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Abstract. We apply the theory of finite difference equations to 
the central limit theorem, using interpolation of Banach spaces and 
Fourier multipliers. Let S,T be a normalized sum of i.i.d. random vec- 
tors, converging weakly to a standard normal vector N. When does 
llEg (x + S?) - Eg (X + JV)J~~ , (~ , ,  tend to zero at a specified rate? We 
show that, under moment conditions, membership of g  in various 
Besov spaces is often sufficient and sometimes necessary. The results 
extend to signed probability. 
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1. INTRODUCTION 

Let XI ,  X,, . . . be i.i.d. random vectors with zero mean and identity co- 
variance matrix, and put S,* = n- 'I2 x;= I X . converging weakly to a standard 

J.' 
normal vector JK The purpose of this paper is to examine the convergence rate 
of functionals of the type 

In particular, we are interested in conditions on the function g guaranteeing 
that the above tends to zero at a specified rate. It turns out that membership in 
suitable Besov spaces is often sufficient and sometimes necessary. 

This brings several old results under the same roof. If p = co, we get 
translation invariant bounds on the convergence of Eg (S:) to Eg (M).  With 
g equal to the one-dimensional Heaviside function, the results reduce to infor- 
mation on the L, convergence of distribution functions. As is shown in Set- 

* This work was done while funded by Uppsala University. 
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tion 5.1, our general theorems recover, and in some cases improve, large 
portions of the older results from the literature. 

The paper is based on convergence theorems for finite difference equations 
approximating the heat equation. These are extended, using interpolation theo- 
ry and Fourier multipliers as main tools. We thus exploit the equivalence 
between a time discretization of a PDE, and an approximation of the normal 
distribution by a sum of random variables. The first one to use such connec- 
tions for probabilistic applications seems to be Zukov [29]. We also men- 
tion the similarities to the operator method invented by Trotter [26]. Although 
well-known, such connections seem to have been subsequently underplayed. 

The paper is organized as follows: After some preliminaries, we review 
a few convergence results for finite difference equations, and apply these to the 
central limit theorem in Sections 3 and 4. A final section contains comparisons 
with related results, some converse results, and an extension to signed proba- 
bility. The main result is Theorem 4.9. 

The author wishes to thank his former advisor Svante Janson, Uppsala 
University, for valuable suggestions. Thanks also to Henrik Brandkn and 
Goran Hamrin for many rewarding discussions. 

2. PRELIMINARIES 

2.1. Notation. We shall work on Rd with the standard scalar product 
5 .  y, norm 1x1, convolution f * g, and Fourier transform 9 [f] (<) = 

f (5) = j f (x) e-it'" ax. For 1 < p < oo, L p  = L p  (Rd, ax) is the usual Lebesgue 
space. Moreover, Y is the Schwartz space of rapidly decreasing functions with 
dual 9' (see [Ill). 

Fourier multipliers from Lq to L p  are defined as follows: cp E M :  if the 
mapping g I+ 9 - I  [qg] is bounded from Lq to Lp.  If U c Rd is open, the space 
M i  (U) of local Fourier multipliers essentially arises by disregarding 5 outside 
U, cf. [14]. 

For multiindices ol we use the standard notation xu = n xgi, lccl = oli and 
cc! = noli!, whereas 8" f denotes the corresponding partial derivative. Finally, 
c and C are small and large positive constants, not necessarily the same on each 
occurrence. 

2.2. Two probability lemmas. We recall a few facts from probability theory. 
The first lemma is a simple exercise in conditioning. 

LEMMA 2.1. Let Xi,  X,, . . . be i.i.d. random vectors and put Sn = x:=, Xj. 
Define Tf (x) = E f (x +Xi). Then the iterates of T are Tn f (x) = E f (x + S,,). 

Let X = (X(", . . ., X(d)) be a random vector with characteristic function 
4(c) = ~ e ' @ ~ .  Then next lemma follows e.g, from [28], Remark 3.2. 
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LEMMA 2.2. Let X be non-singular. Then, for any 6 > 0, 

where the supremum is taken over all cubes I c Rd with edge length 6. 

