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Abstract. The article deals with the special subclass of cp-mixing 
periodically correlated (PC) time series and the estimation of auto- 
covariance through Fourier coefficients. The aim is to investigate 
whether the subsampling of the autocovariance estimator is consistent. 
It is shown that the consistency holds for frequencies A = 0 and A = n. 
Theoretical reasoning is supplemented with a simulation study. 
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1. INTRODUCTION 

Periodically correlated (PC) time series constitute mathematical models 
for repeatable random phenomena. Therefore, they have a vast spectrum of 
possible applications in many fields, like climatology, economy, or signal pro- 
cessing (see e.g. [2], [4], [9]). 

We will define a special class of PC time series, i.e. periodically strictly 
stationary time series (PSS) and we will be interested in time-domain statis- 
tical inference within this class. The inference is based on Fourier represen- 
tation of the autocovariance function. It would be very desirable to construct 
confidence intervals for the estimator of Fourier coefficients. We could then 
perform different tests about the model. One of the most important is testing 
stationarity (some Fourier coefficients are equal to zero), i.e. whether the model 
is really periodic. Let us mention two situations when such a test is crucial. 

At present, GARCH (generalized autoregressive conditional heteroscedas- 
ticity) models are quite popular in the analysis of financial time series. It seems 
that they capture the most important features of the behavior of financial 

* Research partially supported by AGH local grant 10.420.03. 



248 R. Synowieck i  

market, where there are periods with high and low volatility. Although the 
GARCH model incorporates conditional heteroscedasticity (changes in the 
conditional variance), the series must be unconditionally stationary. Therefore, 
if we are not sure whether the data are seasonal or stationary, the test for 
stationarity should be used before applying GARCH or other models. The 
other situation is when using the PARMA (periodic autoregressive moving 
average) model. At the beginning we identify the order of the model and then 
estimate the parameters by means of the maximum likelihood or moment 
estimators (see [2]). Next, the residuals are computed. Provided that the model 
was properly chosen, the residuals should be stationary. Therefore, stationarity 
test determines the correctness of the selected model. Let us add here that there 
is still a lack of efficient tests of stationarity within non-linear time series 
models. 

Another example of the test is when we want to determine the period of 
PSS or PC time series. Our guess can be verified by testing hypothesis that only 
the specific Fourier coefficients are non-zero. Certainly, the same as for the 
stationarity test, the pointwise value of the estimator is almost useless here. 
Testing is impossible without knowing the estimator distribution or, at least, its 
approximation. 

It is well known in literature (see [ 5 ]  and [8]) that natural estimator of 
Fourier coefficients has an asymptotic normal distribution. However, it is not 
applicable in practice because of complicated form of the covariance matrix. 
Therefore, we would like to propose resampling-type method of obtaining the 
confidence intervals for the estimator. 

Section 2 covers essential definitions and notation as well as the charac- 
terization of periodically strictly stationary time series. Section 3 contains the 
main result regarding the consistency of subsampling. Section 4 presents the 
outcome of simulation study and further considerations. Section 5 summarizes 
the article. 

2. THEORETICAL BACKGROUND 

Let (a, F, P) be a probability space and let {X (t) : t E Z) be a time series, 
i.e. X (t) is a random variable for each t EZ. At the beginning, we will provide 
the concise definitions of all time series classes that are under study. 

DEFINITION 2.1 (Brockwell and Davis [3]). The time series {X (t) : t E Z) is 
stationary in the strict sense (SSS) if, for any  EN, any ti, . . ., ~, 'EZ,  and any 
~ E Z ,  

(x( t i ) ,  . . ., X(tk)) ( x ( t l +  h), . . ., X(tk+ h)). 

