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1. INTRODUCTION

In this paper we consider approximations of solutions (Y, Z, K) of the fol-
lowing reflected backward stochastic differential equation (RBSDE for short) with
almost surely finite random terminal time τ in a given convex domain D ⊂ Rd:

Yt∧τ = g(Xτ ) +
τ∫

t∧τ

f(s,Xs, Ys, Zs)ds−
τ∫

t∧τ

ZsdWs + Kτ −Kt∧τ(1.1)

for t ∈ R+, where X is a given diffusion process, g : Rm → D̄ = D ∪ ∂D
is a continuous function and f : R+ × Rm × D̄ × Rd×m → Rd is a continuous
function satisfying the monotonicity condition with respect to y and is Lipschitz
with respect to z (precise definitions are given in Section 3).

Existence and uniqueness of RBSDE (1.1) was shown by Pardoux and Răşcanu
[16]. They proved that the solution of (1.1) may be approximated by a sequence
of non-reflected BSDEs with a penalization term. Moreover, they pointed out con-
nections between RBSDE (1.1) and variational inequalities.

There are many papers about approximations of BSDEs and RBSDEs (see
e.g. [1]–[3], [13], [14], [21]). However, it is worth pointing out that, up to now,
the discrete approximation of RBSDEs was investigated only in one-dimensional
case (see [1] and [14]).
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The aim of this paper is to prove convergence of discrete approximations
of a solution of RBSDE (1.1) in a general convex d-dimensional domain D. We
present both weak and strong convergence of the discrete scheme to the solution of
(1.1). The important point to note here is that our approximating sequence can be
computed by simple recurrent formulas, and therefore is easy to implement. Our
approximation methods correspond to the so-called projection scheme, which is
a well-known method of approximation of classical stochastic differential equa-
tions (see e.g. [18]). Additionally, we give applications of the numerical scheme in
solving partial differential equations (PDEs) and the viability property of BSDE.

The paper is organized as follows. First, in Section 2 we give an approxima-
tion scheme for RBSDE with fixed terminal time and formulate its properties.This
is used in Section 3, which contains an approximation scheme for RBSDE with
random terminal time and in which we formulate the main theorem of this paper.
Section 4 is devoted to applications of the numerical scheme in solving PDE and
the viability property of BSDE. Finally, Section 5 contains proofs of theorems from
Sections 2 and 3.

Throughout this paper we will use the following notation. D(R+,Rd) is the
space of all mappings x : R+ → Rd which are right continuous and admit left-hand
limits endowed with the Skorokhod topology J1 (see [10]). By |x|we mean the Eu-
clidean norm in Rd, x ∈ Rd, ‖x‖ stands for (trace(x?x))1/2, x ∈ Rd×m. If K =
(K1, . . . , Kd) is a process with locally finite variation, then |K|t =

∑d
i=1 |Ki|t,

where |Ki|t is a total variation of Ki on [0, t]. If Y = (Y 1, . . . , Y d) is a semimar-
tingale, then [Y ]t =

∑d
i=1[Y

i]t, where [Y i] is a quadratic variation process of Y i.
For a stopping time τ, by Y τ we mean the process stopped at τ, i.e. Y τ

t = Yt∧τ .

Finally, P→ and D→ denote convergence in probability and in law, respectively.

2. APPROXIMATIONS OF RBSDEs WITH FIXED TERMINAL TIME

Let (Ω,G,P) be a complete probability space carrying a standard m-dimen-
sional Wiener process W = {Wt}t∈R+ and let F = {Ft}t∈R+ be the usual aug-
mentation of the filtration generated by W . In this section we assume that
τ = T = const and RBSDE has the form

Yt = g(XT ) +
T∫
t

f(s,Xs, Ys, Zs)ds−
T∫
t

ZsdWs + KT −Kt(2.1)

for t ∈ [0, T ], where X is the solution of the following stochastic differential
equation (SDE for short)