Finally, the cumulants K, = K,(X) are defined by a formal expansion of 
log4. Thus, if E 1x1' < co for some r > 0, then 

as 5 + 0, with 0 replaced by o if r is an integer. In particular, K~ = EX(') and 
Kij = Cov (X"', X"'). 

2.3. Besov spaces. We give the basic definitions and properties of the Besov 
space B>q, 1 $ p, q  $ co. For proofs and more material, see [2] and [15]. 

Let ~ E Y ' ( R ~ )  be such that @ > 0 has support in {$ < 151 $ 2), and 
zjEz@j(<) = 1 for 5 # 0, where @j(r) = @(2-j[). Moreover, put 6 = 1-zJ"=, Gj. 
Then B;q consists of those f E 9' for which 

m 

(2.2) Ilf lls>q := I l @  * f llp+ { C (2'' 119j * f l~p)~}"~ < 
j= 1 

with the usual modification if q  = co. The homogeneous Besov space eq is 
defined analogously, by dropping the term I [ @  * f 11, and summing over j E Z .  

For s > 0 there is a more transparent definition that gives equivalent 
norms. Let s = S+ a > 0, S integral, 0 < a < 1. Then f E B>q iff 

where k = 1 if o < 1 and k = 2 if a = 1, and o! are the following smoothness 
moduli in L,: 

and 

Homogeneous Besov spaces may be defined similarly, by dropping the term 
1 1  flip in (2.3). Then B>q = eqn L, and B>ql c eq2 if ql $ q 2 .  

We remark that functions in homogeneous spaces are only defined modu- 
lo polynomials, whence all formulae have to be interpreted with some care. For 
example, the smoothness bound presupposes that the representative f has been 
chosen properly modulo high order polynomials, cf. [I 51. 
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2.4. Interpolation theory. Let Xo and XI  be two Banach spaces embedded 
in some common larger topological vector space. Given 0 < 0 < 1 and 
1 < q < co, there are several ways to define an interpolation space X, inter- 
mediate to Xo and XI ,  see [2] for definitions and constructions. We shall use 
the following instances of the real method X = (X,, XI),,, and the complex 
method X = [X,, XI],: 

where l/p = (1 - O)/po + O/pl and s > 0. 
The main point is that one can interpolate operators as well: 

THEOREM 2.3. Suppose that T is a bounded linear operator from Xo to 
Yo and from XI  to Y,. Let X = (X,, XI),,,, and similarly for Y; Then T is 
bounded from X to Y with norm 

The same holds for complex interpolation: X = [Xo, XI], etc. 

3. FINITE DIFFERENCE EQUATIONS 

In this section we collect some results on finite difference approximations 
of certain partial differential equations. As general references, we mention [I81 
and 1241. We shall be only concerned with homogeneous parabolic equations 
with constant coefficients, although some of the results are valid in greater 
generality [16], [27]. Put D = -id and consider the initial value problem 

where P is a homogeneous polynomial of degree m with constant coefficients. 
We assume that P (5) > 0 for 5 # 0, implying that P (D) is an elliptic differential 
operator. Then - P (D) is the infinitesimal generator of a strongly continuous 
(in Lp) semigroup of solution operators {E(t); t 2 0). In other words, u(t, -) = 

E (t) g, where E (t) g = 9 - ' [e (t, 5) ([)I and e (t, 5) = e-tP(r) (see [16]). 
A classical finite difference approximation of (3.1) has the form 

for some constants b,. We shall be a little more general, considering the scheme 
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where v is a signed measure on Itd and T, = {0, k, 2k, . . .}. Let k = hm, where 
m is the order of the PDE, and consider the solution operator of (3.2): 
Eh (k) g (x) = j g (x + by) dv (y). Putting 

eh(k,5)=leiY'hidv(y) and eh(Nk,5)=eh(k,5)N, 

it is clear that Eh (t) g = 9- ' [eh (t, 5) ij (511 for any t E G. We assume that Eh is 
stable on L,, i.e. that 

for some C = C, and all t E T,. Although this is in general a quite involved 
condition (see e.g. [18]), it will mostly hold trivially in our applications; see 
however Section 5.3 below. 

