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Abstract. Let X be the unique solution started from x0 of the stochas-
tic differential equation dXt = θ(t, Xt)dBt + b(t, Xt)dt with B a standard
Brownian motion. We consider an approximation of the volatility θ(t, Xt),
the drift being considered as a nuisance parameter. The approximation is
based on a discrete time observation of X and we study its rate of conver-
gence as a process. A goodness-of-fit test is also constructed.
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1. INTRODUCTION

Let X be a one-dimensional diffusion process defined by

(1.1) Xt = x0 +
t∫
0

θ(s,Xs)dBs +
t∫
0

b(s,Xs)ds, t ∈ [0, 1],

where x0 ∈ R and B is a standard one-dimensional Brownian motion. Assume
that b and θ are unknown functions and that one observes X at discrete moments
{i/2n : i = 0, . . . , 2n} of the finite time interval [0, 1]. One can ask the following
two natural questions:

1. Is it possible to construct an estimator for the diffusion coefficient?
2. Given a known function ϑ, is it possible to decide if ϑ = θ or not?

These two questions are classical and, in general, to answer the second question
one uses the result of the first one.

Florens-Zmirou [7] was the first to answer the first question. In the case when
θ = θ(x) is a smooth function, a pointwise estimator for θ(x)2 (when the trajec-
tory of the diffusion visits x) based on a discrete approximation of the local time is
proposed. The rate of convergence which was obtained is 2αn, α < 1

3 . When θ has
only Besov smoothness, asymptotically minimax estimators can be constructed us-
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ing wavelet basis (see Hoffmann [11]) and their rate of convergence are 2ns/(1+2s)

(if θ ∈ Bspq).
In the simpler case, when the diffusion coefficient does not depend on Xt

but only on t, Genon-Catalot et al. [8] constructed a non-parametric estimator for
θ = θ(t). More precisely, one observes

Xt = x0 +
t∫
0

θ(s)dBs +
t∫
0

b(s,Xs)ds, t ∈ [0, 1],

and one proceeds in two steps: firstly, one constructs the estimator of the quantity∫ 1

0
h(s)θ(s)2ds (h being any smooth function) given by

(1.2)
2n−1∑

i=0

h

(
i

2n

)
(X(i+1)/2n −Xi/2n)2, n ∈ N,

and, secondly, one recovers the function θ2 by using a wavelets basis. The rate of
convergence which was obtained is 2n/2 (see also Hoffmann [10] for a study in
Besov spaces).

What kind of result can be obtained by using the estimator (1.2) for the setting
(1.1)? The present paper is an attempt to answer this question and we emphasize
that our main interest is to construct a goodness-of-fit test. Precisely, a known func-
tion ϑ being given, we want to decide if ϑ = θ or not. For that, we need some results
on the convergence in law associated with a correct renormalization of (1.2). There
are several works related to this topic: see, for instance, Jacod [12] (unpublished
work), Delattre and Jacod [6], Becker [3], Barndorff-Nielsen and Shephard [2].
However, for the sake of completeness of this paper, we preferred to prove here all
the results that we stated.

Let us then consider (1.1) with unknown functions θ and b. Based on the ob-
servations of X at discrete moments, we infer on θ(t,Xt)2 through the estimation
of the primitive process

(1.3) I(t) :=
t∫
0

θ(s,Xs)2ds, t ∈ [0, 1].

We consider the sequence of estimators given by (1.2) with h = 1[0,t]. Precisely,
we set

(1.4) În(t) :=
[2nt]−1∑

i=0

(X(i+1)/2n −Xi/2n)2, t ∈ [0, 1], n ∈ N.

It is classical that, for each t ­ 0, În(t) converges in probability towards I(t) (see,
for instance, Berman [4]) and one can prove that limn→∞ În = I almost surely
uniformly on [0, 1]. Here, we study the convergence in distribution of În − I as
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a process. In a certain sense, the rate of convergence which we obtain is 2n/2 (see
Corollary 2.1 and Proposition 2.2 below) and, at least from a theoretical point of
view, it suffices to differentiate I(t) to recover the square of the volatility θ(t,Xt).

Let us briefly explain our approach. By means of Girsanov’s theorem, we re-
duce the estimation of the diffusion coefficient of the semimartingale

Xt = x0 +
t∫
0

θ(s,Xs)dBs + (a drift term)

to the estimation of the martingale coefficient of the semimartingale

Yt = x0 +
t∫
0

σ(s,Bs)dBs + (a finite variation term),

with unknown σ linked to θ (the observations are Yi/2n , i = 0, 1, . . . , 2n − 1).
The semimartingale model has, from our point of view, an interest by itself and
our analysis is performed using stochastic calculus. We used similar ideas in Grad-
inaru and Nourdin [9] when studying the convergence at first and second order of
approximations

t∫
0

(
Xs+ε −Xs√

ε

)m

ds

of m-order stochastic integrals (the main difference is that, in the present case, we
are working with sum approximations instead of integral approximations and with
the Skorokhod topology instead of the uniform topology). Although some results
of convergence in law could be obtained by using some of the results in references
which we have already quoted, the proofs given in the present paper maybe bring
out a simple self-contained approach.