(2.2) Xt = x +
t∫
0

b(s,Xs)ds +
t∫
0

σ(s,Xs)dWs, t ∈ R+,
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where b : R+×Rm → Rm and σ : R+×Rm → Rm×m are continuous functions
such that

|b(t, x)− b(t, x′)|+ ‖σ(t, x)− σ(t, x′)‖ ¬ L|x− x′|, t ∈ R+, x, x′ ∈ Rm,

for some L > 0.
By a solution of (2.1) we mean a triple (Y, Z,K) of F progressively measur-

able processes in D̄ × Rd×m × Rd satisfying (2.1) and such that
(a) E

(
supt¬T |Yt|2 +

∫ T

0
‖Zt‖2dt

)
<∞;

(b) K is a continuous process of bounded variation, such that K0 = 0, and∫ T

0
(Yt−At)dKt ¬ 0 for every F progressively measurable process A with values

in D̄.
Let g : Rm → D̄, f : R+×Rm×D̄×Rd×m → Rd be continuous functions

which satisfy the following conditions:
(i) there exist q, κ ­ 0 such that for any x ∈ Rm

|g(x)| ¬ κ(1 + |x|q);

(ii) there exists L > 0 such that for any t ∈ R+, x ∈ Rm, y, y′ ∈ D̄ and
z, z′∈Rd×m

|f(t, x, y, z)− f(t, x, y′, z′)| ¬ L(|y − y′|+ ‖z − z′‖);

(iii) f(·, ·, 0, 0) is bounded.
It is known that under assumptions (i)–(iii) RBSDE (2.1) has a unique strong

solution (see [8]).
The discrete scheme we propose in this paper is based on approximation of

a Wiener process W by a scaled random walk. Set Wn
t = (

√
n)−1

∑[nt]
j=1 εn

j ,
t∈R+, where for each n ∈ N , {εn

j }j∈N is a sequence of independent symmetric
Bernoulli random variables, and by Fn = {Fn

t }t∈R+ denote the natural filtration
of Wn.

Let us first consider the approximation scheme for SDE (2.2). Set xn
0 = x and

for j = 0, . . . , [nT ]− 1 define xn
(j+1)/n by

xn
(j+1)/n = xn

j/n +
1
n

b(j/n, xn
j/n) +

1√
n

σ(j/n, xn
j/n)εn

j+1.(2.3)

Notice that, for each j, xn
j/n is Fn

j/n-measurable. Moreover, if we put %n
t = [nt]/n

and define Xn
t = xn

[nt]/n, t ∈ [0, T ], then Xn is a solution of the discrete SDE

Xn
t = x +

t∫
0

b(%n
s−, Xn

s−)d%n
s +

t∫
0

σ(%n
s−, Xn

s−)dWn
s , t ∈ [0, T ].
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By Donsker’s theorem, we have Wn D−→W in D(R+,Rm). Consequently, since
supt¬T (t− %n

t )→ 0, T ∈ R+, it follows that

(Xn,Wn) D−→(X, W ) in D(R+,R2m).

Moreover, if the processes Wn,W are defined on the same probability space
and supt¬T |Wn

t − Wt| P−→0, then supt¬T |Xn
t − Xt| P−→0, T ∈ R+. In fact,

the convergence in probability can be strengthened to convergence in Lp norm for
every p ∈ N (see e.g. [17]).

Now, consider the discrete version of RBSDE (2.1). In our scheme we com-
bine some ideas from [2], where BSDE without reflection is considered, and from
[18], where SDE with reflection is considered. For j = [nT ] put yn

j/n = g(xn
j/n),

zn
j/n = 0, ∆kn

(j+1)/n = 0 and solve the equation

yn
j/n =yn

(j+1)/n+
1
n

f(j/n, xn
j/n, yn

j/n, zn
j/n)− 1√

n
zn
j/nεn

j+1+∆kn
(j+1)/n(2.4)

for j = [nT ]− 1, . . . , 0.
By a solution of (2.4) we mean a triple (Y n, Zn,Kn) = (Y n

t , Zn
t ,Kn

t )t∈[0,T ]

of Fn adapted processes in D̄×Rd×m×Rd such that |Kn|T < ∞, Kn
0 = 0, and∫ T

0
(Y n

t−−An
t−)dKn

t ¬ 0 for everyFn adapted process An with values in D̄, where

Y n
t = yn

[nt]/n, Zn
t = zn

[nt]/n, Kn
t =

∑[nt]
j=1 ∆kn

j/n.