We now say that Eh (t) approximates E (t) in the strong sense with accuracy 
order p > 0 if 

eh (k, 5) = e(k, 5) + Ihrlm+" Q (hsy 

where da Q (5) is bounded on a punctured neighbourhood of the origin for 
la] < L, L being the smallest integer greater than d/2. The latter condition arises 
from the use of Michlin's multiplier theorem [lo], and is precisely what is 
needed for the proof of Theorem 3.1 below. The less restrictive condition that 
Q is bounded close to the origin will be called accuracy in the standard sense. If, 
in addition, Q is bounded away from zero, we say that the approximation order 
is exactly p. 

The following result is due to Lofstrom [14]. It was formulated for lattice 
measures v and with stronger regularity assumptions on Q, but holds just as 
well in the present situation; cf. [14], Remark 7.5. 

THEOREM 3.1. Suppose that Eh (t) approximates E (t) in the strong sense with 
order exactly p. Let 0 < s < p and g E L,. Then the following are equivalent: 

(i) IIEh(t)g-E(t)gll, = O(hs) uniformly in ~ E G  as h-0. 
(ii) g~ B;". 

If so, the bound in (i) holds uniformly for g in the unit ball of B;". Moreover, 
the approximation is saturated : If I I Eh (t) g - E (t) gll, = o (h') uniformly in t, 
then g = 0. 

Remark  3.2. The assumptions of exact order and g E L, are not needed 
for (ii) (i). Thus, (i) remains valid under the weaker assumption g E @". We 
also remark that the proof of the converse implication uses the bound for small 
t (say t < 1) only 1141. 

We close the section with an observation on more general bounds of the type 

Namely, the dependence on t is trivial in such cases, whence one needs only 
consider the case t = I. 
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PROPOSITION 3.3. Let 1 $ p, q, r $ w and put p = l/q - l/p. Then the fol- 
lowing are equivalent: 

(9 IIEh(l)g-E(l)gllp G chsIlglle:r. 

(ii) IIE, (t) g - E (t) gllp $ Ct -pd/" hs 11glls2r for all h > 0 and t E T,. 

P r o  of. Assume (i) and take t = Nk. Let 1 = N E  = N P ,  and put g(x) = 

g(tl/"x). The result follows from the identities 

Eh(t)g(x) = (El;(l)g)(t-limx) and llg(ax)lls2r = lals-dlq 119 (x)ll~:~; 

we omit the details. 

4. APPLICATIONS TO THE CENTRAL LIMIT THEOREM 

We now restrict ourselves to the situation relevant for probabilistic ap- 
plications, see however Section 5.3 below. To this end, consider the heat equa- 
tion au/at = IAu, where A is the Laplacian in Rd. Thus, in the notation of 
Section 3, m = 2, P (5) = $ and k = h2. Suppose, in addition, that v is a prob- 
ability measure. The stability condition (3.3) then holds with C = 1 by Jensen's 
inequality. Let X,  XI ,  X2, . . . be i.i.d. random vectors with distribution v, 
and put Sn = Cn=,Xj.  Then e,(k, 5) = $(hc), where 4 is the characteristic 
function of X. 1ithis difference scheme is to have positive accuracy, it is clear 
that X must have zero mean and identity covariance matrix (cf. (2.1)), so that 
S: : = sn/& converges in distribution to a standard normal vector N. 

Now, let n = k-' be an integer, put Zj") = s,,,/& for t E T,, and extend 
this to all t 0 by linear interpolation. Then Zj") converges weakly to d-dimen- 
sional standard Brownian motion W as n + w (see [3]). Since E, (k) g (x) = 

Eg (x + hX), Lemma 2.1 and the expression for e (t, l )  above give 

For t = 1 we have 2';) = S,* and Wl d JK 
Let us call X (or v) approximately normal of the order p in any of the two 

senses discussed above if the difference scheme (3.2) has the same accuracy. This 
order of normality is nearly equivalent to the following moment conditions. 
Recall that L is the smallest integer exceeding d/2. 