We turn now to the second question, which is somehow the novelty of the
present work, that is the attempt to construct goodness-of-fit tests for this prob-
lem. Consider the diffusion X given by (1.1) and let ϑ be a known function.
We introduce a test statistic Tn for testing the hypothesis (H): ϑ2 = θ2 against
(A): ϑ2 6= θ2. We evaluate the type I error probability and we prove that, under
(A), Tn →∞ almost surely, as n→∞ (see Proposition 3.2 below).

As for the case of the diffusion X , we study the goodness-of-fit test problem
linked to Y : if ψ is a known function, we observe the semimartingale ϕ(Bt) with
ϕ unknown, and we test (H̃): ψ(| · |) = ϕ(| · |) against (Ã): ψ(| · |) 6= ϕ(| · |)
(see Proposition 3.1 below). Our method also applies for some cases when ϕ is not
a bijection.

The paper is organised as follows. In the next section, we state the results
concerning the rate of convergence. Section 3 is devoted to the construction of
goodness-of-fit tests. The proofs are given in Section 4.
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2. CONVERGENCE IN DISTRIBUTION OF THE APPROXIMATIONS

2.1. Semimartingale model. Let Y be a semimartingale given by

(2.1) Yt = x0 +
t∫
0

σ(s,Bs)dBs +
t∫
0

Msds, t ∈ [0, 1],

where σ ∈ C1,2([0, 1]× R;R) has bounded derivatives with respect to the second
variable, and M is a continuous adapted process.

We denote by Ĵn and J the processes on [0, 1] given by

(2.2) Ĵn(t) :=
[2nt]−1∑

i=0

(Y(i+1)/2n −Yi/2n)2, n ∈ N, and J(t) :=
t∫
0

σ(s,Bs)2ds,

respectively, and one can prove that, as n → ∞, Ĵn converges towards J , almost
surely uniformly on [0, 1].

All processes will be considered as random elements of the space D([0, 1];R)
of càdlàg real functions on [0, 1] endowed with the Skorokhod topology (see [5],
p. 128).

We can state the following (see also [2], [3] and the unpublished work [12] for
some similar questions):

THEOREM 2.1. As n→∞,

(2.3) 2n/2(Ĵn − J) law−→
√

2
·∫
0

σ(s, β(1)
s )2dβ(2)

s ,

in the Skorokhod topology, where β(1) and β(2) are two independent standard
Brownian motions.

Let us remark that the unknown function σ appears in the limit (2.3). To avoid
this, we point out the following:

PROPOSITION 2.1. Assume that σ 6≡ 0. Set

(2.4) V̂n(t) := 2n
[2nt]−1∑

i=0

(Y(i+1)/2n − Yi/2n)4, t ∈ [0, 1], n ∈ N.

Then we have, for fixed t ∈ (0, 1], as n→∞,

(2.5) 2n/2
(
V̂n(t)

)−1/2(
Ĵn(t)− J(t)

) law−→
√

2
3
N (0, 1).
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2.2. Diffusion model. Let us turn to the study of the strong solution of the
stochastic differential equation (1.1). Here and elsewhere we denote by (Ω,F , P)
the probability space. We assume that θ ∈ C1,2([0, 1]×R;R) has bounded deriva-
tives with respect to the second variable and that b ∈ C1,1([0, 1]×R;R) is bounded
with a bounded derivative with respect to the second variable.

To study the convergence in distribution, we shall assume henceforth that

(2.6) θ is elliptic: inf
(t,x)∈[0,1]×R

|θ(t, x)| > 0

and

(2.7) sup
(t,x)∈[0,1]×R

∣∣∣∣
∂

∂t

x∫
x0

dy

θ(t, y)

∣∣∣∣ <∞.

Clearly, (2.7) is trivially fulfilled if θ does not depend on t. We shall put

(2.8)
g(t, x) :=

x∫
x0

dy

θ(t, y)
, G(t, x) :=

(
t, g(t, x)

)
,

F (t, x) := G−1(t, x) =:
(
t, f(t, x)

)
.

The existence of F is a consequence of the Hadamard–Lévy theorem (see, for
instance, [1], p. 130). We will set B̃t := g(t,Xt) or, equivalently, Xt = f(t, B̃t).
Thanks to Itô’s formula, by (1.1), we can write

B̃t = Bt −
t∫
0

Csds

with Cs := −{ b
θ − ( ∂θ

∂x)/2 + (∂g
∂s )}(s,Xs). By (2.7) we deduce that ∂g/∂s is

bounded on [0, 1] × R and, using (2.6), that b/θ is bounded on [0, 1] × R. Con-
sequently, the Novikov criterion, that is, E

(
exp( 1

2

∫ 1

0
C2

s ds)
)

< ∞, is easily ver-
ified. By applying Girsanov’s theorem, we deduce that B̃ is a Brownian motion
under the probability Q given by

(2.9) dQ = exp
( 1∫

0

Cs dBs − 1
2

1∫
0

C2
s ds

)
dP =: exp(Z)dP.

