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Abstract. In the paper we prove the lower bound estimate λD
2 −λD

1 ­
c(λD

1 )−d/α(diam D)−d−α for the spectral gap of the Dirichlet fractional
Laplacian (−(−∆)α/2) on an arbitrary bounded open set D ⊆ Rd.
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1. INTRODUCTION AND MAIN RESULT

Let {X(t) : t ­ 0} denote the d-dimensional isotropic stable process of
index α ∈ (0, 2), i.e. the rotation-invariant Lévy process with Fourier transform
E0 exp

( − i〈X(t), z〉) = exp(−t|z|α). For α = 2 this reduces to the Brownian
motion process B(t), which, however, will not be considered below. Throughout
this article it is assumed that d ­ 1 and D ⊂ Rd is an arbitrary bounded open set.

Let PD
t denote the transition semigroup of X(t) killed upon exiting D. It

is known (see e.g. [10]) that there exists a complete orthonormal sequence ϕD
n ∈

L2(D) of eigenfunctions of PD
t and a nondecreasing sequence λD

n of correspond-
ing eigenvalues, i.e. PD

t ϕD
n = exp(−λD

n t)ϕD
n . The ground state eigenvalue λD

1 is
positive and simple. The corresponding ground state eigenfunction ϕD

1 is positive
on D. Various estimates of the spectral gap λD

2 −λD
1 have been proved for convex

D, some of which are discussed below. The result of this paper concerns arbitrary
bounded open sets and follows from a standard estimate of the supremum norm of
ϕD

1 and a variational formula for λD
2 − λD

1 .

THEOREM 1.1. There is a constant c = c(d, α) such that

(1.1) λD
2 − λD

1 ­
c

(λD
1 )d/α(diamD)d+α

.
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The constant c is given by the explicit formula

c =
2α+1(d/α)d/αΓ

(
(d + 2)/2

)
Γ
(
(d + α)/2

)

πd−1 ed/α |Γ(−α/2)|Γ(
(d + α)/α

) .

It is worth noting that without further assumptions on the domain D the ex-
ponent d + α in the estimate (1.1) cannot be improved. This remark will later be
verified in Example 2.1.

Observe that no result of this type holds for the Brownian motion B(t), even
when only connected D are considered. Indeed, consider Dε = B(x0, 1 + ε) ∪
B(−x0, 1 + ε), where |x0| = 1. One can prove that two least eigenvalues of the
semigroup of B(t) killed upon exiting Dε both tend to the ground state eigenvalue
of a unit ball for B(t) as ε→ 0.

The following result is a standard one and may be used together with Theo-
rem 1.1 to obtain numerical estimates of the spectral gap.

PROPOSITION 1.1 (cf. [3], Corollary 2.2). Suppose that B(x, r) ⊆ D. Then

(1.2) λD
1 ¬

α (α + d/2)
√

π Γ(α/2) Γ(α + d/2)
(d + α) Γ

(
(1 + α)/2

)
Γ(d/2)

r−α .

For example, for α = 1 we obtain λD
2 − λD

1 ­ 0.00246 for the unit disk in
R2, and λD

2 − λD
1 ­ 0.00174 for a unit square.

Let us briefly recall some known estimates of the spectral gap. If D is a con-
vex planar domain symmetric about both coordinate axes, then the spectral gap is
greater than a constant multiple of (diamD)−2. Precise asymptotics of λD

2 − λD
1

are also known for rectangles; see [11], Theorems 1.2 and 1.4.
From Example 5.1 in [9] it follows that the spectral gap for a convex and

bounded domain D is not less than 1
2 (λ̃2)α/2 − (λ̃1)α/2, where (−λ̃n) is the nth

eigenvalue of the Dirichlet Laplacian on D. However, this may provide a non-
negative lower bound only for small d and large α. Indeed, by [14] and [15], we
have λ̃2 ¬ (1 + 4/d)λ̃1 (a better estimate, the so-called Payne–Pólya–Weinberger
conjecture, is proved in [1]), so if d ­ 4 or α < 1, the obtained lower bound is
negative.

Theorem 1.1 provides an estimate of the spectral gap for arbitrary open and
bounded sets, extending earlier results and demonstrating the difference between
classical and “fractional” potential theory. Its proof avoids most of technical diffi-
culties of [6] and [11].

The interested reader is referred to [4], [5], [6] and [11] for a more detailed
introduction to the topic, and for many open problems concerning the shape of the
ground state eigenfunction and the spectral gap for symmetric stable processes.
More information on isotropic stable process can be found e.g. in [7], [8] and [13].
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2. PROOF OF THE RESULTS

Denote by pD
t the transition density of X(t) killed upon exiting D. Let pt be

the (translation invariant) transition density of X(t).

