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Abstract. In this note, we are interested in the regularity in the sense
of total variation of the joint laws of multiple stable stochastic integrals.
Namely, we show that the convergence

L`Id1 (f
n
1 ), . . . , Idp (f

n
p )
´ var−→ L`Id1 (f1), . . . , Idp (fp)

´
as n→ +∞

holds true as long as each kernel fn
i converges when n→+∞ to fi in

the Lorentz-type space Lα(log+)di−1([0, 1]di ) for 1 ¬ i ¬ p. This result
generalizes [4] from the one-dimensional case to the joint law case. It gen-
eralizes also [6] from the Wiener–Itô setting to the stable setting and [5] in
the study of joint law of multiple stable integrals.
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1. INTRODUCTION

In this paper, we deal with the regularity of the joint laws of multiple stable
integrals (MSIs)

(1.1) Id(f) =
∫

[0,1]d
fdMd

with respect to their integrand f . Here and in the sequel, M is an α-stable ran-
dom measure on

(
[0, 1],B([0, 1])

)
defined for 0 < α < 2 on a probability space

(Ω,F ,P):

M(A) L= Sα

(
λ(A)1/α,

∫
A

βdλ

λ(A)
, 0

)
, A ∈ B([0, 1]),

where λ is the Lebesgue measure and β : [0, 1]→ [−1, 1] is the skewness intensity
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of M (see Samorodnitsky and Taqqu [14], Section 3). Moreover, for α ­ 1, the
measure M is assumed to be symmetric (that is, β = 0).

The MSIs are a generalization of multiple Wiener–Itô integrals (MWIs).
A broad literature is devoted to the study of MWIs and it is natural to investigate
which properties of MWIs remain true in the stable case.

The MSI in (1.1) is defined for kernel f in a Lorentz-type space:

f ∈ Lα(log+)d−1([0, 1]d) :=
{
f : [0, 1]d → R

∣∣ ∫
[0,1]d
|f |α(1+ log+ |f |)d−1 dλd

}
,

where log+ x := log(x∨1). The main feature of MSI is given by the representation
theorem which gives an insight into the discrete structure of MSI. It shows that
Id(f) can be represented in law by a multiple LePage-type series

(1.2) Sd(f) = Cd/α
α

∑

i1,...,id>0

γi1 . . . γidΓ
−1/α
i1

. . .Γ−1/α
id

f (Vi1 , . . . , Vid),

where Cα =
( ∫∞

0
x−α sinx dx

)−1
is a normalization factor, (Γi)i>0 is the se-

quence of arrival times of a standard Poisson process and (Vi, γi)i>0 are indepen-
dent and identically distributed random vectors with Vi uniformly distributed on
[0, 1] and γi = ±1 with conditional laws

P(γi = −1 | Vi) =
1− β(Vi)

2
, P(γi = +1 | Vi) =

1 + β(Vi)
2

.

Moreover, the sequences (Γi)i>0 and (Vi, γi)i>0 are independent.
The representation theorem shows that MSIs are also related to random mul-

tilinear forms (see [10]). For a complete account on the construction of MSI, we
refer to [3] and references therein. The laws of MSIs have been studied by several
authors. We briefly review some results on the law of MSIs.

In [13], the tail of Id(f) is expressed in terms of f .
In [12], the regularity of the sample path of a process defined by an integral

like in (1.1) is related to the smoothness of the kernel.
In [11], the independence of MSIs is studied in terms of the kernels, general-

izing the MWI case of [15].
In [5], the existence of the densities for the joint laws of MSIs is studied,

generalizing the MWI case of [7].
In this article, we go further in the study of the joint laws of MSIs than in [5]

and we study their regularity in the sense of total variation norm. More precisely,
given d1, . . . , dp, the dimensions of p MSIs, we study the convergence in variation
of the joint laws
(1.3)

(
Id1(f

n
1 ), . . . , Idp(f

n
p )

)

for integrands
(1.4)

fn
1 → f1 in Lα(log+)d1−1([0, 1]d1), . . . , fn

p → fp in Lα(log+)dp−1([0, 1]dp).
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This is a generalization of [4] which deals with one-dimensional law of MSIs
(p = 1 in our setting). This is also a generalization of [6] where the convergence
in variation of joint laws is investigated for MWIs (α = 2 in our setting). In this
paper, we deal with arbitrary p ∈ N∗ and arbitrary α ∈ (0, 2).

Moreover, since the densities of the joint laws of MSIs exist (under rather
broad conditions, see [5]), the convergence in variation of the law states also the
convergence of the densities in L1(Rd).

The paper is organized as follows. In Section 2, we start giving some notation
already used in [5]; they will be applied all along this article. Next, we state the
convergence result in Theorem 2.1. The sequel is devoted to the proof of Theo-
rem 2.1. The problem is first reduced in Sections 3 and 4. In Section 5, we use the
method of superstructure to reduce to the study of finite-dimensional functionals.
Finally, in Section 6, the convergence in variation of these functionals is shown
using the results of convergence in variation for smooth image-measures from [1]
(see Proposition 2.1).

Note that the one-dimensional argument used in [4] (which states the one-
dimensional counterpart of Theorem 2.1) cannot be generalized in a multidimen-
sional setting (at least easily). Actually, the proof of Theorem 2.1 relies on argu-
ments already used in [6] and [5]. But this is not a simple rewriting of these argu-
ments. Indeed, they have to be merged together: on the one hand, the method of
stratification used in [5] is not sufficient to yield a convergence in variation, instead
we use the method of superstructure, on the other hand, the argument in [6] relies
on Gaussian analysis which has to be replaced by stable considerations. Moreover,
new difficulties appear in the implementation of these merged arguments.

In the sequel a.s. stands for almost surely, a.e. for almost everywhere, i.i.d. for
independent and identically distributed, := means a definition, C is a finite and
positive generic constant, µA is the restriction to a measurable set A of a measure
µ, ‖ν‖ is the total variation of a signed measure ν, var−→ stands for the convergence

of variation, P−→ for the convergence in probability P, and bold characters are used
for multi-indicial notation.