Hence, we can write

(2.10) dXt = θ(t,Xt)dBt + b(t,Xt)dt = θ
(
t, f(t, B̃t)

)
dB̃t + Mtdt,

where Mt = {[( ∂θ
∂x)/2 − (∂g

∂s )]θ}(t, f(t, B̃t)
)
. Thus X is related, by change of

probability, to Y given by (2.1). Therefore, using Theorem 2.1 and Proposition 2.1,
we obtain (see also [6] for some results concerning the convergence in law):
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COROLLARY 2.1. 1. As n→∞,

(2.11) 2n/2(În − I) law−→
√

2
·∫
0

θ
(
s, f(s, β(1)

s )
)2

dβ(2)
s under Q

in the Skorokhod topology. Here, β(i) (i = 1, 2) are two independent standard
Brownian motions under Q, and f is given by the last inequality in (2.8).

2. Set

(2.12) Ûn(t) := 2n
[2nt]−1∑

i=0

(X(i+1)/2n −Xi/2n)4, t ∈ [0, 1], n ∈ N.

Then we have, for fixed t ∈ (0, 1], as n→∞,

(2.13) 2n/2
(
Ûn(t)

)−1/2(
În(t)− I(t)

) law−→
√

2
3
N (0, 1) under Q.

If we want to use the initial probability P, the following proposition explains
the rate 2n/2 of convergence and allows to construct an asymptotic confidence
interval for I(t), both under P:

PROPOSITION 2.2. 1. Let γ > 1
2 . We have, for fixed t ∈ (0, 1],

(2.14) ∀R > 0 lim
n→∞P

(
2nγ

(
Ûn(t)

)−1/2|În(t)− I(t)| ­ R
)

= 1.

2. Assume that κ > 0 is such that EP(Z2) ¬ κ2 with Z given by (2.9). Let
φκ : [0, 1] → [0, e−κ] be continuous bijection given by φκ(x) = x exp(−κ/

√
x).

We have, for fixed t ∈ (0, 1] and for all η > 0,

(2.15) lim sup
n→∞

P
(
2n/2

(
Ûn(t)

)−1/2|În(t)− I(t)| ­ η
)

¬ φ−1
κ

(
1√
2π

∫
|x|­
√

3/2η

exp
(
− x2

2

)
dx

)
.

3. GOODNESS-OF-FIT TEST

3.1. Semimartingale model. Let us denote by Cb,0 the set of non-constant an-
alytic functions ψ : R → R, with bounded first and second derivatives such that
ψ(0) = 0.

We will consider a semimartingale of the form Yt = ϕ(Bt), t∈ [0, 1], with
ϕ∈Cb,0 unknown: {Yi/2n: i = 0, 1, . . . , [2nt] − 1}. If ψ∈Cb,0 is known, we are
interested by testing the hypothesis (H̃): ϕ(| · |) = ψ(| · |) against the alterna-
tive (Ã): ϕ(| · |) 6= ψ(| · |). More precisely, we study the following two situations:
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ψ is a strictly monotone bijection or ψ verifies ψ′2 = F (ψ), with F a real
C1-function.

Let us remark that if ψ is a strictly monotone bijection, then it is classical
to test if ψ−1(Yt) is a standard Brownian motion. Indeed, it can be performed as
follows: we need to investigate if

(
2n/2ψ−1(Y1/2n), 2n/2

(
ψ−1(Y2/2n)− ψ−1(Y1/2n)

)
, . . . ,

2n/2
(
ψ−1(Y1)− ψ−1(Y1−1/2n)

))

is a sample of the standard Gaussian distribution. Here we propose an alternative
procedure which can be applied even if ψ is not a bijection.

If at least one of the observed values {Yi/2n , i = 0, 1, . . . , [2nt] − 1} lies
outside of the range of ψ, (H̃) is rejected. Otherwise, we set, for t ∈ [0, 1] and
n ∈ N,
(3.1)

Ĵintn(t) :=





1
2n

[2nt]−1∑

i=0

(ψ′ ◦ ψ−1)(Yi/2n)2 if ψ is a strictly monotone bijection,

1
2n

[2nt]−1∑

i=0

F (Yi/2n) if ψ verifies ψ′2 = F (ψ) with F a C1(R;R).

Let us note that if ψ is a strictly monotone bijection verifying at the same time
ψ′2 = F (ψ), then (ψ′ ◦ ψ−1)2 = F and Ĵintn is well defined. An example of
a strictly monotone bijection (respectively, a function verifying ψ′2 = F (ψ)) is
arctanx (respectively, sinx).

Recall that Ĵn is given by (2.2) and V̂n by (2.4).

