 KIIB(s-, x)II. 

This implies the existence of the integral, as So Is, ,,,, g (s - , x) p (ds, dx) exists 
due to our assumptions on the process X,.  

LEMMA 5.26. The integral So lsd w (s - , x) p(ds, dx) exists as. fur all 
t ER+ in the usual sense provided C, €3: for all t E R+, i.e. the process X, is 
§:-increasing. 

P r o  of. The S:-increasingness of X, is clear. Since the square root pre- 
serves the ordering on Si, the process is §:-increasing, as well. Thus, 
Lemma 5.21 ensures that f i  is of finite variation. 

Now, we first assume c, = 0 for all t €Rf .  Denoting the variation (in the 
trace norm) of a function f over a time interval [t,, t2] with 0 9 tl 6 t2 by 
var (f; t,, t,), one deducts that 

But, obviously, 

and hence the finite variation of & implies the existence of the inte- 
gral. 
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If c, does not vanish, then we obtain 

I 

I and can argue as before. rn 

For the following recall that we refer to Sl-increasing Lkvy processes as 
I matrix subordinators. 

LEMMA 5.27. Suppose the function g(s,  x)  = g(x)  is deterministic and in- 
dependent of s and the extended Poisson random measure p is the jump measure 
of  a matrix subordinator with Lkvy measure v. Then the integral 

is indeed a.s. defined for all t E R+ provided I,, I I x l , l i  l,xEs: ,/m v (ax) is 
finite. 

i Again we can use any other norm instead of 1 1 . 1 1 2 .  
P r o  of. Recall that E (p (ds, dx)) = ds x v (dx) in the given set-up. The ex- 

istence of the integral follows immediately by combining Lemma 5.25 and the 
fact that 

1 I I X I I Z ~ ~  I J I I S ~ ~ ~ ~ V ( ~ X ) =  I I X I I Z ~ ~  j l l ~ l ~ ~ ~ ( d ~ ) ~ ~  

implies the existence of  So Js:,{,,&@p (ds, dx) for all t ER' (cf. Marcus and 
I Rosiliski (2005), p. 113). Here we note that 

is finite. FA 

Regarding the existence of the integral with respect to the Lebesgue meas- 
ure, we only restate the criterion of Lemma 5.9 for the multivariate case. 

LEMMA 5.28. Assume that there exists a (possibly random) function 
f : R+ + P1+ with f (t)dt < a as. such that 11%; c,ll < f ( t)  for all t E R ~ .  
Then the integral So X;'c,dt exists in the Lebesgue sense. The latter is in par- 
ticular the case if there are (possibly random) constants C > 0 and a > - 1 such 
that IIX;' c,ll < Cta. 

After these general considerations we shall now turn to studying the roots 
of matrix subordinators. 

COROLLARY 5.29. Let (LJtER+ be a matrix subordinator with initial value 
Lo ES:, associated dr@ ft and jump measure p. Then the unique positive semi- 
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defnite process is of fnite variation and, provided that either Lo E $2 or 
Y €Sd++ v(Q), 

d&=l;-lydt+ j ( J E - & ) p ( d t , d x ) ,  
s: \I01 

where L,- is the linear operator on M,(R) with Z W ~ Z + Z ~ .  The 
drift L;-I y is predictable, and additionally locally bounded provided L,E$; + 

or y = 0. 

P r o  of. As the square root preserves the ordering on $2, f i  is $2 - 
increasing, and thus of finite variation by Lemma 5.21. 

In the case Lo€$;+ the corollary follows from Theorem 5.15. 
Else we know from Lemma 5.26 that the integral 

exists as. for all t c Rt. Next we show that the integral so yds exists for all 
t E R+. For y = 0 this is trivial. For y E $2 +, we have L, 2 ys E S; +. Using the 
variational characteristics of the eigenvalues as in the proof of Theorem 5.15 
we get 

Therefore 

Hence, IJL> 711 < Cs- for a11 s E R+ with some constant C E Rt , and so 
Lemma 5.28 establishes the existence of J: L,_ c, ds for all t ER+ in the Lebes- 
gue sense. Therefore Proposition 5.19 concludes the proof. s 

Remark 5.30. If the LCvy process is supposed to have initial value in 
d$d+ (e.g. zero, as is usual) and non-zero drift y E a$:, then there appears to be 
basically no hope to obtain a representation of the above type. 

6. ROOTS OF ORNSTEIN-UmEMECH PROCESSES 

Now we turn to studying the behaviour of the roots of positive Ornstein 
-Uhlenbeck processes as defined in Section 4. Recall in particular that the 
driving LBvy process L, is assumed to be a (matrix) subordinator. 