2. CONVERGENCE IN VARIATION OF JOINT LAWS

In this study, we shall use the same background as in [5]. We begin by recalling
the notation of [5] that will be used all along this article:

for i = 1, . . . , p, Ni = d1 + . . . + di, N = Np;
ai = (ai

0, . . . , a
i
p) ∈ Np+1 a (p + 1)-partition of di = |ai| = ai

0 + . . . + ai
p;

a = (a1, . . . ,ap) ∈ (Np+1)p;
Ma =(ai

j)1¬i,j¬p a p-square matrix with

di =
p∑

k=0

ai
k for 1 ¬ i ¬ p and bk =

p∑

i=1

ai
k for 0 ¬ k ¬ p;
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for b = (b1, . . . , bp) ∈ Np:

E(b) =
{
a = (a1, . . . ,ap)

∣∣ ai
1 + . . . + ai

p = di,
p∑

i=1

ai
k = bk, k = 1, . . . , p

}
;

σa the permutation of {1, . . . , N} that sends for each i, k

j =
k−1∑

u=1

bu +
i−1∑

s=1

as
k + l, l = 1, . . . , ai

k,

to
σa(j) =

i−1∑

v=1

dv +
k−1∑

s=1

ai
s + l;

Ua : RN −→ RN associated with σa by

Ua(t1, . . . , tN ) = (tσa(1), . . . , tσa(N));

Πb1,...,bd
the subgroup of ΠN consisting of permutations preserving the fol-

lowing “b-blocks”: (1, . . . , b1), (b1 +1, . . . , b1 + b2), . . . , (b1 + b2 + . . .+ bp−1 +
1, . . . , b1 + b2 + . . . + bp = N):

Sb1,...,bd
φb(t) =

b1! . . . bd!
N !

∑

σ∈Πb1,...,bd

∑

a∈E(b)

p∏
i=1

di!
ai

0! . . . ai
p!

detMa φ
(
Ua(t)

)
,

where φ(t) = φ(t1, . . . , tN ) = f1(t1, . . . , tN1) . . . fp(tNp−1+1, . . . , tNp); note that
the function Sb1,...,bd

φb is symmetric in each b-block.
The main result of this paper is:

THEOREM 2.1. Let fn
1 , . . . , fn

p be kernels converging to f1, . . . , fp, respec-
tively, as in (1.4). Suppose moreover that the limit functions f1, . . . , fp satisfy the
following hypothesis:

(H)
{

Sb1,...,bd
φb 6= 0 a.e. on [0, 1]N

for some b = (b1, . . . , bp) ∈ (N∗)p with |b| = N = d1 + . . . + dp.

Then L(
Id1(f

n
1 ), . . . , Idp(f

n
p )

) var−→ L(
Id1(f1), . . . , Idp(fp)

)
when n→ +∞.

Roughly speaking, (H) is a non-degeneracy condition dealing with how the
fi’s are overlapped. The same remark and the same examples as in [5] apply to
condition (H). In particular, we stress on that this condition is optimal in several
examples and coincides with the condition for the same convergence for joint laws
of MWIs; see [6]. For instance:

for p = 1 and d1 = d, (H) is satisfied with b = d if f 6= 0 a.e.;
for p > 0 and d1 = . . . = dp = 1, (H) is satisfied with b = (1, 1) if

det
{(

fi(tj)
)
1¬i,j¬p

} 6≡ 0 a.e.;
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for p = 2 and d1 = d2 = 2, (H) is satisfied with b = (2, 2) if f1 and f2 are
not proportional a.e.

The global scheme of the proof is the following. First, we explain how to
reduce the problem in Section 3 (see (3.5)). Using the representation of stable in-
tegrals by LePage series, we introduce on the Skorokhod space some related func-
tionals to be studied (see (3.2)). Next, approximating and localizing the problem in
Section 4, we use the method of superstructure in Section 5 where the main point
is to study the convergence in variation of measures under finite-dimensional map-
pings (see (5.9)). This is finally done in Section 6 with the following result from
[1] and the study of some related coefficients (see (6.2)).

PROPOSITION 2.1 (Corollary 4 in [1]). Let Fj , F ∈ W p,1
loc (Rn,Rn), where

p ­ n, and let the mappings Fj converge to F with respect to the Sobolev norm
‖ · ‖p,1 on every ball. Assume that E ⊂ {det DF 6= 0} is a set of finite Lebesgue
measure. Then λ|EF−1

j
var−→ λ|EF−1.

3. REDUCTION OF THE PROBLEM

In this section, we describe the arguments used in [3] and [5] to reduce the
study of the convergence in variation of laws as in (1.3).

Representation and stable stuff. Like in [5], we first reduce the study to ran-
dom multiple LePage series. From the representation theorem ([3], Theorem 3.2),
we have as in (1.2) the following equality of joint laws:

(3.1)
(
Sd1(f1), . . . , Sdp(fp)

) L= (
Id1(f1), . . . , Idp(fp)

)
.

Moreover, we have from [3], Sections 4.1.2 and 4.2.3, the following:

PROPOSITION 3.1. Let
(
Id1(f

n
1 ), . . . , Idp(f

n
p )

)
be a vector of MSIs with ker-

nels fn
1 , . . . , fn

p converging as in (1.4). Then, when n→ +∞, we have

(
Id1(f

n
1 ), . . . , Idp(f

n
p )

) P−→ (
Id1(f1), . . . , Idp(fp)

)
.

By (3.1), we shall actually study the joint law of
(
Sd1(f

n
1 ), . . . , Sdp(f

n
p )

)
. For

x in the Skorokhod space D (the space of càdlàg functions on [0, 1]), let δx(t) be
the jump of x at t and let (ti)i>0 be the list of its jump times. We consider the
multidimensional functional F = (F1, . . . , Fp) with Fi : D −→ R given by

(3.2) Fi(x) =
∑

t1,...,tdi

δx(t1) . . . δx(tdi) fi(t1, . . . , tdi)

whenever the multiple series is convergent; otherwise Fi(x) = 0.
In the sequel, we shall also consider the stable standard process η given by

ηt = M([0, t]), t ∈ [0, 1].
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The sample paths of η live in D; we denote its law by P . By the representation
theorem (in a one-dimensional case) we have

ηt =
∫

[0,1]

1[0,t] dM
L= C1/α

α

∑

i>0

γiΓi
−1/α 1[0,t](Vi)

from which the following interpretations come:
Vi, i > 0, are the jump times of the stable process η;
C

1/α
α Γ−1/α

i is the modulus of the jump at Vi, decreasingly ordered;
γi indicates the direction of the jump.