PROPOSITION 3.1. Introduce the decision statistic:

(3.2) T̃n(t) =

√
3
2
2n/2

(
V̂n(t)

)−1/2|Ĵn(t)− Ĵintn(t)|, t ∈ [0, 1], n ∈ N.

1. Assume that (H̃) holds. Then for all t ∈ (0, 1] :

(3.3) T̃n(t) law−→|N | as n→∞,

where N is a standard Gaussian random variable.
2. Assume that (Ã) holds. Then, for all t ∈ (0, 1] :

(3.4) T̃n(t) a.s.−→∞ as n→∞.
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Figure 1. Observed semimartingale

EXAMPLE 3.1. Let us describe an example of application of this test. All
computations below can be made using, for instance, a Matlab procedure. We
observe n = log2(10 000) values of a path Y given by Figure 1. We note that
Yt ∈ [−1, 1] when t ∈ [0, 1]. Hence, if we suspect that Yt = ϕ(Bt), we are looking
for a function ϕ the range of which is contained in [−1, 1]. For instance, we shall
test (H̃) with the monotone bijection ψ(x) = 2

π arctanx. In this case, we obtain

T̃n(1)(ω) =

√
3
2
2n/2

(
V̂n(1)(ω)

)−1/2|Ĵn(1)(ω)− Ĵintn(1)(ω)| = 36.9889.

Since P(|N | > 36.9889) < 10−2, N ∼ N (0, 1), we can reject (H̃) by using (3.3).
Let us now test (H̃) with ψ(x) = sinx which verifies ψ′2 = F (ψ) with

F (x) = 1− x2. We obtain

T̃n(1)(ω) =

√
3
2
2n/2

(
V̂n(1)(ω)

)−1/2|Ĵn(1)(ω)− Ĵintn(1)(ω)| = 0.6759.

Since P(|N | > 0.6759) = 0.5, we cannot reject (H̃).

3.2. Diffusion model. Let us denote by Cb,± the set of the non-constant ana-
lytic functions ϑ : R→ R, with bounded first and second derivatives, which do not
vanish.

Assume, to simplify, that we observe a diffusion X of the form

(3.5) Xt = x0 +
t∫
0

θ(Xs)dBs +
t∫
0

b(s,Xs)ds, t ∈ [0, 1],

with θ∈Cb,± unknown and b∈C1(R) either known or unknown: {Xi/2n : i =
0, 1, . . . , [2nt]− 1}.
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If ϑ ∈ Cb,± is known, we are interested in testing the hypothesis (H) : θ2 = ϑ2

against the alternative (A) : θ2 6= ϑ2.
We set

(3.6) Îintn(t) := 2−n
[2nt]−1∑

i=0

ϑ(Xi/2n)2, t ∈ [0, 1], n ∈ N,

and we recall that În and Ûn are given by (1.4) and (2.12), respectively.

PROPOSITION 3.2. Introduce the decision statistic Tn given by

(3.7) Tn(t) =

√
3
2
2n/2

(
Ûn(t)

)−1/2|În(t)− Îintn(t)|, t ∈ [0, 1], n ∈ N.

1. Assume that (H) holds. Then, for all η > 0 and for fixed t ∈ (0, 1],

(3.8) lim sup
n→∞

P
(
Tn(t) ­ η

) ¬ φ−1
κ

(
1√
2π

∫
|x|­η

exp
(
− x2

2

)
dx

)
.

2. Assume that (A) holds. Then, for all t ∈ (0, 1],

(3.9) Tn(t) a.s.−→∞ as n→∞.

EXAMPLE 3.2. Let us describe an example of application of this test. All
computations below can be made using again a Matlab procedure. We observe
n = log2(10 000) values of a path X (see Figure 2). Considering the diffusion

Figure 2. Observed diffusion

on the time interval [0, 10] instead of [0, 1] is not a constraint. We test (H) with
ϑ(x) = 2 + cosx, that is, let us inspect that X verifies

X0 = 5 and dXt = (2 + cosXt)dBt − dt, t ∈ [0, 10].
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In this case, we obtain

Tn(10)(ω) =

√
3
2
2n/2

(
Ûn(10)(ω)

)−1/2|În(10)(ω)− Îintn(10)(ω)| = 115.2572

and we have (see (2.9)):

Z =
10∫
0

CsdBs − 1
2

10∫
0

C2
s ds with |Cs| =

∣∣∣∣
1

2 + cos Xs
− sinXs

2

∣∣∣∣ ¬
3
2
.

This implies that EP(Z2) ¬ 82440
32 , and hence we can choose κ = 51. Since

φ−1
κ

(
1√
2π

∫
|x|­115.2572

exp
(
−x2

2

)
dx

)
< 10−2,

we can reject (H).

4. PROOFS

P r o o f o f T h e o r e m 2.1. First, by using a localization argument, it is not
very difficult to prove that the finite variation part of Y does not have any contri-
bution to the limit. Consequently, in the following, we shall suppose that M ≡ 0
in (2.1).