PROPOSITION 4.1. Let p > 0. Suppose that X has zero mean, identity co- 
variance matrix, that E IX12+p < w,  and that all cumulants K ,  = K ,  (X) of order 
3 $ Ial < 2 + p vanish. Then X is approximately normal of the order p in the 
standard sense. Ihe extra condition E IXIL < w guarantees normality in the 
strong sense. 
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If p is an integer, the conditions above are satisfied, and, in addition, 

then the order of normality is exactly p. 

P r o o f. This is a standard approximation result for characteristic func- 
tions. The final statement follows from (2.1). 

Remark  4.2. In one dimension the last statement reduces to K ,  +, f 0. 
Moreover, we need not distinguish between the strong and the standard sense if 
the dimension d $ 3. 

Remark  4.3. The first moment condition of Proposition 4.1 can be 
slightly relaxed. If p is non-integral, we can do with the weak condition 
P(IX1 > T )  $ CT-(2+'). This can be seen in dimension one by modifying the 
proof of Boas [4], from which the general case follows by considering different 
directions separately and appealing to uniformity (the implied constant de- 
pends on C and p only). 

If p is an integer and the dimension d = 1, an argument similar to that of 
Pitman [I71 shows that this weak condition still suffices if combined with the 
assumption E [X2+"I  {[XI $ T ) ]  = 0 (1). This is of course an improvement 
only if p is odd. 

The measurement of smoothness in L, for convergence in L p  in Theorem 
3.1 is natural, but one can also pass from smoothness in L, to convergence in 
Lp if q $ p. In a more restrictive setting, this was proved for q = 1 and p = co 
by ThomCe and Wahlbin [25]. Recall the notion of Fourier multipliers in 
Section 2.1. We let Uj = {2j-l i 141 i 2'") and put llqllj = IlqllMZcoj) when 
there is no risk of confusion. The following result is implied by the inequalities 
of Hausdorff-Young and Holder. 

LEMMA 4.4. Let q $ 2 $ p and put l / r  = l / q  - l/p. Then L, c M i .  More 
precisely, llqllM; $ Ca llqllL,, where Cd is a constant depending on the dimen- 
sion d only. 

In the sequel, we shall use the following notation: E is a fixed, sufficiently 
small number and p = l /q  - l/p. In line with Proposition 3.3, we take t = Nk = 1, 
SO that N = n = h-2. Moreover, 

Our main result will be deduced from the following two lemmas, which we 
prove for r < co only. 

LEMMA 4.5. Let X be approximately normal in the strong sense of order p, 
and let q $ p. Then zh2jQE 2-jsll~,llj 6 Chs for 0 < s $ p. 
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P r o o f. For p = q this was proved by Lofstrom [14], Theorem 7.1. Sup- 
pose that q < 2 < p and let r = p-l as in Lemma 4.4. Since I$([)[ < 
exp(-c Ill2) for < 28, say, and I$(t)-e~p(--)t1~/2)[ < C ( [ I 2 + "  we have, for 
t E Uj, 

l = O  

n - 1  

< C lht12+" exp(-c (n-1- 1) lh5l2) exp (- 1 lhtI2/2) 
1 = 0  

Hence 

llRhllj < I I R ~ I I L , ( U ~ )  < C p  { J  ~t~ ' (~+")exp(--c  1 t 1 ~ ) d t ) " ~  
uj 

< CPmin {I,  2j@d+2+s) , 

and we need only sum over j. The general case follows by interpolating between 
the cases p = q and q < 2 < p, using Theorem 2.3 and (2.5). rn 

LEMMA 4.6. Assume that X has a non-singular covariance matrix and let 
q < p. Then llRhllj < Chpd 2jpa for h2j > E. 

Proof .  I f p  =q ,  then llRhllj<2= C by stability. For q < 2  < p  and r as 
above, we have llexp (- 11j2/2)11,(uj) < C. Moreover, by Lemma 2.2, 

so that llRhllj < C (1 + (h2j)d13 < C (h2jyd. By interpolation, the same holds for 
any q < p. . 