We deduce

Fi

(
η·(ω)

)
= Cdi/α

α

∑

k1,...,kdi
>0

(γk1Γ
−1/α
k1

) . . . (γkdi
Γ−1/α

kdi
) fi(Vk1 , . . . , Vkdi

)

= Sdi(fi)(ω),

so that
F (η) L=

(
Sd1(f1), . . . , Sdp(fp)

)
.

We define also Fn from (fn
1 , . . . , fn

p ) like F from (f1, . . . , fp) in (3.2). The con-
vergence in variation of the law of (1.3) actually rewrites, in our notation:

(3.3) P (Fn)−1 var−→ PF−1 as n→ +∞.

In the sequel, we shall use the following result which is Proposition 3.1 written
in terms of the functionals related to the corresponding MSIs.

PROPOSITION 3.2. Let fn
1 , . . . , fn

p be converging kernels as in (1.4). Then,
with the previous notation, we have

Fn P−→ F as n→ +∞.

Approximation. This procedure consists in the following straightforward
result:

PROPOSITION 3.3 (Approximation). In order to prove (3.3), it is enough to
see that for all ε > 0 there is some measurable setD(ε) inD with P

(
D(ε)

)
> 1−ε

and

(3.4) PD(ε)(F
n)−1 var−→ PD(ε)F

−1.

P r o o f. We have

‖P (Fn)−1 − PF−1‖
¬ ‖P (Fn)−1 − PD(ε)(F

n)−1‖+ ‖PD(ε)(F
n)−1 − PD(ε)F

−1‖
+‖PD(ε)F

−1 − PF−1‖
¬ 2P

(
D(ε)c

)
+ ‖PD(ε)(F

n)−1 − PD(ε)F
−1‖

¬ 2ε + ‖PD(ε)(F
n)−1 − PD(ε)F

−1‖.
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But by (3.4) the last expression is bounded by 3ε for n large enough. This com-
pletes the proof of the argument of approximation. ¥

Localization. Using the separability of D(ε), we localize the problem by the
following result:

PROPOSITION 3.4 (Localization). In order to prove (3.4), it is enough to ex-
hibit for all x ∈ D(ε) some neighbourhood V (x) of x such that

(3.5) PV (x)(F
n)−1 var−→ PV (x)F

−1 as n→ +∞.

P r o o f. Since D(ε) is separable, there is a countable family {xi, i ∈ N∗}
such that D(ε) =

⋃+∞
i=1 V (xi). We have limk→+∞ P

( ⋃k
i=1 V (xi)

)
= P

(
D(ε)

)

so that for any fixed ε > 0 and k large enough it follows that P
(
D(ε) \ Ak

)
< ε,

where Ak =
⋃k

i=1 V (xi). Therefore, for such a k, we have

‖PD(ε)(F
n)−1 − PD(ε)F

−1‖
¬ ‖PD(ε)(F

n)−1 − PAk
(Fn)−1‖+ ‖PAk

(Fn)−1 − PAk
F−1‖

+‖PAk
(F )−1 − PD(ε)F

−1‖
¬ 2P

(
D(ε) \Ak

)
+ ‖PAk

(Fn)−1 − PAk
F−1‖

¬ 2ε +
k∑

i=1

‖PV (xi)(F
n)−1 − PV (xi)F

−1‖ ¬ 3ε,

where the last bound comes for n large enough from (3.5). Finally, we derive (3.4),
and so the localization is proved. ¥

Using localization, it is enough to prove (3.5). To do so, we shall use the
method of superstructure. For a general description of this method, we refer to [9].
Note that, like in [3] and [5] with the method of stratification, these preliminary
procedures of approximation and localization are necessary in order to implement
successfully the method of superstructure.

4. APPROXIMATION AND LOCALIZATION

In this section, we exhibit the set D(ε) required in the approximation proce-
dure and the neighbourhood V (x) required for P -almost all x ∈ D(ε) in the local-
ization procedure. Actually, the approximation and localization procedures are the
same as in [5], we thus refer to Section 3 of [5] for a precise description. Here, we
only sketch the main steps.

Approximation. Let b be given by hypothesis (H) in Theorem 2.1 and t̃ =
(t̃1, . . . , t̃N ) be some Lebesgue point of the set

Ab = {t ∈ [0, 1]N | Sb1,...,bpφb(t) 6= 0} ∈ B([0, 1]N ).
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The Lebesgue measure of Ab is positive by hypothesis (H). There is no restriction
in assuming that t̃ is chosen with its coordinates all distinct (t̃i 6= t̃j , i 6= j). Let
ε > 0 be fixed; there is a product neighbourhood Vε = U ε

1 × . . . × U ε
N of t̃ in

[0, 1]N satisfying

(4.1) U ε
i ∩ U ε

j = ∅, i 6= j, and
λN (Vε ∩Ab)

λN (Vε)
­ 1− ε.

We consider the following sets:

D̃(ε) = {x ∈ D | for i = 1, 2, . . . , N, x has at least one jump at a time in U ε
i ,

the maximal modulus of these jumps being realized only once},
D(ε) =

{
x ∈ D̃(ε) | x has a unique maximal jump on each U ε

i at TUε
i
(x)

with Tε(x) :=
(
TUε

1
(x), . . . , TUε

N
(x)

) ∈ Ab

}
.

We recall from [5] the following result for the standard stable process η:

LEMMA 4.1. The random vector Tε(η) =
(
TUε

1
(η), . . . , TUε

N
(η)

)
is uniformly

distributed on Vε. Moreover, for i 6= j, TUε
i
(η) and TUε

j
(η) are independent.

With (4.1), Lemma 4.1 gives:

P
(
D(ε)

)
= PD̃(ε)T

−1
ε (Ab) =

λN (Vε ∩Ab)
λN (Vε)

­ 1− ε.