We can write
Ĵn(t)− J(t) = jn(t) + rn(t)

with

jn(t) := 2
[2nt]−1∑

i=0

σ

(
i

2n
, Bi/2n

)2 (i+1)/2n∫
i/2n

dBs

s∫
i/2n

dBu

and

rn(t) := 2
[2nt]−1∑

i=0

((i+1)/2n∫
i/2n

(
σ(s,Bs)−σ

(
i

2n
, Bi/2n

))
dBs

s∫
i/2n

σ

(
i

2n
, Bi/2n

)
dBu

+
(i+1)/2n∫

i/2n

σ(s,Bs)dBs

s∫
i/2n

(
σ(u,Bu)−σ

(
i

2n
, Bi/2n

))
dBu

)
−

t∫
[2nt]/2n

σ(s,Bs)2ds.

By the classical Burkholder–Davis–Gundy inequality and using the fact that σ has
bounded derivatives with respect to the second variable, we can prove that

lim
n→∞E{ sup

t∈[0,1]
|2n/2rn(t)|2} = 0.

Consequently, to obtain the convergence (2.3), it suffices to show that 2n/2jn con-

verges in distribution to
√

2
∫ ·

0
σ(s, β(1)

s )2 dβ
(2)
s , as we can see by the following

classical lemma which is a consequence of Theorem 4.1, p. 25, in [5]:
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LEMMA 4.1. Consider two sequences {Xn: n∈N} and {Yn: n∈N} of ran-
dom elements with values in D([0, 1];R) (or càdlàg real stochastic processes start-

ing from 0). Assume that, as n → ∞, Xn
law−→X and E{supt∈[0,1] |Yn(t)|2} → 0.

Then, as n→∞, Xn + Yn
law−→X .

Let us introduce, for n ∈ N, the process Zn given by

Zn(t) = 21+n/2
[2nt]−1∑

i=0

(i+1)/2n∫
i/2n

dBs

s∫
i/2n

dBu

= 2n/2
[2nt]−1∑

i=0

[
(B(i+1)/2n −Bi/2n)2 − 1

2n

]
, t ∈ [0, 1].

(4.1)

We split the proof of the convergence of 2n/2jn =
∫ ·

0
σ(s,Bs)dZn(s) into several

steps.
(a) Convergence in law in the particular case where σ ≡ 1.
Let {Ni}i∈N be a sequence of independent standard Gaussian random vari-

ables. We have, for all n ∈ N:

2n/2
[2nt]−1∑

i=0

[
(B(i+1)/2n −Bi/2n)2 − 1

2n

]
(law)
= 2−n/2

[2nt]−1∑

i=0

(N2
i − 1).

Then the convergence in law when σ ≡ 1 is an immediate consequence of the
functional central limit theorem.

(b) Convergence in law for any function σ.
(i) We can write Zn(t) = Z̃n(t)−Rn(t), where the martingale Z̃n is given by

Z̃n(t) := 2
t∫
0

dBs

s∫
0

dBufn(s, u)

with

fn(s, u) = 2n/2
2n−1∑

i=0

1[i/2n,(i+1)/2n)(s)1[i/2n,1](u),

and the remainder is defined by

Rn(t) := 21+n/2
t∫

[2nt]/2n

dBs

s∫
[2nt]/2n

dBu.

It is not difficult to show that

lim
n→∞E{ sup

t∈[0,1]
|Rn(t)|2} = 0.
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Again, by Lemma 4.1, it suffices to study the convergence in distribution of Z̃n.
We fix t ∈ [0, 1]. By applying successively Itô’s formula and the stochastic version
of the Fubini theorem (see, for instance, [15], p. 175), the quadratic variation of Z̃n

satisfies

[Z̃n, Z̃n](t) = 8
t∫
0

dBu

u∫
0

dBv

t∫
u

ds fn(s, u) fn(s, v) + 4
t∫
0

ds
s∫
0

du fn(s, u)2.

On the one hand, note that

4
t∫
0

ds
s∫
0

dufn(s, u)2 = 2
[2nt]
2n

+ 21+n

(
t− [2nt]

2n

)2

→ 2t as n→∞.

By the isometry formula, we also have

E
[ t∫

0

dBu

u∫
0

dBv

t∫
u

ds fn(s, u) fn(s, v)
]2

= 22n+1
[2nt]−1∑

i=0

(i+1)/2n∫
i/2n

du
u∫

i/2n

dv
(i+1)/2n∫

u

ds
s∫
u

dw

+22n+1
t∫

[2nt]/2n

du
u∫

[2nt]/2n

dv
t∫
u

ds
s∫
u

dw = O

(
1
2n

)
as n→∞.

Consequently, we deduce that in L2 we have limn→∞[Z̃n, Z̃n](t) = 2 t.
(ii) By using the stochastic version of the Fubini theorem, the covariation

between Z̃n and B satisfies

[Z̃n, B](t) = 21+n/2
( [2nt]−1∑

i=0

(i+1)/2n∫
i/2n

dBu

(i+1)/2n∫
u

ds +
t∫

[2nt]/2n

dBu

t∫
u

ds
)
.