Straightforward calculations based on Theorems 5.1 and 5.4 establish the 
following result for a univariate OU process dX,  = -AX,- dt+dL,.  

3 - PAMS 27.1 
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I 

i P ~ o ~ o s ~ n o ~  6.1. Let (X,),+ be a positive univariate process of Ornstein 
-Uhlenbeck type driven by a Lbvy subordinator L, with drift y and associated 
Poisson random measure y Then for 0 < r < 1 the unique positive r-th power 
E; = X i  is of finite variation and has the following representation: 

d ' Y ; = ( - I r X - + y r X ; ~ ~ ) d t +  f ( (x , -+x) ' - (x , - ) ' )p (d t ,dx)  
R + \{OJ 

= (-IrE;- + y r ~ l - l " ) d t +  J (('Y;?+x)'- E;-)p(dt, dx) ,  
R+\{O} 

provided that the process X ,  is locally bounded away from zero or the integrals 
t t 

fyrX;1 'ds  and J f ((x,-+x)'-x!-)p(ds,dx) 
0 0 R+\IO) 

exist a.s. for all t E R. 

Before showing that the conditions are actually satisfied for all positive 
OU processes, we show this for stationary ones, as this case is of particular 
interest and the proof is very straightforward. Recall in particular that a station- 
ary OU process can be represented as s- e-q'")dL,, where the driving Lkvy 
process has a finite logarithmic moment. 

PROPOSITION 6.2. Let X, be a stationary positive process of Ornstein- 
Uhlenbeck type with driving U u y  process L, (having drift y and non-zero Lbvy 
measure v). Then it is locally bounded away @om zero. 

The same holds for any positive Ornstein-Uhlenbeck process X ,  with 
X o  > 0 as .  

Proof. Let us first consider the stationary case. If y > 0, we see from 
Proposition 4.6 that X ,  > y/A > 0 for all t ,  which implies that X,  is locally 
bounded away from 0. Otherwise note first that X ,  2 e-at X o  for all t 2 0 and 
that the stationary distribution is self-decomposable (cf. Sato (1999), Theorem 
17.5). As the driving Levy process has a non-zero L6vy measure, the stationary 
distribution must be non-trivial, and thus, by Sato (1999), Example 27.8, 
absolutely continuous with respect to the Lebesgue measure. Therefore we 
have X ,  > 0 a.s. Hence, there is a.s. a sequence of stopping times (T,),, in- 
creasing to in f i ty  such that X ,  > l / n  for all t € [ O ,  T,) (actually we can set 
T, = In ( X ,  n)/A), which implies that X ,  is locally bounded away from the origin. 

Obviously, the same arguments apply in the non-stationary case. ra 

PROPOSITION 6.3. Let (Xt)tER+ be a positive univariate process of Ornstein- 
Uhlenbeck type driven by a Livy subordinator L, with drift y and associated 
Poisson random measure p. Then for 0 < r < 1 the integrals 

t t 

J y r X i ~ l d s  and f J ((x,-+x)'-X:-)p(ds,dx) 
0 0 + \{OI 

exist for all t~ R. 
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Proof. To show this we introduce the auxiliary process 
t 

Z t = ~ o + j e " d L s  for t € R f .  

It holds that Zt = e"Xt for all t~  R+,  the process is monotonically increasing 
and 

dZ, = e" ydt + J e" xp  (dt, dx). 
R + \{O) 

The increasingness implies the existence of the integral 

Since 0 < min { I ,  eht} < ehs < max (1 ,  e"') for all s  E [0, t ] ,  this shows that 
the integral 

t 

1 1 ( ( X s - + x ) r - ~ ; - ) p ( d s , d x )  
I 0 R + ~ exists for all t  ER. ~ Obviously, 

t 
Y Z t >  Jehyds = -(ek-1). 

0 I  

Assuming first ;1 2 0, we obtain 

t 
- - r y r l l - r e - A ( r - l ) t  J(eh- I)'-' ds. 

0 

Noting that eas- 1  2 s  for all ssRt ,  we infer the existence of So yrXLI1 ds for 
all t € R +  immediately. In the case I  < 0 one calculates 

t t 

1 y r X ; ~ l  ds < ryr I I I ~ - ' ~ ( ~ - " -  I)'-' ds, 
0 0 

which likewise implies the existence of the integral for all t € R + .  

Remark 6.4. For a driftless driving LCvy process we see from 

dE; = -IrE;- dt+ J ((Y,Y+x)'- Y,-)p(dt ,  dx) 
R + \{Of 

that the drift part is again that of an Ornstein-Uhlenbeck process. 
Moreover, observe that (6.1) gives a stochastic differential equation 

(cf. Applebaum (2004) for information on this type of SDEs) for the r-th 
power (with 0 < r  < 1) of the OU process. Since the derivative of y I+ (yll' + x)' 
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is given by y u (yl~r/(yl~r+ x))'-' and is thus obviously bounded by one for all 
x E R+,  the function y I+ (yllr + x)' is (globally) Lipschitz. This implies that for 
any initial value Yo the SDE (6.1) has a unique solution. 