Since (2.4) can be written in the equivalent form

Y n
t =g(Xn

T ) +
T∫
t

f(%n
s−, Xn

s−, Y n
s−, Zn

s−)d%n
s −

T∫
t

Zn
s−dWn

s + Kn
T −Kn

t(2.5)

for t ∈ [0, T ], one can deduce from Lemma 5.2 below that (2.4) has a unique solu-
tion. Therefore, solving (2.4) is equivalent to finding the solution to the following
iteration problem. The first step is to choose

zn
j/n =

√
nE(yn

(j+1)/nεn
j+1|Fn

j/n),

then to find

hn
j/n = yn

(j+1)/n +
1
n

f
(
j/n, xn

j/n, π(hn
j/n), zn

j/n

)− 1√
n

zn
j/nεn

j+1,

where π(h) = πD(h) means the projection of h ∈ Rd on D̄. Notice that for n
large enough (n > L), hn

j/n is well defined since f and π are Lipschitz. Now we
put yn

j/n = π(hn
j/n). Observe that hn

j/n and yn
j/n are Fn

j/n-measurable. Indeed, by
the representation theorem (see [22], the Lemma on page 154),

yn
(j+1)/n −

1√
n

zn
j/nεn

j+1 = E
(
yn
(j+1)/n|Fn

j/n

)
.
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Finally, we take ∆kn
(j+1)/n = yn

j/n − hn
j/n, which is also Fn

j/n-measurable. There-
fore, Y n and Zn are Fn adapted, and Kn is an Fn predictable process. Since D is
a convex set,

〈π(h)− x′, π(h)− h〉 ¬ 0, h ∈ Rd, x′ ∈ D̄.(2.6)

Hence, in particular,

〈yn
(j−1)/n − x′, ∆kn

j/n〉 ¬ 0(2.7)

for any x′∈ D̄ and j = 1, . . . , [nT ]. Therefore, for any Fn adapted process An

with values in D̄,

T∫
0

(Y n
t− −An

t−)dKn
t =

[nT ]∑

j=1

〈yn
(j−1)/n −An

(j−1)/n, ∆kn
j/n〉 ¬ 0.(2.8)

THEOREM 2.1. Assume that (i)–(iii) hold. Then:
(a) We have

(
Xn, Y n,

·∫
0

Zn
s−dWn

s ,Kn,Wn
) D−→(

X, Y,
·∫
0

ZsdWs,K, W
)

in D([0, T ],Rm×D̄×R2d×Rm).
(b) If supt¬T |Wn

t −Wt| P−→0, then

E
(
sup
t¬T
|Y n

t − Yt|2 +
T∫
0

‖Zn
t− − Zt‖2dt + sup

t¬T
|Kn

t −Kt|2
)→ 0.

The proof of Theorem 2.1 is deferred to Section 5.
Let us consider now another numerical scheme for RBSDE (2.1), which is

simpler to simulate then the scheme described above. In this method in each step
we take only once projection on the set D̄ and do not look for a fixed point of
a function. For j = [nT ] put ŷn