PROPOSITION 4.7. Suppose that X is approximately normal in the strong 
sense of order p. Let q < p and put p = l/q - l/p. Then 

for pd < s < p and g E em. A similar bound holds if s = pd and g 

Proof .  We prove the case s > pd only, the other one being similar. Let 
{qj} be as in Section 2.3, and put gj = q j  * g. Then IIEh (I) g - E (1) gIIp does not 
exceed 

By Lemmas 4.5 and 4.6, the last sum above is, in turn, majorized by 
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To remove the assumption s > pd seems to require additional assump- 
tions. A sufficient one is the following 

DEFINITION 4.8. The random vector X is called eventually smooth if S: is 
absolutely continuous with a bounded density for some n. 

For example, this holds if 4 belongs to L, for some p i m or, by the 
Hausdorff-Young inequality, if X has a bounded density in L, for some p > 1. 
There exist singular distributions that are eventually smooth [19]. If X is 
eventually smooth, then S: has uniformly bounded densities for large n, in fact 
they converge uniformly to the standard normal density [20]. By interpolation, 
the densities are bounded in any L,. 

If p, q, and p are as in Proposition 4.7 and X is eventually smooth, it thus 
follows from a standard convolution estimate ([ll], Corollary 4.5.2) that 
IIEh (1) gll, < C llgl lq, h small. Since the same holds for E (I), we have 

Interpolating between (4.2) and (4.3) or (4.4), using Theorem 2.3 and (2.4), we 
see that this proves our main result if combined with (4.1). The final statement 
follows from the proof of Lemma 4.5. For applications, the theorem should be 
combined with Proposition 4.1 and Remarks 4.2 and 4.3. 

THEOREM 4.9. Let 1 6 q 6 p 6 co, put p = l/q- l/p, and take s > 0. Sup- 
pose that X is approximately normal in the strong sense of order p > max {s, pd). 
If s < pd, then suppose that X is eventually smooth, and if s = pd, suppose, in 
addition, that p > pd. Then, for large n, 

If q < 2 < p, it suflces to have accuracy in the standard sense. 

Remark  4.10. By Proposition 4.7 and its proof, a few other cases can be 
handled without density assumptions. Thus, a bound similar to (4.5) holds for 
s = pd < p and g ~ e l .  If p < pd i s and g ~ % " ,  we get the convergence rate 
n-~/2.  

Remark  4.1 1. Proposition 3.3 and (4.1) turn Theorem 4.9 into an in- 
variance principle : 

uniformly for t E &. 
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Remark  4.12. The result cannot be extended to p < q. This follows from 
Theorem 3.1, Remark 3.2 and Proposition 3.3; we omit the details. In dimen- 
sion one we can also appeal to Proposition 5.3 below. As a comparison, note 
that M i  = (0) if p < q < co (see [lo]). 

Remark  4.13. If p = co, then Theorem 3.1 and Proposition 4.7 both give 
uniform bounds. Since this is not destroyed by interpolation, the bounds in 
Theorem 4.9 hold with true suprema for p = co, rather than essential ones. 

Re m a r k 4.14. The constant C in (4.5) really depends on s, since different, 
but equivalent, norms may occur in interpolations like (2.4). For example, the 
implied ordo constant in Theorem 3.1 grows (at most) like s- ' as s -+ 0 if the 
norm (2.2) is used [14]. 

Assuming only finite second-order moment, a similar result, without infor- 
mation on the convergence rate, holds. For its statement, let Co be the space of 
continuous functions vanishing at infinity. 

THEOREM 4.15. Let 1 < p < co and the dimension d < 3. Suppose that 
X has zero mean and identity covariance matrix. Then 

uniformly in t E & as n + co provided that g E L, (for p < co) or that g E Co (for 
p = 00). 

P r o  of. If g E BE.', then the conclusion is valid by an argument similar to 
the proof of Proposition 4.7. The result then follows by density (note that 
BE.' c L, by the "homogeneous" counterpart to (2.2)) or from the Lax-Richt- 
myer equivalence theorem [18]. rn 

5. RELATED AND CONVERSE RESULTS 

5.1. Comparison with related results. There are a few special cases of Theo- 
rem 4.9, that overlap existing results. Let us remark at once that our techniques 
give no asymptotic expansions; we always assume sufficiently many cumulants 
to vanish. This seems to be the usual approach when discussing Lp-convergence 
[8], [12], although we believe that such expansions are possible. 