The set D(ε) is the set required in the procedure of approximation of D.

Localization. For the sake of completeness of the notation, we recall the lo-
calization procedure of [5]. Let x ∈ D(ε) be fixed and put for i = 1, . . . , N :

ti = TUε
i
(x) the time of the largest jump of x in U ε

i ;
t′i the time of the second largest jump of x in U ε

i , |δx(t′i)| < |δx(ti)|;
ε0 = 1

2 mini=1,...,N |δx(ti)|.
Note that, by Lemma 4.1, the jump time ti can be seen as a random variable

on
(
D(ε), PD(ε)/P

(
D(ε)

))
whose law is uniform on U ε

i .
By finiteness of the number of jumps of x larger than ε0/2, we select δ1 > 0

such that ti is the unique time of ∆′i := (ti−δ1, ti +δ1) ⊂ U ε
i where a jump larger

than ε0/2 in modulus occurs. Let the following technical conditions be fulfilled:

ε0/2 < ε1 < ε2 < . . . < εp < ε0;(4.2)

δ2 <
1
4

min
{
ε0, 2δ1, inf

i=1,...,N
{|δx(ti)| − |δx(t′i)|}, 2ε1 − ε0

}
;(4.3)

β = δ1 − δ2 (δ2 ¬ β ¬ δ1); ∆i := (ti − β, ti + β) ⊂ ∆′i ⊂ U ε
i .
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In the sequel, we consider a local field l = (lx)x∈D. That is, for m ∈ N∗,
ε > 0, reals τi, and intervals ∆i = (ai, bi), we define

lx(t)=
∑

s : δx(s)>ε

( m∑

i=1

τi1∆i(s)1[s,∞[(t)
)+ − ∑

s : δx(s)<−ε

( m∑

i=1

τi1∆i(s)1[s,∞[(t)
)−

;

see [9], p. 163, for a precise definition of local fields. Roughly speaking, local fields
(lx)x are admissible directions for stable processes. Moreover, we define

(4.4) ωx(t) =
{

τi if t ∈ (ai, bi), |δx(t)| > ε, δx(t) τi > 0,
0 otherwise,

so that the jumps of x and x + c lx are linked by δx+c lx(t) = δx(t) + c ωx(t).
Next, we associate with l the following sets:
A(l)+ is the set of x ∈ D such that, for all i with τi > 0, x does not have

jumps of length exactly ε on (ai, bi), δx(ai) < ε, δx(bi) < ε, and x has at least one
jump larger than ε on (ai, bi);

A(l)− is the set of x ∈ D such that, for all i with τi < 0, x does not have
jumps of length exactly −ε on (ai, bi), δx(ai) > −ε, δx(bi) > −ε, and x has at
least one jump lower than −ε on (ai, bi);

the set A(l) is given by

(4.5) A(l) = A(l)+ ∩A(l)−.

The set A(l) is suitable to study the local field l. In particular, it is shown in [5],
Sections A1 and A2, that A(l) is open in D and that the local field l is continuous
on A(l).

To apply the method of superstructure in a multidimensional setting, we con-
sider p local fields li, 1 ¬ i ¬ p, and their corresponding open set A(li), given as in
(4.5). We select the p local fields with the following parameters: for i = 1, . . . , p,

εi given by (4.2);
mi = bi, given by hypothesis (H);
∆i

j = ∆b1+...+bi−1+j for j = 1, . . . , bi;
τ i
j with the same sign as δx(ti) and with constant modulus τ > 0.

In the sequel, we put ` = (l1, . . . , lp). We have x ∈ Ã(`) :=
⋂p

i=1 A(li), an
open set. We shall apply the localization procedure with the following neighbour-
hood V (x):

(4.6) V (x) = B(x, δ2) ∩ Ã(`) ∩ D(ε),

where δ2 is given in (4.3).
Finally, with D(ε) and V (x) given above, Propositions 3.3 and 3.4 apply and

the proof of Theorem 2.1 reduces to showing (3.5). The convergence (3.5) is tack-
led with the method of superstructure in the next sections.
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5. SUPERSTRUCTURE IN D(ε)

In order to prove (3.5), we use the method of superstructure in the neighbour-
hood V (x) of x defined by (4.6). For a general account on this method we refer to
[9], Section 5. Here, we only sketch the method.

This method applies to study the convergence PF−1
n

var−→ PF−1 when Fn and
F are some functionals on some (Y, P ). When we have a family of transformations
(Gc)c∈(R+)p satisfying

(5.1) PG−1
c

var−→ P, c→ 0,

we define the following auxiliary measures and functionals on the product space
Yε = [0, ε]p × Y , ε > 0:

Qε =
1
εp

λ[0,ε]p ⊗ P, Fε(c, y) = F
(
Gc(y)

)

(note that Fε depends on ε only through its domain of definition Yε).
Since

QεF
−1
ε =

1
εp

∫
[0,ε]p

PG−1
c F−1dc

for the total variation, we derive

‖QεF
−1
ε − PF−1‖ ¬ 1

εp

∫
[0,ε]p
‖P − PG−1

c ‖ dc,

and from (5.1) together with the dominated convergence we get

(5.2) lim
ε→0
‖QεF

−1
ε − PF−1‖ = 0.

Next, we express QεF
−1
ε as a mixture of finite-dimensional measures: we put

ϕy(c) = F
(
Gc(y)

)
for c ∈ [0, ε]p and we have

(5.3) QεF
−1
ε =

1
εp

∫
Y

λ[0,ε]pϕ
−1
y dP.