Stationarity means that the structure is invariant in time. The following 
classes exhibit periodicity in distribution and second order structure. 
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DEFINITION 2.2. The time series {X (t) : t E Z} is called periodically strictly 
stationary (PSS) if there exists a smallest number TEN,  called a period, such 
that for any  EN, any t,, ..., ~ , E Z ,  

DEFINITION 2.3 (Bloomfield et al. [2]). The time series {X (t) : t E Z} is pe- 
riodically correlated (PC) if there exists a smallest number TEN,  called a pe- 
riod, such that for any t, T E Z  

(i) Px (t) : = E (X (0) = Px (t + TI; 
(ii) Bx(t, r )  : = Cov(X(t), X( t  +T)) = Bx(t + T, 7). 

It is easy to see that SSS c PSS and, under the condition that the second 
moment exists, PSS c PC. Below, we provide and prove the theorem that 
characterizes some PSS models. 

THEOREM 2.1. Assume that the time series {X(t) : t EZ} has the structure 

where the function f is periodic with period TEN,  the time series {Z(t)} is 
strictly stationary (SSS), and the function F (., f (t)) : R -+ R is measurable for 
any t. Then the series {X (t)} is PSS with period T 

P r o  of. Take any k E N  and any t,, . . ., tk EZ. By strict stationarity of 
{Z(t)}, we may write 

Since the function F ( e ,  f (t)) is measurable, we get immediately 

But, for any i = 1, . . ., k, we have f (ti) = f (ti+ T), so 

which implies (X (t ,), . . . , X (tk)) A (X (t, + T ) ,  . . . , X (tk + T)). R 

From the above we infer, for example, that the models 

X (t) = f (t) + Z (t) and X (t) = f (t) Z (t) 

are PSS provided that {Z  (t)} is SSS and the function f is periodic. However, 
the structure from Theorem 2.1 does not cover all possible PSS models. It is 
easy to see that the process defined by the equality X (t) = Z (t + f (t)) is PSS 
but cannot be presented in the form (2.1). 

7 - PAMS 27.2 
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If we do not assume any particular model of PSS (or PC) time series, then 
the statistical inference concerns the estimation of autocovariance function 
Bx(t, z) and is based on its Fourier representation (see [6]) 

where 

and the set 

A, = {A: a(A, 7) + 0) c {(211k)/T: k = 0, ..., T-1) 

is finite. In this way the inference regarding a function is transformed into the 
inference regarding the complex numbers a (A, z). With no loss of generality we 
may assume that z > 0. Then the natural estimator ([7], 181) of a(A, z) for the 
series {X(t)} observed for t = 1, . . ., n (n is the sample size) takes the form 

Assume that the series is 9-mixing, i.e. the observations that are far away 
become independent. For convenience of the reader we state the precise defini- 
tion of this property below. 

DEFINITION 2.4 (Billingsley [I]). For the time series {X (t): t EZ} we de- 
fine the corresponding 9-mixing function by 

where S E N  and gx( t l ,  t,) stands for the 0-algebra generated by {X(t): t1 < 
t $ t,}. The process {X(t)} is called 9-mixing if qx(s) -+ 0 for s -+ oo. 

Under some additional assumptions on the moments of X(t), it is known 
that the estimator &,(A, z) is strongly consistent and asymptotically normal 
(Csl, C71, PI) ,  i.e. 

where 

However, the matrix C depends on higher moments of X(t) and has a very 
complicated form ([5], [7]). Therefore, such an asymptotic result cannot be 
easily applied in statistical inference. In the next section we would like to 
propose and examine subsampling as a method of approximating this dis- 
tribution. 
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3. SUBSAMPLING AND ITS CONSISTENCY FOR PSS TIME SERIES 

Let (X (I), . . ., X (n)) be a sample from PC time series {X (t) : t E Z}. For 
t =  l , 2 ,  ..., n-b+l  let us put 

for the estimator dn computed over the subsample (X (t), . . . , X (t + b - 1)) of 
length b = b (n) -+ co, bln --+ 0. Thus, we obtain n - b + 1 replications of the es- 
timator and the empirical distribution of the real part of the root statistics in 
the form 

Note that this subsampling procedure can be efficiently computed, but an 
essential question is whether it is consistent, i.e. whether the quantiles from 
LnYb converge to the quantiles of the asymptotic distribution (see [lo]). In order 
to verify consistency, we will use the sufficient condition formulated for a gene- 
ral case in [lo] (Theorem 4.2.1, p. 103), that is 

(3.1) f i  Re (d,,,b,tb (A, r )  - a (A, 7))  5 JV. (0, 011) for any sequence {tb}, 

where a,, is an appropriate element of the matrix Z in (2.2). Notice that the 
sequence of starting points {tb} may converge to infinity; therefore, the above 
condition is much more stronger than (2.2). The following theorem is the main 
result regarding subsampling consistency. 

