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1. INTRODUCTION 

Fluctuations of partial sums of dependent random variables have only 
recently been studied despite the fact that such questions are central to i.i.d. 
processes for morelthan 50 years. In this note we shall make some contribution 
to large deviation ~ n d  Erdos-RCnyi laws [lo] in the context of mixing sta- 
tionary processes and their application to dynamical system theory. 

While large deviation theory for dynamical systems and time series has 
one of its origins inithe work of Orey [I21 and Takahashi [13] and [14], to our 
knowledge, the ~rdbs-RCn~i law has not been considered before the work of 
Grigull [I 11 for expanding maps and Chazottes and Collet [6] for maps of the 
interval. 

. As noticed in [7] the concept of +-mixing is well suited to derive large 
deviation results. It should be noticed that we do not need the differentiability 
of the free energy function for our result. We also show that 0 is the unique 
minimum of the information function if the one-dimensional marginal of the 
process has positive variance. Therefore, the information function is strictly 
increasing, and so we are able to obtain an Erdos-Renyi law without any 
differentiability assumption (in case of an expanding system, e.g. for subshifts 
of finite type, the differentiability follows from general thermodynamic facts). 

* This joint research project was financially supported by the state of Lower-Saxony and the 
Vollcswagen Foundation, Hannover, Germany. 
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In this note we are finally interested in extending the class of dynamical 
systems where a large deviation and Erdos-RCnyi result holds. Gibbs-Markov 
dynamical systems have been introduced in 121. These systems play an impor- 
tant role in non-hyperbolic and parabolic dynamics, including many maps of 
the interval (like continued fraction transformation), countable Markov shifts 
and Poincare maps associated with Fuchsian and Kleinian groups. They also 
include most expanding maps, thus our result extends the ones in [11] and [6]. 

In Section 2 we recall the definition of a Gibbs-Markov map including 
a description of $-mixing processes generated by these systems. In Section 3 we 
prove our large deviation result and in Section 4 we give an application in 
proving the analogous result of the Erdos-RCnyi law [lo]. 

Note added in proof. After the paper was submitted, we would like to men- 
tion that Bryc' papers [15], [I61 contain general results for large deviations of 
mixing processes, while Kiesel and Stadtmuller [I71 prove an Erdos-Rknyi law 
for uniformly mixing processes under hypergeometric mixing rates. 

2. GIBBSRIARKOV MAPS 

Gibbs-Markov dynamical systems cover a large class of transformations 
being explored recently. This class contains finite state aperiodic Markov 
chains and certain recurrent Markov chains with infinite state space. Many 
Markov maps of the unit interval, including those of Lasota-Yorke type and 
those of Rychlik, are covered as well. In particular, the continued fraction 
transformation falls into this class. It is also possible to study parabolic ra- 
tional maps and their equilibria by this method including the classical Gibbs 
measures on subshifts of finite type (see [4] or [8]). Applications to geodesic 
flows can be obtained through Poincark section maps (see [I]). 

In this section we introduce Gibbs-Markov dynamical systems briefly as it 
has been done in [2]. 

Let T denote a nonsingular transformation of a standard probability 
space (0,  B ,  P), i.e. T : D -, SZ is measurable and P (T-I (A)) = 0 if and only if 
P(A) = 0. The transformation T is called a Markov map if there is a measura- 
ble partition a  such that: 

T (A) E o(a) (mod P) for all A E  a; 
a  generates B under T in the sense that o({TPn a: n 2 0)) = By and 
TIA is invertible with measurable inverse and nonsingular for A E ~ .  

Note that Markov maps are called Markov Jibred systems in [3]. 
Write a", a v TT-I cl v . . . v T-" a  (n 2 0) for common refinements of 

the pull backs of a by T. Fix r ~ ( 0 ,  1) and define a distance d = d, on D by 
d (x, y) = rt(x,y), where t (x, y) denotes the least n for which Tn (x) and Tn (y) lie 
in different atoms of a. 

For n 2 1, there are P-nonsingular inverse branches of T denoted by v ~ :  
Tn (A) + A (A E a", I) with Radon-Nikodym derivatives 
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1 Since Ta c o(a), T n a r l  = Ta, and there exists a (finite or countable) 
partition /3 coarser than a so that a(Tct) = a(&. 