We deduce that

E{[Z̃n, B](t)2} = 2n+2
[ [2nt]−1∑

i=0

(i+1)/2n∫
i/2n

du
((i+1)/2n∫

u

ds
)2

+
t∫

[2nt]/2n

(t− u)2du
]

= O

(
1
2n

)
→ 0 as n→∞.

(iii) With a similar reasoning, we can prove that in L2 we have

lim
n→∞ [Z̃n, B]

(
[Z̃n, Z̃n]−1(t)

)
= 0.
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(iv) Let us denote by βn the Dubins–Schwarz Brownian motion associated
with Z̃n. By steps (i)–(iii) and the asymptotic version of Knight’s theorem (see,
for instance, [15], p. 524), we deduce that, as n → ∞, (B, βn) law−→ (β(1), β(2)),
where β(1) and β(2) are two independent standard Brownian motions. Since in L2

the limit of [Z̃n, Z̃n](t) is 2t, we see that, as n→∞, (B, Z̃n) law−→ (β(1),
√

2β(2)).
Set ι(t) = t, t ∈ [0, 1]. Then (ι, B, Z̃n) law−→ (ι, β(1),

√
2β(2)) as n → ∞ and, by

Lemma 4.1,

(4.2) (ι, B, Zn) law−→ (ι, β(1),
√

2β(2)) as n→∞.

Since σ is a continuous function, we get
(
σ(ι, B)2, Zn

) law−→ (
σ(ι, β(1))2,

√
2β(2)

)
as n→∞. Using the result concerning the convergence in distribution of stochas-
tic integrals (see Jakubowski et al. [13]), we obtain, as n→∞,

2n/2jn =
·∫
0

σ(s, Bs)2 dZn(s) law−→
√

2
·∫
0

σ(s, β(1)
s )2 dβ(2)

s .

Indeed, it suffices to verify the uniform tightness hypothesis of the result in [13],
p. 125: for all t ­ 0, for every predictable process A bounded by 1, and for all
n ∈ N, we have for some constant a

P
(∣∣ t∫

0

As dZn(s)
∣∣ > R

)

¬ 1
R2

E
(
21+n/2

[2nt]−1∑

i=0

Ai/2n

(i+1)/2n∫
i/2n

dBs

s∫
i/2n

dBu

)2 ¬ a

R2
.

Consequently, the proof of (2.3) is complete. ¥

P r o o f o f P r o p o s i t i o n 2.1. We denote by Sn the process given by

Sn(t) = 2n
[2nt]−1∑

i=0

(B(i+1)/2n −Bi/2n)4, t ∈ [0, 1], n ∈ N.

Let us note that, for any t ∈ [0, 1], Sn(t) converges towards 3t, a deterministic
limit, in probability, as n → ∞. Indeed, for fixed t ­ 0, Sn(t) has the same law
as 2−n

∑[2nt]−1
i=0 N4

i with {Ni}i∈N a sequence of independent standard Gaussian
random variables. The convergence is then obtained by the law of large numbers.
One can also prove that Sn converges towards 3ι, in probability uniformly on [0, 1].
We deduce, by using (4.2), that, as n→∞,

(ι, B, Zn, Sn) law−→ (ι, β(1),
√

2β(2), 3 ι),
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with β(1) and β(2) again two independent standard Brownian motions and ι(t) = t,
t ∈ [0, 1]. Moreover, by a similar reasoning to that in step (iv) of the proof of
Theorem 2.1, for fixed t ∈ [0, 1], we obtain firstly, as n→∞,

( t∫
0

σ(s,Bs)2 dZn(s),
t∫
0

σ(s,Bs)4 dSn(s)
)

law−→ (√
2

t∫
0

σ(s, β(1)
s )2dβ(2)

s , 3
t∫
0

σ(s, β(1)
s )4ds

)

and secondly, as n→∞,

(
2n/2

(
Ĵn(t)− J(t)

)
, V̂n(t)

)
law−→(√

2
t∫
0

σ(s, β(1)
s )2dβ(2)

s , 3
t∫
0

σ(s, β(1)
s )4ds

)
.

Finally, since the function (x, y) 7→ x/
√

y is continuous on R × R∗+, we deduce
that, as n→∞,

2n/2
(
V̂n(t)

)−1/2 (
Ĵn(t)− J(t)

) law−→
√

2
3

∫ t

0
σ(s, β(1)

s )2dβ
(2)
s

( ∫ t

0
σ(s, β(1)

s )4ds
)1/2

.

By the independence between β(1) and β(2), it is easy to see that, for any fixed
t ∈ (0, 1], √

2
3

∫ t

0
σ(s, β(1)

s )2dβ
(2)
s

( ∫ t

0
σ(s, β(1)

s )4ds
)1/2

law=

√
2
3
N (0, 1).