Firstly, if p = co, we get translation-invariant bounds on the convergence 
rate of Eg(S:) to Eg(Jfr). These may be compared to those of Barbour [I], 
treating the univariate case by Stein's method. (In the multivariate case, more 
complicated bounds have been given by Gotze and Hipp [6].) For translation 
invariance, we take p = 0 in Barbour's main theorem ([I], p. 294). His assertion 
is then that if s z 0, E IXI2+V co, and the cumulants K.(X) vanish for 
3 < a < 2+s, then 
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provided that g~B"0b"~'. The latter is the same space as except that 
a Lipschitz condition is used also for integral s, cf. Section 2.3. We recognize 
this as the case d = 1, p = q = co of Theorem 4.9, but with a smaller function 
space for integral s. Thus, we can make some extensions and improvements of 
Barbour's result, including the assumption of only a weak moment condition, 
cf. Remark 4.3. Note however that [I] allows for non-identical distributions 
and non-translation invariant bounds, as well as asymptotic expansions. 

As a second application, we consider distribution functions. This situation 
has been thoroughly studied, and definite results were given by Ibragimov [12]. 
We shall see that our general results contain large parts of these. To this end, 
take d = 1 and let g be the Heaviside function, for convenience defined as the 
indicator function of (- co, 01. Then g E B ~ I P * "  (R), and Eg (x+X) = F (-x), 
where F is the distribution function of X. Taking q = s-I, Theorem 4.9 yields 

PROPOSITION 5.1. Let X be one-dimensional with E IX12+" < co for some 
0 < s < 1 and let s-' < p < CQ. If p = co, then suppose, in addition, that X is 
eventually smooth and that E 1x1' < co for some r > 2 + s. Then [IF, - @ I I p  < 
Cn-"I2, where F, is the distribution function of S,* and Qi is that of N.  

As a comparison, Theorem 4.3 of Ibragimov [I%] shows that no restric- 
tions on p or extra assumptions are necessary. Note that Ibragimov assumes 
a weak moment condition, equivalent to our Remark 4.3. 

Correcting a misprint, Theorem 1 of Heyde and Nakata [8] shows that 
if Cramkr's condition (C) holds: lim supe,, , (81 < 1, and if K ,  (X) = 

. . . = K I -  (X) = 0 but K~ (X) # 0, then IIF, - @[I ,  decreases like n-(k-2)12 for 
any p. This is natural, since, in our language, X is approximately normal of 
order exactly k-2. The difference from our Theorem 4.9, which cannot go 
beyond approximation order one, lies in Cramkr's continuity condition. The 
quoted result fails for lattice distributions, since Fn then has jumps of order 
n- 112. , see also Remark 5.4 below. Quite generally, Cramkr's condition is 
known to serve as a substitute for regularity of functions, cf. [5]. 

5.2. Converse results. We turn to a few converse results. Our first instance, 
showing that Besov spaces are essentially the "correct" spaces is a direct con- 
sequence of Theorem 3.1. For the definition of Zj"), see Section 4. 

PROPOSITION 5.2. Suppose that X is approximately normal in the strong 
sense of order exactly p > 0, and let 0 < s < p and g E L,. If 

un$ormly in t E T,, then g E B:". If the above is o (n-"I2), then g = 0. 

Given convergence for a single t, a weaker conclusion is possible. The 
following is a slight generalization of Theorem 2.2 in [25], treating p = co, and 
may be proved similarly. 
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PROPOSITION 5.3. Assume that X has a one-dimensional lattice distribution 
and is approximately normal of order s > 1 in the standard sense. If g EL ,  and 

then E Bi-l$m. 

Re m a r k  5.4. The assumption on lattice distribution cannot be omitted. 
The result of Heyde and Nakata quoted in Section 5.1 shows that the result is 
false under Cramkr's condition (C). 