If y > 0, one likewise has the SDE 

dI: = (-AT& +yrE;l=llp)dt+ J ((I:Vr+x)'- Y,-)p(dt, dx) 
R + \(O) 

for the r-th power of the OU process. In this case one has only local Lipschitz 
continuity in Rf for y~ yryl-'Ir. In such a set-up results on the existence of 
unique solutions are still obtainable, but as these would require a rather lengthy 
discussion, we refrain from giving any details. 

From the following proposition we see that the r-th power of a positive 
OU process X, with y = 0 has a representation quite similar to the one for 
the OU process given by 

t 

X, = e-"X0+J J e-"'-")xp(ds, dx). 
0 R+\{O) 

PROPOSITION 6.5. Assume that y = 0 and Xo B 0 as. Then the process 
I; = Xi can be represented as 

Proof. As in the proof of Proposition 6.3 we use the auxiliary process 

For the process Z,' we obtain from Proposition 5.4 

Thus, 
t 

z ;=XL+J  J ((e"Xs-+eLsx)r-(e"Xs-)I)p(ds,dx) .  
0 R+\(O} 

This implies the assertion via I: = Xi = e-""Z:. rn 

Finally, let us improve the representation of Proposition 6.5 for a station- 
ary Ornstein-Uhlenbeck process. 



Positive-definite matrix processes of finite variation 3 7 

PROPOSI~ON 6.6. Let X ,  be a stationary process of Omstein-Uhlenbeck 
type with driving Ltvy subordinator L, (having non-zero Ltvy measure) with 
a vanishing drift y. Then for 0 < r < 1 the stationary process I: = X: can be 
represented as 

f 

= j J e -Wt - s )  , ((x- + x ) ' - X i - ) ~ ( d s ,  dx). 
- m  R+\{O) 

Proof. Note that, as in Proposition 6.5, the equality 

y - e - a ~ ( t - z )  
t - + j- e-ar(t-" ( (Xs- +xy-Xi-)p(ds ,  dx) 

7 R+ \{O} 

holds for all z E (- oo , 01. Letting z go to - a we see that e-"(t-')X: goes to 
zero, since for any stationary OU process e-"(t-')X, converges to zero. As, 
moreover, the left-hand side is independent of z, the integral 

((Xs- +x)'-Xi-)p(ds,  dx) 
R+\IOI 

exists for all z e (- oo, 01 and is increasing for decreasing z, the limit of the 
integrals for z + - a exists. This implies the result immediately. 

Having analysed the univariate positive Ornstein-Uhlenbeck processes in 
depth, let us now turn to multivariate positive definite ones and see which 
results can be extended. Here we state all results again only for the square root, 
but extensions to more general powers are immediate. The general result on the 
representation of the square root follows immediately from the results of 
Section 5.2. 

PROPOSITION 6.7. Let (Xt),,+ be an $2-valued process of Orstein-Uhlen- 
beck type driven by a matrix subordinator L, with drijt Y E S ;  and associated 
Poisson random measure p. Then the unique positive square root = is of 
Jinite variation and has the following representation: 

provided that the process X, is locally bounded within $2 + or the integrals 

E X ; _ ' ( A ~ ~ - + X , - A * + ~ ) ~ S  and j j ( , / m - z ) p ( d s , d x )  
0 0 sf \lo1 
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exist a.s. for all t e R. Here, X,- is the linear operator Z I+ z + z 
and Yt- the map ZHK-Z+ZK-. 

For stationary OU processes one can again establish local boundedness, 
provided the driving LCvy process is non-degenerate. 

PROPOSITION 6.8. Let X ,  be a stationary positive semidefinite Ornstein- 
Uhlenbeck process and assume that the driving Ltvy process L, has drift y E Sd+ + 

or Livy measure v such that v (Sd+ +) > 0. Then the process X ,  is locally bounded 
within Sdf +. 

The same holds for any positive definite Omstein-Uhlenbeck process with 
initial value X o  E Sd+ + as. 