A Markov map ( a ,  94, P ,  T, a) is Gibbs (Gibbs-Markov) if the big image 
i 

property 
inf P (T (A)) > 0 
AEU 

I 
I holds, and the Radon-Nikodym derivatives vk satisfy the following distortion 
I property: 

there exists M > 0 such that 

1--11<Md(x,y) for all n L L ,  Acaa-I, x , y ~ y ( A ) .  

Let us assume that T is topologically mixing in the sense that for all 
A,  BE^ there exists some ~ A , B E  N such that Tn(A) 3 B for all n 2 nA,B. 

The Frobenius-Perron operators PTn: L1 (P) -, 2 (P )  are defined by 

SPTn f - g d ~  = j f . g o ~ " d p  
R D 

~ and have the form 

1 We now consider PT acting on the space L which consists of all measura- 
1 ble functions f : 4 C with norm 

llf l l ~  = Ilf I ~ L , ~ P , +  sup 
If (4 -f (Y)I 

XZYER d ( x ) ~ )  ' 

THEOREM 2.1 (Aaronson and Denker [2]). PT acts on L and has a splitting 

in Horn (L, L), where ,u f = j, f dP . h, Qy = ,uQ = 0, and the spectral radius v (Q) 
of Q is strictly less than 1. 

Since y is the projection to an invariant (one-dimensional) subspace gene- 
rated by h, we may pass to the measure hdP, which is invariant. In the sequel 
we always assume that P is this invariant measure (so h = 1). 

The theorem permits to strengthen the exactness part of Rknyi's theorem 
known as "exponential decay of correlations": 

By Theorem 2.1 there exist 8 G (0, 1) and K > 1 such that 

I1PTn f- S fdPIIL < KOn 11 f l l L  for all n > 1, f E L. 
R 

Since for all n >, 1 and A E  a r l  we have PTn 1, = vk and 

IlvkllL d (M + 1) M'P (A) for some constant M', 
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it follows that the process defined by (T, a) is continued fiaction mixing, in 
particular $-mixing: 

for some K' > 0 and for all n,  k 2 1, A€&-', and B e g  

(1) I P ( A ~ T - ( " ' ~ ) ( B ) ) - P ( A ) P ( B ) I  < K'OnP(A)P(B). 

3. A LARGE DEVIATION THEOREM FOR MIXING PROCESSES 

Rewriting (1) in general terms of o-algebras one obtains the notion of 
$-mixing. Let 9 = (9; : 1 < n < m < CO) be a $-mixing family of o-fields, i.e. 
9; c 9; for k < n < m < 1 and 

=:$(n)+O as n+ CO. 

Let { X i :  i 2 1 )  be a strictly stationary process such that Xi is 9;-measu- 
rable ( i eN) .  Define S, = X I +  ... +X,. 

For the calculations in the sequel the following weaker condition suffices 
(but which turns out to be equivalent to $-mixing by Bradley's result in [5 ] ) :  
there are q E N and C , ,  C, E R such that 

for all kcN, A E F ~ ,  B e F k T q .  
If W is a non-degenerate bounded random variable, we set 

fw ( t)  = log E [exp ( t  W ) ]  for all t E R . 

This function is analytic, its derivative is increasing, and 

lim fh ( t )  = ess inf W, lim fh ( t)  = ess sup W. 
t+ - m t-r + a, 

PROPOSITION 3.1. If (X,: n 2 1 )  is a $-mixing, bounded process, then 

1 
f ( t)  = lim - fs, ( t )  ( t  E R) 

n-m n 

exists. Moreover, the convergence is uniform on compacts. 

P r o  of. Choose q such that (2) holds. Define S,,, = S, - Sm for m < n. 
Since JltX,JJ, < a, we have 

and, consequently, 
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< m~(t)"~ (t) -' E Cexp (tSn) ~ X P  (tSn + q +m,n + qII 

for come constant C = C(t) < oo. 
It follows that the sequence fsn(t) is almost subadditive, and hence 

limn,, n- fs, (t) exists. 
Note that one can also prove that 

I for some constant C' = C'(t) > - co. The uniform convergence follows then 
from 

and 
1 1 1 

f (t) = lim - fs,, (t) 2 - fs, (t) + -log C' (t) . 1 
r-w rm m m 

i COROLLARY 3.2. Let (X, 9, m, T, a) be a mixing Gibbs-Markov system 
1 with invariant probability measure m. Let g: X -, R be a function such that 

Define 

(4) fn(t)=logJexp(tS,g)drn ( t e R , n > l ) ,  

where Sn g = g o  Ti. Then the free energy function 

1 

f (t) = lim ' fn (t) (t E R) 
n-m PZ 

exists. 