THEOREM 3.1. Let the real time series {X(t): t eZ}  satiSfy the following 
conditions: 

(i) {X (t)} is PSS with period T; 
(ii) {X(t)} is 9-mixing with cpy2 €1'; 
(iii) E IX(t)14 i M4 i CO. 

Then the subsampling for the estimator &,,(A, z) is consistent for A = 0 and, 
if a(n, z) = 0, for A = n. 

P r o of. Firstly, we will prove the following lemma. 

LEMMA 3.1. Under the assumptions of Theorem 3.1, we have for any se- 
quence of positive integers {tb} 

where Z was dejined in (2.2), tb,T = L(tb- l)/T_/ T and the number T is a pe- 
riod. 
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P r o  of. To simplify the notation, let 

and notice that tb - tb,T E { 1  , . . . , T). Therefore, 

It is easy to see that lb/b + 1 and, by (2.2), R,,,, -% M2 (0, C). For the second 
term we have 

which means that S,,,, 3 0. The non-random term T,,,, converges to 0 as well. 
By Slutsky's lemma we see that (3.2) holds. 

Take any sequence of positive integers {tb) .  We will be checking whether 
the condition (3.1) is satisfied. Recalling that we have restricted our considera- 
tions to PSS series, we have 

Therefore, we can shift indices by -tb,, and obtain 
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= cos (A (tb - 1 - tb,T)) Qb (A, z) -sin (A (tb - 1 - tb,T)) Yb (2, T), 

where 
I I b - t  

In order to simplify the notation let us put Ab,, = A (tb - 1 - tb,T). We may write 

5 ,,/K (cos Q~ (A, z) - sin (AbgT) yb (A, 7) - Re (a (1, 7))) 

- sin (Ab, T) ,,/K ( y b  (A, 7) - Im (a (2, 4)) 

+ f i  (cos (Ab, T) Re (a (A, 7)) - Re (a (A, 7)) - sin (Ab, T )  Im (a (a, 7))) 

Now, take sequences of the form tk = 1 + h + bT where h E 10, . . . , T - 1). Then 
tk - 1 - t;,, = h, where t;,, = L (tk- 1)/T] T By Lemma 3.1 and the Cramer- 
Wold theorem, we infer that the random part of Rn,b,t(A, 7) tends weakly to 
a normal distribution, i.e. 

cos (Ah) @ (@b (A, 7) -Re (a (1, 7))) 

-sin(Ah)@(~,(A, 7)-1m(a(A, 7))) 5 N ( 0 ,  oi), 
where 

0; = cos2 (Ah) ol1 + sin2 (Ah) 022 - 2sin (Ah) cos (Ah) o12, 

and oil, oz2, o12 are components of C as before. Since the rest of Rn,b,t is 
non-random and does not influence the variance, it is necessary for the con- 
dition (3.1) that, for any h~ {0, . . ., T - 1), 

2 
Oh = O1l. 

This is equivalent to 

cos2 (Ah) ol + sin2 (Ah) 02, - 2sin (Ah) cos (Ah) oI2 = ol 

and, further, to 

2sin (Ah) cos (Ah) 012  = sin2 (Ah) (022 - oI1). 
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Assuming that sin (Ah) # 0 and a12 # 0 we get 

ctg (Ah) = 
0 2 2  -011 

2012 ' 