In the sequel, we shall note ϕy = (ϕ1
y, . . . , ϕ

p
y). In our setting, in order to study

the laws of
(
Id1(f

n
1 ), . . . , Idp(f

n
p )

)
n

for fn
i →f when n→+∞, in the space

Lα(log+)di−1([0, 1]di), 1 ¬ i ¬ p, we apply this method to Y = Ã(`) equipped
with the restricted probability law Px := PV (x) of the process η and to the func-
tionals F and Fn given in (3.3). We use the family of transformations (Gc)c∈(R+)p

defined from the local fields li, i = 1, . . . , p, by

(5.4) Gc :
{

Ã(`) −→ Ã(`),
y 7−→ y + 〈c, ly〉,
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where 〈c, ly〉 := c1 l1y + . . . + cp lpy for c = (c1, . . . , cp). Moreover, with a similar
notation, observe that with ωi defined from li as in (4.4) we have for c ∈ (R+)p

(5.5) δGc(y)(t) = δy(t) + 〈c, ωy〉.
REMARK 5.1. The open set Ã(`) is invariant under Gc1,...,cp . Roughly speak-

ing, this is because each term liy, 1 ¬ i ¬ p, emphasizes the membership of A(li)
and does not alter conditions to belong to A(lj) for j 6= i. A more detailed justifi-
cation is given in [3].

Our condition (5.1) is satisfied for the family of transformations (5.4). Indeed,
in Lemma 4.1 of [3] it is shown that (Gc)c defined an admissible semigroup in the
sense of [9], p. 14. Moreover, the conditional measures of P on the orbits of the
semigroup (Gc)c have densities. Since (Gc)c acts as a translation, we derive (5.1)
when c→ 0 (see (21.8) in [9] for a more detailed proof). The convergence in (5.1)
is enough for our study but we have actually more:

LEMMA 5.1. The convergence P xG−1
c

var−→ P x is uniform with respect to x
in Ã(`).

P r o o f. In this proof only, we use the setting described in Section 4 of [9].
First, we define an equivalence relation R on Ã(`) by x1Rx2 if and only if there
are c1, c2 ∈ (R+)p such that Gc1x1 = Gc2x2. Let Γ be the partition given by
R and π : Ã(`) → Ã(`)/Γ be the canonical projection. The equivalence classes
π−1(γ), γ ∈ Ã(`)/Γ, are called orbits of the semigroup (Gc)c. In Proposition 4.2
of [9], each orbit π−1(γ) is shown to be isomorphic (via a mapping Jγ) to a mea-
surable set Cγ ⊂ Rp. Next, we define a Lebesgue measure λγ on π−1(γ) by

λγ(B) = λp

(
Jγ

(
B ∩ π−1(γ)

))
, B ∈ B(

Ã(`)
)
,

where λp is the Lebesgue measure on Rp. Moreover, the mapping Jγ intertwines
the action of the semigroup (Gc)c on the orbit π−1(γ) with the action of the semi-
group of translation (τc)c on Cγ :

JγGc = τcJγ .

Thus, we have

‖P xG−1
c − P x‖ =

∥∥ ∫
Ã(`)/Γ

P x
γ G−1

c dPΓ(γ)−
∫

Ã(`)/Γ

P x
γ dPΓ(γ)

∥∥

¬
∫

Ã(`)/Γ

‖P x
γ G−1

c − P x
γ ‖ dPΓ(γ)

¬
∫

Ã(`)/Γ

‖P x
γ J−1

γ τ−1
c Jγ − P x

γ J−1
γ Jγ‖ dPΓ(γ)

¬
∫

Ã(`)/Γ

‖P x
γ J−1

γ τ−1
c − P x

γ J−1
γ ‖ dPΓ(γ).

(5.6)
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In Theorem 4.1 of [9], it is shown that the conditional measures (Pγ) of P on the
orbits of the semigroup (Gc)c have densities. Thus PγJ−1

γ has also a density in
Cγ ⊂ Rp. But the translation operator is uniformly continuous in L1(Rp) (that is,
limh→0 ϕ(·+ h) = ϕ(·) in L1(Rp) uniformly with respect to ϕ).

Therefore,

lim
c→0
‖P x

γ J−1
γ τ−1

c − P x
γ J−1

γ ‖ = 0

holds true uniformly with respect to both γ and x. Integrating with respect to
γ ∈ Ã(`)/Γ, we derive that the right-hand side of (5.6) goes to 0 when c→ 0 uni-
formly with respect to x. Finally, (5.1) holds uniformly with respect to x in Ã(`). ¥

Applying the method of superstructure in this setting, we define as previously
multidimensional auxiliary functionals Fn

ε on Yε and we derive as in (5.2):

(5.7) ‖Qε(Fn
ε )−1 − P x(Fn)−1‖ ¬ 1

εp

∫
[0,ε]p
‖P x − P xG−1

c ‖ dc→ 0 as ε→ 0

uniformly with respect to n ∈ N. We have

(5.8) ‖P xF−1 − P x(Fn)−1‖
¬ ‖P xF−1−QεF

−1
ε ‖+‖QεF

−1
ε −Qε(Fn

ε )−1‖+‖Qε(Fn
ε )−1−P x(Fn)−1‖.

We deduce from (5.2) and (5.7) that the first and third terms in (5.8) can be chosen
arbitrarily small for ε > 0 small enough and uniformly with respect n. Note that
even if we will not use this, by Lemma 5.1, it holds also uniformly with respect to x.
Consequently, it remains to deal, when ε > 0 is fixed, with the second term on the
right-hand side of (5.8) when n → +∞. Moreover, from (5.3) and its counterpart
for index n, we can write

‖QεF
−1
ε −Qε(Fn

ε )−1‖ ¬ 1
εp

∫
V (x)

‖λ[0,ε]pϕ
−1
y − λ[0,ε]pϕ

−1
n,y‖ dP

with ϕn,y(c) =
(
ϕ1

n,y(c), . . . , ϕ
p
n,y(c)

)
= Fn

(
Gc(y)

)
. Note that the domain of

integration above is V (x) (and not Ã(`)) because the method of superstructure
is applied on Ã(`) with Px = PV (x). It is enough now to show for P -almost all
y ∈ V (x) that

(5.9) λ[0,ε]pϕ
−1
n,y

var−→ λ[0,ε]pϕ
−1
y as n→ +∞.

This is done in Section 6 using Proposition 2.1.
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6. STUDY OF THE CONDITIONAL FUNCTIONALS

After some algebraic calculations, we re-express the functionals ϕn,y and ϕy

as ordered polynomials. The conditional functional ϕy : Rp −→ Rp is given by

ϕy(c) =
(
ϕ1,y(c), . . . , ϕp,y(c)

)

= F (y + c1 l1y + . . . + cp lpy), c = (c1, . . . , cp).