Let us finally discuss the optimality of the convergence rate n-d2 .  

PROPOSITION 5.5. Given s > 0, there exists a function g E 0,  ,,, , B;" 
such that if the @st component of X is integer valued, and X is approximately 
normal of order s in the standard sense, then, for all p, 

lim sup nSl2 (IEg ( x  + S,*) - Eg ( x  + JY)(ILp(dx) > 0. 
n-+m 

If p = co, we can substitute IEg (S:)- Eg (N)l for the norm, possibly replacing 
g by a translate. 

P r o  of. The case p = co is, except for the last claim, essentially Theo- 
rem 10.2 of Hedstrom [7]. For general p, it may be proved similarly to Theo- 
rem 2.1 in [25]. The final statement follows by localizing the latter proof by 
a suitable test function, we omit the details. 

The instance d = 1, p = co may be compared to Theorem 2 of Borisov et 
al. [5], also dealing with lattice variables. The latter assumes that s > 1 is 
non-integral, and that E I X ~ L "  + < oo, where L s j is the integral part of s. If 
the cumulants of order between 3 and s vanish, their conclusion is that given 
cp (n) --+ + co, there exists g E Bzm such that 

lim sup cp (n) nSI2 (Eg (S,*) - Eg ( & ) I  > 0. 
n-+m 

Comparing, we see that we can treat more values of s, that we need 
between two and three moments less, and that the extra weight cp(n) has been 
removed. Moreover, [7] and [25] give actual constructions of g, whereas [5] 
relies on the Banach-Steinhaus theorem for the existence of such a function. 

5.3. A signed central limit theorem. The results in Section 3 hold without 
the assumption that v is a positive measure. The same is true for those in 
Section 4 as long as the conclusion of Lemma 2.2 is valid, for example if the 
difference method is parabolic in the sense of John [13], [25]. This observation 
leads to higher-order central limit theorems in signed probability theory; see 
[9] and the references therein for a survey of related results. 

Let P be a signed measure on a measurable space 52 such that P (L?) = 1, 
and define the basic probabilistic concepts as usual. In particular, a random 
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variable is in this subsection a measurable function on G?. As for expectations, 
put EX = l XdP and ]El X = l X IdPI. Let m 2 2 be even and consider the 
one-dimensional PDE 

solved by a random variable Nm with characteristic function exp (- tm/m!). Let 
X, XI, X2, . . . be i.i.d. random variables with EX = EX2 = . . . = EXm-' = 0 
and EXm = (- 1)"12 +', and put S: = n- 'Im x:=, X j .  If, in addition, 
IEJ IXIm+V GO and EXk = EN; for k < m+s, then 

provided that the stability condition (3.3) holds. Without extra moment as- 
sumptions, a counterpart to Theorem 4.15 is valid. The basic convergence rate 
is thus n-'Im, as suggested by Studnev [22]. 

If p = 2, stability is equivalent to 14 (t)1 < 1, where 4 is the characteristic 
function of X. Similar criteria in L, have been given for lattice distributions by 
Strang [21] and Thomke [23]. 

REFERENCES 

[I] A. D. Ba rb  o ur, Asymptotic expansions based on smooth functions in the central limit theorem, 
Probab. Theory Related Fields 72 (1986), pp. 289-303. 

[2] J. Ber gh  and J. Lofs  t r  om, Interpolation Spaces, Springer, New York 1976. 
[3] P. Bil l ing sl e y, Convergence of Probability Measures, Wiley, New York 1968. 
[4] R. P. Boas, Lipschitz behavior and integrability of characteristic functions, Ann. Math. Statist. 

38 (1967), pp. 32-36. 
[5] I. S. Borisov, D. A. Panchenko,  and G. I. Skilyagina,  On minimal smoothness conditions 

for asymptotic expansions of moments in the CLT Siberian Adv. Math. 8 (1998), pp. 8&95. 
[6] F. Gotze  and C. Hipp,  Asymptotic expansions in the central limit theorem under moment 

conditions, Z. Wahrsch. Verw. Gebiete 42 (1978), pp. 67-87. 
[7] G. W. H eds t r  om, The rate of convergence of some difference schemes, SIAM J. Numer. 