Observe that the right-hand side of the above equality does not depend on 
h and the equality can be satisfied only due to periodicity of the cotangent 
function. However, it allows to exclude many A possible to satisfy condition 
(3.1). Note that, including the PSS subclass, for PC time series we have 

for neZ.  This justifies why we may restrict to A E  [0, 2n). Let us denote the 
non-random term of R,,,,, (A, 2 )  by 

and consider the following cases: 
1. T = 2, a12 # 0, sin(A) # 0. 
Condition (3.1) might be satisfied only if ctg(A) = (cll -022)/2~12 and 

NR = 0. Contrarily, R,l,b,, (A, z) is not convergent or has not appropriate asymp- 
totic variance. However, this is a very restrictive case with rigid conditions on 
Z, A and a(A, 7). 

2. T 2 3, o12 # 0, sin(Ah) # 0 for all h E (1, . . ., T - 1). 
The equality ctg (A) = ctg (2A) implies that 2A - A = 1 n for some 1 E Z ,  which 

means that sin(A) = 0 and yields a contradiction. 
3. T 2 3, c12 # 0, there exists the smallest ho E {1, . . ., T - 1) such that 

sin (Ah,) = 0 and there exists h E (1, . . . , T - 1) such that sin (Ah) # 0. 
If h, 2 3, the equality ctg(A) = ctg(2A) must be satisfied. Then, as in the 

previous case, A = llr and sin (Ah) = 0 for all h E {0, . . ., T - 1), which yields 
a contradiction. If h, = 1, then sin@) = 0, so A = 0 or A = n, but then 
sin (Ah) = 0 for all h. If h, = 2, we have sin (24 = 0, which gives A = 0, A = 4 2 ,  
A = n or A = 3x12 (remember that A E [0, 2n)). For A = 0 and A = n, we have 
sin (Ah) = 0 for all h, so a contradiction. If A = n/2 or A = 3~12, then, for h such 
that sin(Ah) # 0, o; = a,,. Therefore, for those two values of A, (3.1) might be 
satisfied only if oll = 022 and N R  = 0. 

4. o12 = 0, there exists h E {1, . . ., T - 1) such that sin (Ah) # 0. 
By the condition 0; = al l  we infer that the equality oll = 02, must be 

true. Assuming additionally that NR = 0, we see that (3.1) might be satisfied. 
5. sin (Ah) = 0 for all h E {1, . . ., T - 1). 
It means that AE{O, n). For A = 0 we have 
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so (3.1) is satisfied without further restrictions. For A = n 

6 ~e (n, z) - a (n, T)) = (- - t b ~ T  @ (@b (n, 7) - Re (a (n, 7))) 

Hence, the weak convergence to the desired normal distribution holds if and 
only if Re (a (n , 7)) = 0. 

While estimating a(A, z) we do not know 2, so we should avoid making 
a priori assumptions regarding its form. The two cases about which we proved 
that the subsampling is consistent are: A =  0 and A = n, if only a (n, z) = 0. Let 
us add that by applying identical reasoning to the imaginary part of the es- 
timator we get the analogous necessary condition 

sin2 (Ah) oll + cos2 (Ah) oz2 + 2sin (Ah) cos (Ah) o12 = o,,. 

Therefore, the cases for the imaginary part are the same and it does not provide 
new consistent values of A. Lastly, notice that, for A = 0 and A = n, the imagi- 
nary part of the estimator and parameter is equal to zero, so we may say that 
the consistency concerns the whole estimator. E 

COROLLARY 3.1. The suflcient condition (3.1) is not satisfied apart from the 
cases listed in Theorem 3.1. 

We just proved the consistency for the particular case (A = 0, A = n). How- 
ever, the condition (3.1), in general, does not solve the problem of consistency 
for the parameter a(A, z). In the next section we will try to approach the 
question about consistency by means of simulations. 