Moreover, we have

ϕi,y(c) = ϕi(y + 〈c, ly〉)

=
∑

s1,...,sdi

( di∏
j=1

(
δy(sj) + 〈c, ωy(sj)〉

))
fi(s1, . . . , sdi),

where (si)i is the list of the jump times of y ∈ D. We obtain a polynomial in
c1, . . . , cp; we can develop it as in Section 4.2 of [5] and, finally, we have

(6.1) ϕi,y(c) =
∑

ai=(ai
0,...,ai

p)

|ai|=di

B(ai, y) cai
,

where, in order to simplify the notation, we put

cai
= 1ai

0c
ai
1

1 . . . c
ai

p
p for ai = (ai

0, a
i
1, . . . , a

i
p),

B(ai, y) =
∑

{Ik} partition of
{1,...,di}, cardIk=ai

k

∑

s1,...,sdi

( ∏
j∈I0

δy(sj)
)( ∏

j∈I1

w1
y(sj)

)× . . .(6.2)

×( ∏
j∈Ip

wp
y(sj)

)
fi(s1, . . . , sdi)

and (sj)j is the list of jump times of y.
Using the polynomial expression of ϕi

y, the following key point is shown in
Sections 4.2 and 4.3 of [5]. It shall be used later to apply Proposition 2.1 to the
measure images λ[0,ε]pϕ

−1
n,y.

LEMMA 6.1. Under the hypothesis (H), for P -almost all y ∈ V (x), the Ja-
cobian

Jy(c) := det
(

∂ϕi
y

∂cj
(c)

)

1¬i,j¬p

is non-zero for almost all c ∈ (R+)p.

Since all functionals ϕn,y can be developed in the same way, we introduce also
the coefficients B(ai, y, n) defined as in (6.2) with fn

i in place of fi, and we study
the convergence of B(ai, y, n) to B(ai, y) when n→ +∞.

In order to simplify the study of B(ai, y, n), we begin with the preliminary
simpler case of coefficients B(ai, x, n) relative to x ∈ D(ε).
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6.1. Study of the coefficients B(ai, x, n).

LEMMA 6.2. In D(ε), we have B(ai, x, n) P−→ B(ai, x) when n→ +∞.

P r o o f. Note that
∏

j∈I1
w1

x(tj) 6= 0 if, for all j ∈ I1, tj ∈∆1
k for some

1 ¬ k ¬ b1. Then w1
x(tj) = ±τ with the same sign as that of the jump δx(tj).

Thus
∏

j∈I1
w1

x(tj) = ±τai
1 for A

ai
1

b1
= b1!/(b1 − ai

1)! choices of tj , j ∈ I1. The

same holds true for all inner products
∏

j∈Ik
wk

x(tj) = ±τai
k for A

ai
k

bk
choices of

tj , j ∈ Ik, for 1 ¬ k ¬ p. Finally, we have

( ∏
j∈I1

w1
x(tj)

)
. . .

( ∏
j∈Ip

wp
x(tj)

)
= ±τai

1+...+ai
p

for A(ai) := A
ai
1

b1
× . . . × A

ai
p

bp
choices of index j, otherwise the product is zero.

Using the symmetry of the kernels fi and the nullity of fi on the diagonals, we can
thus rewrite

(6.3)
B(ai, x) =

∑(1)

{Ik} partition of
{1,...,di}, cardIk=ai

k

∑(2)

A(ai) choices of
t
ai
0
+1

,...,tdi

±τai
1+...+ai

p
∑

t1,...,t
ai
0

( ∏
j∈I0

δx(tj)
)
fi(t1, . . . , tdi).

Observe that the outer sums in (6.3), i.e.
∑(1) and

∑(2), are both finite. Moreover,
the same computations hold true for the coefficients B(ai, x, n) with fn

i in place
of fi.

In order to study the convergence of B(ai, x, n) (with respect to n), we first
deal with the convergence of the inner sum

∑

t1,...,t
ai
0

( ∏
j∈I0

δx(tj)
)
fn

i (t1, . . . , tdi
) as n→ +∞,

where tai
0+1, . . . , tdi in fn

i appear as parameters.
When ai

0 6= 0, this sum can be seen as an MSI like in (3.2). First, since for
all 1 ¬ i ¬ p, fn

i → fi in Lα(log+)di−1([0, 1]di), taking some subsequence
(n′) ⊂ (n), we see that the convergence

fn′
i (·, tai

0+1, . . . , tdi)→ f(·, tai
0+1, . . . , tdi) as n′ → +∞

holds in Lα(log+)di−1([0, 1]a
i
0), and thus also in Lα(log+)ai

0−1([0, 1]a
i
0) for al-

most all tai
0+1, . . . , tdi . Therefore, from Proposition 3.1, when ai

0 6= 0, we have

Iai
0

(
fn′

i (·, tai
0+1, . . . , tdi)

) P−→ Iai
0

(
f(·, tai

0+1, . . . , tdi)
)

as n′ → +∞.
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Arguing as in Proposition 3.2, we have, when n′ → +∞, for almost all jump
times tai

0+1, . . . , tdi

(6.4)
∑

t1,...,t
ai
0

( ∏
j∈I0

δx(tj)
)
fn′

i (t1, . . . , tdi)
P−→ ∑

t1,...,t
ai
0

( ∏
j∈I0

δx(tj)
)
fi(t1, . . . , tdi),

where we recall that P still stands for the law of the stable process η. Since by
Lemma 4.1 the ti’s can be seen as uniform and independent random variables on
the ∆i’s, the following elementary lemma applied with X = t1, . . . , tai

0
and Y =

tai
0+1, . . . , tdi yields the same convergence in probability as in (6.4) but involving

now all the jump times t1, . . . , tai
0
, tai

0+1, . . . , tdi
.

LEMMA 6.3. Let X and Y be independent random variables and fn, f
be some measurable functions from R2 to R. Suppose that, for PY -almost all y,

fn(X, y) P−→f(X, y) when n→+∞. Then fn(X, Y ) P−→f(X,Y ) when n→+∞.