Proof. We can suppose t = 1. Assume first that g depends only on a fi- 
nite number of coordinates. Then the result follows from Proposition 3.1 and 
the previous section (see (1)). 

The sequence of (non-linear) functionals En : C (X) -, R defined by 

i is uniformly continuous and convergent for g depending on the finite number 
I of coordinates. Using a simple approximation argument it is easy to prove that 

this implies that the sequence is convergent for all g with the property 
o n  (g) -, 0. 

The crucial property for applying a general result on large deviation ([9], 
Theorem 11.6.1) is the differentiability of the free energy function J: The fol- 

i 

i 
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lowing large deviation result for mixing processes can be obtained without this 
assumption. 

Note that the sequence ess sup S, is subadditive, and hence 

c+ : = lim ess sup n-' S, 
n- m 

exists and is equal to inf,,, ess sup n-I S,. Define c- in an analogous way using 
ess inf S, . 

THEOREM 3.3. If {X,: n 2 1) is a I(l-mixing, bounded stationary process 
satisfying EX, = 0, then 

(6 )  lim n- ' logP(~,  2 nc) = id{-tc+f (t): t > 0), c ~ ( 0 ,  c+), 
n-+ m 

P r o  of. We only prove (6), since (7) is similar. 
By Markov's inequality we have for all c, t > 0 

lim sup n-I log P (S, 2 nc) < lim n- ' log e-ntc E exp (tS,) = - tc + f (t), 
n+co n + m  

whence 

limsupn-llogP(S, 2 nc) < inf{-tc+f (t): t > 0). 
n +  m 

We show the converse inequality for CE(O, c'). Fix q such that (2) holds and 
let p E N. Take n E N and write n = r(p + q) + w for suitable r, w E No with 
w < p + q. Defme 

Since XI is bounded (by M say), we have 

The variables 5 are separated by time q. If W = (Wo, . . ., W,-l) are i.i.d. with 
the same distribution as Yo, then by $-mixing we obtain 

for any measurable set A c Wr. Putting everything together gives for n 
large enough 
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Recall that hp (t) = log E [exp (tS,)]. Since are i.i.d. variables, it follows from 
the classical large deviations principle that 

We have 
( P + q + l ) c + ( q + l ) M ~ ( ~ ,  c+) for p large. 

P 

Since (c-, c+) c p-l f i p  (R), we may choose s = s (p, q, c) satisfying 

and it follows that 

1 
lim inf - log P (S, 2 nc) 

n-+m n 

1 1 
2 log C1+ 

p + q + l  p + q + l  
( - s (fs,)' (3) +fs, (4) 

The last estimation holds for p large enough. Letting p -t oo we arrive at 

1 
liminf-logP(S,q 2 nc) 2 id{-tc+f (t): t > 0). w 

n-+m n 

PROPOSITION 3.4. Let (X,: n 2 1) be a $-mixing, bounded process with 
EXl = 0 and Var(Xl) > 0. Then for any E > 0 there exist A = A(&) > 0 and 
no = no (E) E N such that 

P(lS,I>n~)<expC-nAl (n>no). 

10 - PAMS 27.1 
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Proof. Suppose that Wl, K, . . . is an i.i.d. process with the same dis- 
tribution as XI. Since the variance of Wl is positive, the information function 
I (E) of Wl is strictly positive. Choose p so large that 

I 

I Next choose ro so large that 

r(E)--iog(i +(l(p))-w > O. 
r 0 

Let n = rp, r 2 r,. Write S, = Z1+ ... +Z,, where 

and put 
I 

It follows that P(S, 2 en) < pP(Zl 2 re). By $-mixing we conclude that 

P (S, 2 en) d P (1 + $ (P))~ P (Y, 2 er) 

= exp - n [ I(e)-log(l +$(p))-rollogp 
P 

The proposition follows easily from this estimate. rn 

I- 
4. ERDOSrRgNUI LAW FOR +-MIXING PROCESSES 

Let f be the free energy function. The information function is defined by 

{ { a - f ) :  0 i f a > O ,  
I ( a )=  sup{ta-f(t): t<O)  if a < 0 ,  

if a = 0 .  