4. SIMULATION STUDY 

In this section, we would like to check how the subsampling algorithm 
performs in practice. We will simulate time series from the model that satisfies 
all assumptions of Theorem 3.1 and then compute subsampling replications of 
the estimator ii, (A, z). As subsampling consistency is equivalent to convergence 
of Ln,b (-) to c.d.f. of N ( 0 ,  oil), we will study the histogram based on the values 
of f i  Re (L?.,,,~ (A, z) - 2. (A, z)), where t = 1, . . . , n - b + 1, and combine it with 
density function of a normal distribution. It will be also very interesting to run 
the procedure for the cases in which we were able neither to prove nor disprove 
the consistency. 

Consider the model 

where the modulating function f (t) = sin((2lrlT)t) is periodic with period 
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T and {Z (t): t = 1, . . ., n} is moving average process of the form 

Z (t) = C UG), 
J2qfl j = t - q  

where q E N, (U (1 - q), . . . , U (n + q)) is an i.i.d. sample. Asssume that 
E (U (j)) = 0 and E (U4 (j)) < oo. It is easy to see that the process {Z (t)}, and 
thus the process {X (t)}, is 2q-dependent, which implies that they are cp-mixing. 
Moreover, {Z (t)} is strictly stationary, so we can apply Theorem 2.1 to see that 
{X(t)} is PSS. Therefore, all assumptions of Theorem 3.1 are satisfied and 
subsampling is consistent for particular cases A = 0 and, if a(n, z) = 0, for 
A = K. Recall that for PC processes a (A, z) = 0 for A f 2nklT Therefore, if T is 
an odd integer, we are sure that a(n, z) = 0. The model introduced above is 
simple enough so as we are able to compute a(A, z) analytically. It is easy to 
check that the shifted covariance for the moving average process takes form of 
the 'tent' function 

where o2 = E (U2 (j)). Hence, for the process {X(t)} we have 

Now, for any z and ;Ilc = (2nk)lT we may write 

It is very desirable in our simulations to know the exact value of the parameter. 
Unfortunately, the asymptotic variance of the estimator cannot be easily cal- 
culated, even for small values of q and z. 

To draw Figures 1 and 2 we simulated the sequence {U(j)} from uniform 
distribution on the interval [- 1, 11 and took q = 3 and T = 7. Such a model 
could be used in situations when the observations are collected daily (e.g. the 
number of clients of the supermarket per day), the pattern with some random 
fluctuations repeats weakly, and the process has memory no longer than one 
week. The convergence in limit theorems for dependent data is slow, so we 
decided to take quite large sample sizes (n = 500, 1000, 7000) and b = n3I5. 
Subsampling consistency means that the empirical distribution of the subsam- 
pling replications should become normal. However, we do not use the tests for 
normality (e.g. the Wilks-Shapiro test) for at least two reasons. Firstly, though 
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we build empirical distribution from subsampling replications, they are not 
i.i.d. observations. Secondly, we do not expect that subsampling replications 
are normal but that they are approximately normal. For large samples nor- 
mality tests do not tolerate even small disturbances from normality. Therefore, 
apart from visual assessment of histograms and comparison with normal den- 
sity functions with sample mean and sample variance, we must content our- 
selves with some more rough methods of indicating convergence to the limit 
normal distribution. We mean here computing statistics like sample mean, 
sample skewness and sample kurtosis. Since every normal distribution has the 
skewness equal to zero and kurtosis equal to three, estimators of them based 
on the subsampling sample should tend to those values. The estimator of the 
mean should tend to zero. 

Figure 1 depicts the situation when a(A, z) # 0 and compares the case of 
proven subsampling consistency (left column, A = 0) with that in which we 
cannot say anything about the consistency (right column, A = 4n;/T). The his- 
tograms on the right do not resemble normal distribution at all and become 
more strange as n increases. Moreover, they do not become zero-centered. The 
histograms on the left, though for a small sample have quite high skewness, 
become more normal for large samples. Their mean is very close to zero as well. 
We would like to add that for some choices of periodic function f ,  the histo- 
grams for A =  4n/T were quite normal but never have mean tending to zero. 
Such a performance makes us worry about the consistency in the case when 
a(A, z) f 0 and A f 0. 