Next, since the outer sums in (6.3) are both finite, we derive B(ai, x, n′) P−→
B(ai, x) when n′ → +∞. Thus, when ai

0 6= 0, for any subsequence (n′) ⊂ (n),
there is some further subsequence (n′′) ⊂ (n′) such that B(ai, x, n′′)→ B(ai, x)
for P -almost all x.

If ai
0 = 0, the inner sum in (6.3) is empty and reduces to fn

i (t1, . . . , tdi). But
taking eventually a subsequence, for almost all t1, . . . , tdi

, we have

fn
i (t1, . . . , tdi)→ fi(t1, . . . , tdi).

Since the outer sums in (6.3) are still both finite, we infer once more that for any
subsequence (n′) ⊂ (n) there is some further (n′′) ⊂ (n′) with B(ai, x, n′′) →
B(ai, x), n′′ → +∞, for P -almost all x.

In both cases (ai
0 is zero or not), the convergence in probability is proved. ¥

6.2. Study of the coefficients B(ai, y, n). We deal now with B(ai, y, n) for
y ∈ V (x) and to this end we adapt the study of the coefficients B(ai, x, n) given
in the proof of Lemma 6.2. First, we have to study the jumps and the jump times
of y ∈ V (x). Note that the (technical) choice of the parameters of local fields
l1, . . . , lp (see around (4.3)) are required specifically for this study. This prelim-
inary work has already been done in [5], pp. 66–67, to which we will refer for
a more precise justification.

LEMMA 6.4 (Jumps of y ∈ V (x)). Let y ∈ V (x), the neighbourhood of x
defined in (4.6). The list of the jump times of x is denoted by (ti)i and that of y
by (si)i. We have

Tε(y) =
(
ρ−1(t1), . . . , ρ−1(tN )

)
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for some increasing continuous bijection ρ of [0, 1] realizing the Skorokhod dis-
tance between x and y. Moreover, the jump times si, i > 0, of y satisfy:

ωi
y(sk) = 0 if sk 6∈ ∪bi

j=1∆
i
j ,

ωi
y(sk) 6= 0 if sk ∈ ∪bi

j=1∆
i
j and sk = ρ−1(tij).

P r o o f. By the definition of Skorokhod’s topology (see [2]), let ρ ∈ Λ([0, 1]),
the set of increasing continuous bijections of [0, 1], with

sup
t∈[0,1]

∣∣x(
ρ(t)

)− y(t)
∣∣ < δ2 and sup

t∈[0,1]
|ρ(t)− t| < δ2,

where δ2 is given in (4.3). We have

δx

(
ρ(t)

)− 2δ2 < δy(t) < δx

(
ρ(t)

)
+ 2δ2,∣∣δx

(
ρ(t)

)∣∣− 2δ2 < |δy(t)| <
∣∣δx

(
ρ(t)

)∣∣ + 2δ2.

First ρ−1(ti) ∈ ∆i = (ti − β, ti + β) because |ρ(ti)− ti| < δ2 and δ2 < β. More-
over, we have

∣∣δy

(
ρ−1(ti)

)∣∣ > |δx(ti)| − 2δ2 ­ 2ε0 − 1
2
ε0 =

3
2
ε0 > ε0 > εi.

If t∈∆i\{ρ−1(ti)}, we also have ρ(t) ∈ ∆′i = (ti− δ1, ti + δ1) because it follows
that |ρ(t)− t| < δ2 and β = δ1 − δ2. Consequently, since

•
∣∣δx

(
ρ(t)

)∣∣ ¬ ε0/2 because ρ(t) 6= ti and ti is the unique time in ∆′i when
there occurs a jump of x larger than ε0/2,

• 2δ2 < ε1 − ε0/2 by the choice of δ2 in (4.3),
we have

|δy(t)| <
∣∣δx

(
ρ(t)

)∣∣ + 2δ2 ¬ ε0

2
+ 2δ2 < ε1 ¬ εi.

For t ∈ ∆i:
if t = ρ−1(ti), then t ∈ ∆i, |δy(t)| > εi, δy(t) has the same sign as δx(ti);
if t 6= ρ−1(ti), then |δy(t)| < εi.

Observe moreover that for t ∈ U ε
i , t 6= ρ−1(ti):

(6.5) |δy(t)| ¬
∣∣δx

(
ρ−1(t)

)∣∣ + 2δ2 < |δx(t′i)|+ 2δ2

because ρ−1(t) 6= ti implies
∣∣δx

(
ρ−1(t)

)∣∣ < |δx(t′i)| and

(6.6)
∣∣δy

(
ρ−1(ti)

)∣∣ > |δx(ti)| − 2δ2.

From (4.3) we get δ2 < 1
4 mini=1,...,N{|δx(ti)| − |δx(t′i)|}, and from (6.5) and (6.6)

we deduce that |δy(t)| <
∣∣δy

(
ρ−1(ti)

)∣∣. Then we have ρ−1(ti) = TUε
i
(y) and

(
ρ−1(t1), . . . , ρ−1(tN )

)
= Tε(y).

This argument justifies also the second part of Lemma 6.4. ¥
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LEMMA 6.5. In V (x), we have B(ai, y, n) P−→ B(ai, y) when n→ +∞.

P r o o f. We study the coefficients B(ai, y, n) just like we did for B(ai, x, n)
but using additionally the examination of the jump times of y in Lemma 6.4. Here,
from Lemma 6.4 we get

∏
j∈I1

w1
y(sj) = ±τai

1 for A
ai
1

b1
choices of sj , j ∈ I1, else

it is 0. Doing the same for the other products, we have
( ∏

j∈I1

w1
x(sj)

)
. . .

( ∏
j∈Ip

wp
x(sj)

)
= ±τai

1+...+ai
p

for A(ai) := A
ai
1

b1
× . . . × A

ai
p

bp
choices of index j, else the product is zero. Using

the symmetry of the kernels fi and the nullity of fi on the diagonals, we can thus
rewrite

(6.7)
B(ai, y) =

∑(1)

{Ik} partition of
{1,...,di}, cardIk=ai

k

∑(3)

A(ai) choices of
s
ai
0
+1

,...,sdi

±τai
1+...+ai

p
∑

s1,...,s
ai
0

( ∏
j∈I0

δx(sj)
)
fi(s1, . . . , sdi).