Thus the proof of (2.5) is complete. ¥

P r o o f o f P r o p o s i t i o n 2.2. We begin by stating the following:

LEMMA 4.2. Let φκ be as in Proposition 2.2. We have, for any set A ∈ F ,

(4.3) Q(A) ­ φκ

(
P(A)

)
or, equivalently, P(A) ¬ φ−1

κ

(
Q(A)

)
.

In particular, if (Am) is a sequence of sets inF such that Q(Am)→ 0 (respectively,
Q(Am)→ 1), then P(Am)→ 0 (respectively, P(Am)→ 1) as m→∞.

Let us complete the proof of Proposition 2.2. We fix t ∈ (0, 1] and let R > 0.
We can write, for all n0 ∈ N and n ­ n0,

Q
(
2nγ

(
Ûn(t)

)−1/2|În(t)− I(t)| ­ R
)

­ Q
(

2n/2
(
Ûn(t)

)−1/2|În(t)− I(t)| ­ R

2n0(γ−1/2)

)

→ Q
(√

2
3
|N | ­ R

2n0(γ−1/2)

)
→ 1 as n→∞.
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Here and below we denote by N a standard Gaussian random variable under Q.
Consequently, by Lemma 4.2, we obtain the first part of Proposition 2.2. For the
second part, using successively Lemma 4.2 and (2.13), we see that

lim sup
n→∞

P
((

Ûn(t)
)−1/2|În(t)− I(t)| ­ β

2n/2

)

¬ lim sup
n→∞

φ−1
κ

(
Q

((
Ûn(t)

)−1/2|În(t)− I(t)| ­ β

2n/2

))

= φ−1
κ

(
Q(

√
2/3 |N | ­ β)

)
. ¥

P r o o f o f L e m m a 4.2. We have, using the Jensen and Cauchy–Schwarz
inequalities,

Q(A) = EP(eZ1A) ­ exp
[

1
P(A)

∫
A

Z(ω)dP(ω)
]
P(A)

= exp
[
EP(Z1A)

P(A)

]
P(A) ­ φκ

(
P(A)

)
. ¥

P r o o f o f P r o p o s i t i o n 3.1. Let us first prove (3.3). Assume that (H̃)
holds and fix t ∈ [0, 1]. We then have

Ĵn(t) =
[2nt]−1∑

i=0

(
ψ(B(i+1)/2n)− ψ(Bi/2n)

)2

=
[2nt]−1∑

i=0

ψ′(Bi/2n)2(B(i+1)/2n −Bi/2n)2

+(ψ′ψ′′)(Bi/2n)(B(i+1)/2n −Bi/2n)3 + rn(t)

with
sup
n­1

E {|2nrn(t)|} < +∞.

Moreover, we also have

E
[ [2nt]−1∑

i=0

(ψ′ψ′′)(Bi/2n)(B(i+1)/2n −Bi/2n)3
]2

=
[2nt]−1∑

i,j=0

E[(ψ′ψ′′)(Bi/2n)(ψ′ψ′′)(Bj/2n)(B(i+1)/2n −Bi/2n)3

×(B(j+1)/2n −Bj/2n)3]

= 15 · 2−3n
[2nt]−1∑

i=0

E[(ψ′ψ′′)(Bi/2n)2] ¬ 15 · 2−2n‖ψ′‖2∞‖ψ′′‖2∞.
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Consequently,

Ĵn(t)− Ĵintn(t) =
[2nt]−1∑

i=0

ψ′(Bi/2n)2
[
(B(i+1)/2n −Bi/2n)2 − 1

2n

]
+ r̃n(t)

with
sup
n­1

E {|2nr̃n(t)|} < +∞.

Finally, we can complete the proof of (3.3) as in the proof of Theorem 2.1.
Now, let us prove (3.4) by considering the two situations (i) and (ii).
(i) The case when ψ is a monotone bijection.
We have, for fixed t ∈ (0, 1],

|Ĵn(t)− Ĵintn(t)| a.s.−→ ∣∣ t∫
0

(
ϕ′(Bu)2 − (ψ′ ◦ ψ−1 ◦ ϕ)(Bu)2

)
du

∣∣ as n→∞.

Assume that

P
( t∫

0

(
ϕ′(Bu)2 − (ψ′ ◦ ψ−1 ◦ ϕ)(Bu)2

)
du = 0

)
> 0.

It follows that the law of the random variable
∫ t

0

(
ϕ′(Bu)2−(ψ′◦ψ−1◦ϕ)(Bu)2

)
du

is not absolutely continuous with respect to the Lebesgue measure. At this level,
we need the following:

LEMMA 4.3. Let h be a real analytic function and let T ∈ (0, 1]. The law of∫ T

0
h(Bu)du is absolutely continuous with respect to the Lebesgue measure if and

only if h is not a constant funtion.