Proof.  In the stationary case Theorem 4.9 implies X,ES$+ as. 
From (4.6) we thus always obtain X ,  2 eAtX0eA*'~Sd++ for all ~ E R .  As 
min (a (eAt X o  eA*q) is continuous in t and strictly positive, min (a (eAt X o  eA*,)) is 
locally bounded away from 0; in particular, 

defines a sequence of stopping times that a.s. increases to infinity. But this 
implies X ,  2 n- l  Id for all t E [0, T,). Together with the local boundedness of 
X, and the fact that sets of the form {xES:  : x 2 &Id, llxll < K )  with E ,  K > 0 
are convex and compact, this establishes the local boundedness of X, with- 
in Sf +. w 

I 

1 In general we cannot obtain the existence of the relevant integrals for all 
I positive definite OU processes, but the following proposition covers many 

cases of interest. 

FROPOSITION 6.9. Let X ,  be a positive definite Omstein-Uhlenbeck process 
driven by a matrix subordinator L, with drijl y and d v y  measure v. Then the integral 

exists as.  for all t E R provided y E Sd+ + or y = 0, X o  = 0 and L, is a compound 
Poisson process with v (Sd+\Sd+ +) = 0. Furthermore, the integral 

E I c ~ ~ - z ) ~ ( d s , d x )  
0 sf \I01 

exists a.s. for all ~ E R ,  provided L, is compound Poisson (with drift) or 

106 11~11~61 a v ( d x )  is finite. 
Proof. Let us first consider the second integral. Then 

I Jii;ii;v(dx)<m 
06 11x11261 
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is trivially satisfied for any compound Poisson process, and so Lemma 5.27 
gives the result. 

If y = 0, X o  = 0 and Lt is a compound Poisson process, Xt = 0 for all 
t~ [0, T) ,  where T denotes the first jump time of Lt. So the integral 
So X;_' (AXs-  + Xs-  A* + y) ds exists a.s. for all t E [0, T).  The condition 
v(Sd+\Si +) = 0 ensures that the first jump ALT is a.s. strictly positive definite, 
and hence X,ES~++ a.s. Using basically the same arguments as in Proposi- 
tion 6.8, we infer that the integral So Xi? (AXs-  + X s  A* + y) ds exists also a.s 
for all t e [ T ,  m), which concludes the proof of this case. 

Assume now that y E Sd+ +. We have 

But eA"-a yeA*('-" E Sd+ + for all t ,  s E R f  , and so, for any M E R+, continuity 
and compactness ensure the existence of a constant kM > 0 such that 

(a ( e ~ ( t  - S )  e ~ * ( t  - 3 k > for all t , s ~ [ O , ~ l .  

i Hence Xt kM t for all t E [0, MI.  Using the same matrix analytical arguments 
as in the proof of Corollary 5.29, this implies 

I 

i 1 
lIX-ll[- < - t- lI2 for all t E [0, M I .  

t -  - 2 6  
I 
I Moreover, as X t  is locally bounded, there is a.s. a constant K M  such that 

llXtlli < K M  for all t E [0, MI. Here we have fixed o E a, but recall that we can 
argue pathwise). Since the integral 

is finite for all ~ E [ O ,  MI,  where A is the linear operator M,(R)+ 
Md(R), Z w  AZ+ZA*, majorized convergence implies that the integral so X;? (AXs-  + Xs-  A* + y )  ds exists a.s. for all t e [0, MI. As M E  R+ was arbi- 
trary, this concludes the proof. ma 

However, one can again show that the square root of a positive definite 
OU process X t  with y = 0 has a representation similar to the one for the OU 
process given by 

t 
X t  = eAt xO eA*t + J j e4t-s) XeA*(t-s) P (ds, 4 .  

0 sf \to1 
PROPOSITION 6.10. Assume that y = 0 and X o  2 0 a.s. Then the process 

K = can be represented as 

Y;  = Jm~ 
t 

+ J j (JeA( ' -~)  ( x ,  + x )  ~ A * ( ~ - S )  - J 8- )p(ds,  dx). 
eA(t -s) x eA*(t -s) 

0 s:\101 
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Proof. Let (Z,),,+ be the auxiliary process given by 

where t € R +  is fixed. Then 

is S2-increasing. Using Proposition 5.19 and Lemma 5.26, we obtain 

+ j ( J ~ ~ _ + e A ( ' - , x e A * ( t - ~ ) -  & ) P ( ~ s ,  ax) .  
0 s: \@I 

Since Xt = Zt and Z S -  = eA('-"X S- eA*('-'), this immediately concludes the 
proof. 

Finally, let us improve the above representation for a stationary positive 
definite Ornstein-Uhlenbeck process. 

PROPOSITION 6.11. Let X ,  be a stationary process of Omstein-Uhlenbeck 
type with driving matrix subordinator Lt with a vanishing drift y. Then the sta- 
tionary process 1: = & can be represented as 

Proof.  The proposition follows from Proposition 6.10 by the same 
arguments as in the proof of Proposition 6.6. rn 
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