Observe again that the outer sums in (6.7), i.e.
∑(1) and

∑(3), are both finite.
The same computations hold true for the coefficients B(ai, y, n) with fn

i in place
of fi.

In order to study the convergence of the coefficients B(ai, y, n), we first deal
with the convergence of the inner sum

∑

s1,...,s
ai
0

( ∏
j∈I0

δy(sj)
)
fn

i (s1, . . . , sdi
) as n→ +∞,

where sai
0+1, . . . , sdi in fn

i appear as parameters.
As in the proof of Lemma 6.2 for the case with x, when ai

0 6= 0, this sum can
be seen from (3.2) as an MSI and since from fn

i → fi in Lα(log+)di−1([0, 1]di),
eventually taking some subsequence, we derive the convergence

fn
i (·, sai

0+1, . . . , sdi)→ f(·, sai
0+1, . . . , sdi)

in Lα(log+)di−1([0, 1]a
i
0), and thus also in Lα(log+)ai

0−1([0, 1]a
i
0) for almost all

sa1
0+1, . . . , sdi . Thus, from Proposition 3.1, when ai

0 6= 0, we have

Iai
0

(
fn

i (·, tai
0+1, . . . , tdi)

) P−→ Iai
0

(
f(·, tai

0+1, . . . , tdi)
)
.

Arguing as in Proposition 3.2, we rewrite when n→ +∞
∑

t1,...,t
ai
0

( ∏
j∈I0

δx(tj)
)
fn

i (t1, . . . , tdi)
P−→ ∑

t1,...,t
ai
0

( ∏
j∈I0

δy(tj)
)
fi(t1, . . . , tdi)
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for almost all sa1
0+1, . . . , sdi . Applying first Lemma 6.3 and using next the finite-

ness of the outer sums in (6.7), we have B(ai, y, n) P−→B(ai, y) as n → +∞,
and thus for any subsequence (n′) ⊂ (n), there is some further subsequence
(n′′)⊂ (n′) such that B(ai, y, n′′) → B(ai, y) for P -almost all y ∈ V (x) in the
case where ai

0 6= 0.
If ai

0 = 0, as in the case for x in the proof of Lemma 6.4, the inner sum in (6.7)
is empty and reduces to fn

i (s1, . . . , sdi). But taking eventually a subsequence, for
almost all s1, . . . , sdi , we have fn

i (s1, . . . , sdi)→ fi(s1, . . . , sdi). Since the outer
sums in (6.3) are still both finite, we derive once more that for any subsequence
(n′) ⊂ (n) there is some further (n′′) ⊂ (n′) with B(ai, y, n′′)→B(ai, y) for
P -almost all y.

We thus have for P -almost all y ∈ V (x) the convergence of the coefficients
B(ai, y, n′′) of ϕi

n′′,y to the coefficient B(ai, y) of ϕi
y, and the convergence in

probability follows. ¥

Finally, we conclude now this section with the proof of (5.9). From the expres-
sion in (6.1) and from Lemma 6.5 we derive for any subsequence (n′) ⊂ (n) that
there is some further subsequence (n′′) ⊂ (n′) such that for P -almost all y ∈ V (x)
we have the convergence of ϕn′′,y to ϕy in the local Sobolev space W p,1

loc(R
p,Rp).

Moreover, from Lemma 6.1, under the hypothesis (H), for P -almost all y ∈ V (x)
we have Jy(c) 6= 0 for almost all c. We can thus apply Proposition 2.1 (Corollary 4
in [1]) to derive the convergence (5.9) when n′′ → +∞, that is

λ[0,ε]pϕ
−1
n′′,y

var−→ λ[0,ε]pϕ
−1
y .

7. CONCLUSION

For P -almost all y ∈ V (x), the convergence in (5.9) has been derived for some
subsequence (n′′) taken from any subsequence (n′) ⊂ (n). Finally, returning to the
second term on the right-hand side of (5.8), we derive for all ε > 0 and for a further
subsequence (n′′) ⊂ (n′)

lim
n′′→+∞

‖QεF
−1
ε −Qε(Fn′′

ε )−1‖ = 0.

From (5.8) we thus have

lim
n′′→+∞

‖P xF−1 − P x(Fn′′)−1‖ ¬ 3ε.

Since ε > 0 is arbitrary, we obtain

P x(Fn)−1 var−→ P xF−1 as n→ +∞.



Convergence in variation of multiple stable integrals 39

Finally, gathering together all the steps, first we have

P x(Fn)−1 var−→ P xF−1 as n→ +∞,

and next, by localization,

PD(ε)(F
n)−1 var−→ PD(ε)F

−1 as n→ +∞.

Finally, by approximation, we get

P (Fn)−1 var−→ PF−1 as n→ +∞.

Thus, we have proved the convergence in variation of L(
Sd1(f

n
1 ), . . . , Sdp(f

n
p )

)
to

L(
Sd1(f1), . . . , Sdp(fp)

)
. By the representation theorem the same holds true for

the law of
(
Id1(f

n
1 ), . . . , Idp(f

n
p )

)
to those of

(
Id1(f1), . . . , Idp(fp)

)
. This com-

pletes the proof of Theorem 2.1.
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(1) (1991), pp. 27–37.
[8] Y. A. Davydov and M. A. Lifshi ts, Stratification method in some probability problems,

J. Soviet. Math. 31 (2) (1985), pp. 2796–2858.
[9] Y. A. Davydov, M. A. Lifshi ts and N. V. Smorodina, Local Properties of Distribu-

tions of Stochastic Functionals, American Mathematical Society, Providence (173) 1998.
[10] W. Krakowiak and J. Szulga, Random multilinear forms, Ann. Probab. 14 (3) (1986),

pp. 957–973.
[11] J . Rosi ński and G. Samorodni tsky, Product formula, tails and independence of multiple

stable integrals, Advance in Stoch. Ineq. (Atlanta GA 1997) (1999), pp. 169–194.
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