Anal. 5 (1968), pp. 363-406. 
[8] C. C. Hey de  and T. N a k a  t a, On the asymptotic equivalence of Lp metrics for convergence 

to normality, Z. Wahrsch. Verw. Gebiete 68 (1984), pp. 97-106. 
[9] K. J. H o chber  g, Central limit theorem for signed distributions, Proc. Amer. Math. Soc. 79 

(1980), pp. 298-302. 
[lo] L. H o rman  der, Estimates for translation invariant operators in Lp spaces, Acta Math. 104 

(1960), pp. 93-140. 
[I 11 L. H o r  m a n  d e r, The Analysis of Linear Partial Differential Operators I, 2nd edition, Sprin- 

ger, New York 1990. 
[I21 I. A. I b r a gi m o v, On the accuracy of Gaussian approximation to the distribution functions of 

sums of independent variables, Theory Probab. Appl. 11 (1966), pp. 559-579. 
[I31 F. John,  On integration of parabolic equatio~s by difference methods. I. Linear and quasi- 

linear equations for the infinite interval, Comm. Pure Appl. Math. 5 (1952), pp. 155-211. 



166 L. L indhagen  

[I41 J. Lo  fs t r om, Besov spaces in theory of approximation, Ann. Mat. Pura Appl. (4) 85 (1970), 
pp. 93-184. 

[I51 J. Peetre ,  New Thoughts on Besov Spaces, Duke Univ. Press, 1976. 
[16] J. Pee  t re  and V. T h o m  Ce, On the rate of convergence for discrete initial-value problems, 

Math. Scand. 21 (1967), pp. 159-176. 
[17] E. J. G. P i tman,  On the derivatives of a characteristic function at the origin, Ann. Math. 

Statist. 27 (1956), pp. 1156-1160. 
[I81 R. D. Rich tm y e r  and K. W. Mor ton ,  Difference Methods for Initial-value Problems, 2nd 

edition, Interscience, New York 1967. 
[I91 S. Saeki, On convolution squares of singular measures, Illinois J. Math. 24 (1980), pp. 

225-232. 
[20] T. L. She  r v a s h id  z e, On the convergence of densities of sums of independent random vectors, 

Lecture Notes in Math. No 1021, Springer, New York 1982, pp. 576-586. 
[21] G. Strang,  Polynomial approximation of Bernstein type, Trans. Amer. Math. Soc. 105 (1962), 

pp. 525-535. 
[22] Yu. P. S tudnev,  Some generalizations of limit theorems in probability theory, Theory Probab. 

Appl. 12 (1967), pp. 668-672. 
[23] V. T h o  m 6 e, Stability of difference schemes in the maximum-norm, J. Differential Equations 

1 (1965), pp. 273-292. 
[24] V. T h om C e, Finite difference methods for linear parabolic equations, in : Handbook of Numer- 

ical Analysis I, North-Holland, Amsterdam 1990, pp. 5-196. 
[25] V. T h  omCe and L. W ah1 bin, Convergence rates of parabolic difference schemes for 

non-smooth data, Iv'iath. Comp. 28 (1974), pp. 1-13. 
[26] H. F. Tro t te r ,  An elementary proof of the central limit theorem, Arch. Math. 10 (1959), 

pp. 226234. 
[27] 0 .  B. W id lun  d, On the rate of convergence for parabolic difference schemes I I ,  Comm. Pure 

Appl. Math. 23 (1970), pp. 79-96. 
[28] A. Yu. Z a i  t sev, On the Gaussian approximation of convolutions under multidimensional ana- 

logues of S. N. Bernstein's inequality condition, Probab. Theory Related Fields 74 (1987), 
pp. 535-566. 

[29] A. I. Zukov,  A limit theorem for difference operators (in Russian), Uspekhi Mat. Nauk 14 
(1959), pp. 129-1 36. 

Saab Systems 
S:t Olofsgatan 9A 
75321 Uppsala, Sweden 
E-mail: lars.lindhagen@saabsystems.se 

Received on 22.4.2005 