PROPOSITION 2.1. For all open and bounded sets D,

(2.1) supϕD
1 ¬

√√√√πd/2−1ed/αΓ
(
(d + α)/α

)

2(d/α)d/αΓ
(
(d + 2)/2

) (λD
1 )d/(2α) .

P r o o f. Let t = d/(2α λD
1 ). By the Cauchy–Schwarz inequality and Plan-

cherel’s theorem, and using ‖ϕD
1 ‖2 = 1, pD

t (x, y) ¬ pt(x− y), we obtain

ϕD
1 (x) = ed/(2α)

∫
pD

t (x, y) ϕD
1 (y) dy ¬ ed/(2α)

√∫ (
pt(x− y)

)2
dy

= ed/(2α)

√
1
2π

∫
exp(−2t|z|α) dz =

√√√√πd/2−1 ed/α Γ
(
(d + α)/α

)

2Γ
(
(d + 2)/2

)
(2t)d/α

. ¥

A similar argument was sketched to the author by Bañuelos (cf. [2]).

P r o o f o f T h e o r e m 1.1. The spectral gap is given by the variational for-
mula (see [11], Proposition 1.1)

λD
2 − λD

1 = C inf
f∈F

∫∫ (
f(x)− f(y)

)2

|x− y|d+α
ϕD

1 (x) ϕD
1 (y) dx dy ,

F =
{

f :
∫ (

f(x)ϕD
1 (x)

)2
dx = 1 ,

∫
f(x)

(
ϕD

1 (x)
)2

dx = 0
}

,

where C = 2α−1π−d/2Γ
(
(d + α)/2

)|Γ(−α/2)|−1. In addition, the infimum is
attained for f = ϕD

2 /ϕD
1 .

For simplicity, let us put R = diamD. Let f = ϕD
2 /ϕD

1 in the variational
formula. Since |x− y| ¬ R and ϕD

1 (z) ¬M = supϕD
1 , we have

λD
2 − λD

1 ­
C

Rd+α M2

∫∫ (
ϕD

2 (x)
ϕD

1 (x)
− ϕD

2 (y)
ϕD

1 (y)

)2 (
ϕD

1 (x)ϕD
1 (y)

)2
dx dy.

By the properties ‖ϕD
1 ‖2 = ‖ϕD

2 ‖2 = 1 and
〈
ϕD

1 , ϕD
2

〉
= 0, the double integral

equals 2, and hence

λD
2 − λD

1 ­
2C

Rd+α M2
.

An application of Proposition 2.1 completes the proof. ¥
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EXAMPLE 2.1. Let us consider the set D = B(−a, 1) ∪B(a, 1), where a =
(r, 0, . . . , 0) and r > 2. Since D is invariant under reflection in the origin, so is ϕD

1 .
By the variational formula with f = 1B(a,1) − 1B(−a,1) and by Proposition 2.1,

λD
2 − λD

1 ¬
∫

B(−a,1)

∫
B(a,1)

8C

rd+α
ϕD

1 (x) ϕD
1 (y) dx dy ¬ C ′ (λD

1 )d/α r−d−α.

The constant C ′ depends only on d and α, and λD
1 does not exceed the ground

state eigenvalue of the unit ball (recall that λD
1 is a decreasing function of D). We

conclude that in this case we have

c′(α, d)
(λD

1 )d/α(diamD)d+α
¬ λD

2 − λD
1 ¬

c′′(α, d)
(λD

1 )d/α(diamD)d+α
.

This implies that the degree of the estimate (1.1) cannot be improved, justifying
the note following Theorem 1.1.

Let
(− (−∆)α/2

)
denote the generator of X(t) and sB(x,r)(y) = Ey τB(x,r),

where τD is the first exit time from D. Then (cf. [12])

sB(x,r)(y) =
21−α Γ(d/2)

α Γ
(
(d + α)/2

)
Γ(α/2)

(r2 − |x− y|2)α/2, y ∈ B(x, r).

It is known that (−∆)α/2sB(x,r)(y) = 1 for all y ∈ B(x, r).

P r o o f o f P r o p o s i t i o n 1.1. Observe that λD
1 ‖f‖22 ¬ 〈(−∆)α/2f, f〉

for any f ∈ L2(D). Let f = sB(x,r). The explicit formula for sB(x,r) and integra-
tion in spherical coordinates yield

λD
1

r∫
0

td−1 (r2− t2)α dt ¬ 2α−1 α Γ
(
(d + α)/2

)
Γ(α/2)

Γ(d/2)

r∫
0

td−1 (r2− t2)α/2 dt .

By letting s = t2/r2 we obtain beta integrals. Thus the estimate (1.2) holds true. ¥
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