THEOREM 4.1. Let (X,),,, be a strictly stationary $-mixing, bounded pro- 
cess with bounded random variables X,, n > 1, EX1 = 0, Var(X1) > 0, and free 
energy function f: Suppose that the mixing coeficients $(n) decrease expo- 
nentially fast. Let c+ be as in Theorem 3.3. Then for any a ~ ( 0 ,  c') the 
Erdos-Rdnyi law holds: 

lim max I (a) S m  + [(logn)/l(a)] - S m  
= a a.e. 

n-t m 0 6 m  $ n - [(logn)/I(a)l log n 
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Proof .  First note that, by Proposition 3.4, S,/n converges to 0 exponen- 
tially; hence, by Theorem 11.6.3 in [9], f is differentiable at 0 and f (t) > 0 for 
every t # 0. This implies that I is strictly increasing on [0, cf). 

Fix a~ [0, c+) .  Let 1, = [(log n)/I (a)], where [z]  denotes the Gauss bracket 
of z. 

Let E > 0 and define the event 

Choose 0 < 2S < I (a + E )  - I (a). We obtain, by stationarity for n large enough, 

P (A, ( E ) )  Q nP (Sl, 2 (a + E )  1,) 6 n exp [ - 1, (1  (a + 6 )  - a)] 
< nexp [-1,(I(a)+S)] 

, I 
If d > I (cl)/S, then zneN n-dd/'(a) < c~ and the Borel-Cantelli theorem shows 

I 
I 

that And(&) occurs only finitely often. It follows that 

limsup max Sm + lna - Sm Q a+&. 
n-tm Odm4nd-l,d 1,a 

Since for nd < r < (n + l)d large enough the difference lnd - 1, is bounded by 1, 
we have 

Sm+lr-Sm limsup max 
r-ao Odmdr-1,  1, 

Sm+~~n+I)a-Sm+ IIXiIIm < lim sup max Q a+&. 
n+ao O d m S ( n + l ) d - l ( n + i ) d  lnd 

In order to show the converse inequality, choose e > 0 so that a-E  > 0 
and define 

B,(E)={ max Sm+ln-Sm<l,(a-e)) .  
O b m b n - I ,  

. en, for any Let Cm = {Sm+,, - Sm < 1, (cl -&)I and note that C, E 9 , " + l n - l  Th 
n-1, >  EN, 

n-1, r&l 
0 CmC n Cs(ln+4). 

m=O s=o 

Using the mixing property we get 

[ R I  
(n - ln)l(ln + P) - 1 

P (B, G P ( n Q ((1 + (q)) P (cO)) 
s=o 
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There exists 6 > 0 so that (I (a-E) +6)/I(tl) < 1-6. By assumption, there exists 
A > 0 such that for sufficiently large q 

$(q) G exp C-411; 
hence we may choose q = [y log n], where y satisfies y A > 1. Using the large 
deviation property for P((C,)") we obtain for large 1, 

1-P(C,) 2 exp [-E,(I(~-E)+J)] 

Therefore, if n is sufficiently large, 

P (Bn (c)) < ((1 + e - yA'"gn) (1 - exp [ - (1 - 6) log n])) 
(n - ln)/(ln + ylogn) 

< [(I + n - 1) (1 - n - 1 +6)](n-1n)I(ln + ~'ogn) = 0 (exp [ - 2ndIZ]). 

It follows that rn 

I 
C P (Bn (4) < CQ ; 
n =  1 

I 
hence by the Borel-Cantelli lemma B,(E) occurs only finitely often, and 

lim inf max sm+~,-Sm 2 t l -E .  . 
n-m ~ < m < n - 1 ,  1, 

Remark  4.2. It should be noted that the assumption on the mixing coef- 
ficients can be weakened to subexponential decay. The proof can easily (but 
technically more involved) be adapted. However, polynomial decay is not suf- 
ficient to make the present proof go through. 

1 EXAMPLE 4.3. The theorem applies to mixing Gibbs-Markov dynamics as 
explained in Section 2. Indeed, by (1) any function g which is measurable with 
respect to a5 for some r > 0 generates a $-mixing process by setting 
X, = g o  Tn, where the $-mixing coefficients are given by 

$(n) < (K"" CQ 
if n > r ,  
elsewhere. 

In particular, the continued fraction transformation 

T : 0 1 + 0 1 T (x) = {llx) 
defines a mixing Gibbs-Markov map under the Gauss measure 

I 

and any function g (x) = [l/x] 1,([1/x]) with  EN satisfies the assumption 
of the theorem after centering. Hence the maximal portion of digits in 
the continued fraction expansion (up to the nth iteration) of a typical x in 
a string of length En approaches a limit, which depends on the parameter 
&,/log n. 
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