Figure 2 depicts the situation when a (A, z) = 0 and compares the case of 
proven subsampling consistency (left column, A = n;) with that in which we 
cannot say anything about the consistency (right column, A = 3). In both cases 
we observe convergence to a normal distribution. Both means behave well, so 
the question is about the variances. Since both frequencies are close to each 
other, the asymptotic variances should be also close. The sample variance for 
A = 3 is a bit smaller but decreases slower. 

Concluding the simulations we may hypothesize that subsampling is not 
consistent for A # 0 for which a(A, z) # 0. However, it may be consistent for 
those values of A for which a(A, z) = 0. If it were true, we would be able to test 
a hypothesis Ho : a (A, z) = 0, as for the test we need the distribution of 6, (A, z) 
under Ho . 

At the end, we would like to provide an interesting application of our 
theoretical result. It enables, by means of quantiles of L,,, (.), to test the problem 

If we reject Ho, it means that with high probability a(n;, z) # 0. It implies that 
n = 2n k/T and T = 2k, so T is an even number. Consequently, we obtain the 
consistent test for evenness of T 
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FIGURE 1. Comparison of subsampling performance for 1 = 0 (left column) and 1 = 4n/T (right 
column). Analytical values of parameters are Re (a (0, 1)) = 0.0890 and Re (a (4n/?: 1)) = 0.0445 

Values of the estimators 

Parts of the figure 

(a) Re(cisoo(O, 1)) = 0.0900 

(b) Re (ciSo0 (47CIT, 1)) = 0.0445 
(c) Re (cilooo (0, 1)) = 0.0875 

(d) Re(dlooo(4n/T, 1)) = 0.0437 
(e) Re(ci7000(0, 1)) = 0.0864 

(0 ~e (87000 (4n/T, 1)) = 0.0426 

Mean 

- 0.0053 
- 0.2975 

0.0092 
-0.3587 

0.0061 

-0.6114 

Variance 

0.0438 
0.1 159 
0.0553 

0.1708 
0.0785 

0.5126 

Skewness 

1.0625 
0.0023 

0.3153 
-0.0014 

0.0798 

- 0.0009 

Kurtosis 

3.8259 
2.3162 
2.6735 

2.1039 
3.0092 

1.7918 
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FIGURE 2. Comparison of subsampling performance for 3, = n (left column) and 3, = 3 (right 
column). Analytical values of parameters are Re (a (n, 1)) = 0 and Re (a (3, 1)) = 0 

Values of the estimators 

Parts of the figure 

(a) Re (n, 1)) = 0.0077 
(b) Re(&500(3, 1)) = -0.0001 
(c) Re (dlooo (n, 1)) = 0.0054 

(d) Re (Blooo (3, 1)) = -0.0001 
(e) Re(a"7000 (n, 1)) = -0.0007 
(f) R e ( ~ i ~ ~ ~ ~ ( 3 ,  1)) = -0.0004 

Mean 

-0.0494 
0.0000 

- 0.0435 
- 0.0093 

0.0049 

0.0061 

Variance 

0.0115 
0.0056 

0.0095 
0.0036 
0.0080 

0.0033 

Skewness 

0.0036 
-0.2910 

0.0182 

-0.1973 
- 0.0032 

0.0079 

Kurtosis 

3.1612 
4.5279 
2.8340 

3.2503 
2.9327 

3.1387 
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5. CONCLUSIONS 

We have presented the classes of PC and PSS time series with related 
statistical problem in time-domain. Since the asymptotic distribution of the 
autocovariance estimator is not applicable in practice, we must look for other 
statistical method to construct confidence intervals for it. We expected that 
a good solution could be subsampling. Unfortunately, the procedure does not 
occur to be universally consistent. Another idea could be to modify the sub- 
sampling procedure (e.g. nonoverlapping blocks), to modify the estimator (e.g. 
lii,, (A, z)l) or other resampling-type methods, for example MBB (moving blocks 
bootstrap). These ideas are under the current research of the author. 
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