Admit this result (the proof of which is postponed to the end of this section).
We deduce that ϕ′2 − (ψ′ ◦ ψ−1 ◦ ϕ)2 = c, c ∈ R. Moreover, necessarily c = 0
because

0 < P
( t∫

0

(
ϕ′(Bu)2 − (ψ′ ◦ ψ−1 ◦ ϕ)(Bu)2

)
du = 0

)
= P(c t = 0).

Consequently, ϕ′2 = (ψ′ ◦ ψ−1 ◦ ϕ)2. By a connectedness argument, we obtain
ϕ′ = εψ′ ◦ψ−1 ◦ϕ with ε ∈ {±1}. Then ϕ is one-to-one and we have ϕ′ ◦ϕ−1 =
εψ′ ◦ ψ−1 or, equivalently, (ϕ−1)′ = ε(ψ−1)′. We finally get ϕ−1(x) = ε ψ−1(x)
for all x ∈ R or, equivalently, ϕ(x) = ψ(εx) for all x ∈ R. This is a contradiction
to (Ã). Consequently, almost surely

∫ t

0

(
ϕ′(Bu)2 − (ψ′ ◦ ψ−1 ◦ ϕ)(Bu)2

)
du does

not vanish and (3.4) holds.
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(ii) The case when ψ′2 = F (ψ).
In this case,

|Ĵn(t)− Ĵintn(t)| a.s.−→ ∣∣ t∫
0

(
ϕ′(Bu)2 − F (ϕ)(Bu)

)
du

∣∣ as n→∞.

Assume that

P
( t∫

0

(
ϕ′(Bu)2 − F (ϕ)(Bu)

)
du = 0

)
> 0.

Again, it follows that the law of the random variable
∫ t

0

(
ϕ′(Bu)2−F (ϕ)(Bu)

)
du

is not absolutely continuous with respect to the Lebesgue measure. Again, using
Lemma 4.3, we obtain ϕ′2 = F (ϕ), and then 2ϕ′ϕ′′ = ϕ′ F ′(ϕ). On the one hand,
by real analyticity of ϕ, the set {x : ϕ′(x) 6= 0} is dense in R and it allows us to
simplify: 2ϕ′′ = F ′(ϕ). On the other hand, we have ϕ′2(0) = F (0) = ψ′2(0) and
ϕ(0) = ψ(0). By uniqueness of the Cauchy problem, we deduce that ϕ(| · |) =
ψ(| · |), which is a contradiction to (Ã). ¥

P r o o f o f P r o p o s i t i o n 3.2. If we assume that (H) holds, then (3.8) is
a consequence of the first point of Proposition 3.1 and Lemma 4.2. Assume that
(A) holds. We have, for fixed t ∈ (0, 1],

|În(t)− Îintn(t)| a.s.−→ ∣∣ t∫
0

(
θ(Xu)2 − ϑ(Xu)2

)
du

∣∣ as n→∞.

Assume that

P
( t∫

0

(
θ(Xu)2 − ϑ(Xu)2

)
du = 0

)
> 0.

Once more, it follows that the law of the random variable
∫ t

0

(
θ(Xu)2−ϑ(Xu)2

)
du

is not absolutely continuous with respect to the Lebesgue measure. We need
a similar result to Lemma 4.3:

LEMMA 4.4. Let h be a real analytic function and let T ∈ (0, 1]. The law of∫ T

0
h(Xu)du is absolutely continuous with respect to the Lebesgue measure if and

only if h is not a constant function.

Using this result, we deduce that ϑ2 − θ2 = c, c ∈ R. Moreover, necessarily
c = 0 because

0 < P
( t∫

0

(
θ(Xu)2 − ϑ(Xu)2

)
du = 0

)
= P(c t = 0).

This is a contradiction to (A). ¥
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P r o o f o f L e m m a s 4.3 a n d 4.4. We use the Malliavin calculus. By
Theorem 2.1.3 in [14], p. 87, we know that if F lies in the Malliavin space D1,2

and if
∫ T

0
(DtF )2dt > 0 almost surely, then the law of F is absolutely continuous

with respect to the Lebesgue measure on R.
Firstly, if F =

∫ T

0
h(Bu)du, then DtF =

∫ T

0
Dt

(
h(Bu)

)
du =

∫ T

t
h′(Bu)du.

We have
P(∀t, DtF = 0) = P

(∀t, h′(Bt) = 0
)
.

If we assume P
(∀t, h′(Bt) = 0

)
> 0, then, in particular, P

(
h′(BT ) = 0

)
> 0.

Since h is analytic and the random variable BT is absolutely continuous with re-
spect to the Lebesgue measure, we deduce that h′ ≡ 0. The assertion of Lem-
ma 4.3 follows easily.

Secondly, if F =
∫ T

0
h(Xu)du with X given by (3.5), then

DtF =
T∫
0

Dt

(
h(Xu)

)
du

= θ(Xt)
T∫
t

h′(Xu) exp
[ u∫

0

θ′(Xv)dBv +
u∫
0

(
b′ − 1

2
θ′2

)
(Xv)dv

]
du

and the assertion of Lemma 4.4 follows as previously. ¥
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