j/n = g(xn
j/n), ẑn

j/n = 0, ∆k̂n
(j+1)/n = 0. For j =

[nT ]− 1, . . . , 0 first choose ẑn
j/n =

√
nE(ŷn

(j+1)/nεn
j+1|Fn

j/n), then find

ĥn
j/n = ŷn

(j+1)/n +
1
n

f(j/n, xn
j/n, ȳn

j/n, ẑn
j/n)− 1√

n
ẑn
j/nεn

j+1,

where ȳn
j/n = E(ŷn

(j+1)/n|Fn
j/n). Finally, take ŷn

j/n = π(ĥn
j/n) and ∆k̂n

(j+1)/n =

ŷn
j/n − ĥn

j/n. In a similar manner as before define processes Ŷ n
t = ŷn

[nt]/n, Ẑn
t =

ẑn
[nt]/n, K̂n

t =
∑[nt]

j=1 ∆k̂n
j/n, Ȳ n

t = ȳn
[nt]/n, which satisfy

Ŷ n
t = g(Xn

T ) +
T∫
t

f(%n
s−, Xn

s−, Ȳ n
s−, Ẑn

s−)d%n
s −

T∫
t

Ẑn
s−dWn

s + K̂n
T − K̂n

t

for t ∈ [0, T ].
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PROPOSITION 2.1. Assume that (i)–(iii) hold. Then

E
(
sup
t¬T
|Y n

t − Ŷ n
t |2 +

T∫
0

‖Zn
t− − Ẑn

t−‖2d%n
t + sup

t¬T
|Kn

t − K̂n
t |2

)→ 0.

The proof of Proposition 2.1 is deferred to Section 5.

3. APPROXIMATIONS OF RBSDEs WITH RANDOM TERMINAL TIME

In this section we will consider the case where the terminal value of RBSDE
is given by an F stopping time τ such that P (τ < ∞) = 1. We will assume that
(i)–(iii) hold and, additionally,

(iv) there exists a constant µ ∈ R such that for any t ∈ R+, x ∈ Rm,
y, y′ ∈ D̄, z ∈ Rd×m

〈y − y′, f(t, x, y, z)− f(t, x, y′, z)〉 ¬ µ|y − y′|2;
(v) there exists λ > 2µ + L2 such that

Eeλτ (1 + |Xτ |2q) <∞.

By a solution of RBSDE with random terminal time we mean a triple (Y,Z, K)
of F progressively measurable processes in D̄×Rd×m×Rd satisfying (1.1) and
such that

(a) E
(
supt¬τ exp(λt)|Yt|2 +

∫ τ

0
exp(λt)‖Zt‖2dt

)
<∞;

(b) K is a continuous process with locally bounded variation, such that
K0 = 0, and

∫ τ

0
(Yt−At)dKt ¬ 0 for everyF progressively measurable process A

with values in D̄. Moreover, Yt = ξ, Zt = 0, Kt = Kτ on the set {t ­ τ}.
In [16] it is proved that under the assumptions (i)–(v) there exists a unique

strong solution of (1.1).
As in the previous section we shall approximate a Wiener process W by

a scaled random walk Wn. We follow [21] and start with approximation of the
stopping time τ by a sequence of bounded stopping times {τn}n. Since, for
every n ∈ N, τn is bounded, we can find Tn ∈ N such that τn ¬ Tn.

First let us introduce the approximation scheme for the forward equation.
Write τn

j = (j/n) ∧ ([nτn]/n), j ∈ N, and note that τn
j is an Fn stopping time.

Now put xn
0 = x and for t ∈ [0, Tn] set Xn

t = xn
τn
[nt]

, where xn is given by (2.3).
In order to define the discrete RBSDE with random terminal time we take

j = nTn, . . . , 0 and on the set {τn ¬ j/n} we put yn
τn
j

= yn
τn = g(xn

τn
j
), zn

τn
j

=
zn
τn = 0, ∆kn

τn
j+1

= 0. Next, on the set {[nτn] > j} = {[nτn]/n > j/n} ∈ Fn
j/n

we consider

yn
τn
j

=yn
τn
j+1

+
1
n

f(j/n, xn
τn
j
, yn

τn
j
, zn

τn
j
)1{[nτn]>j}−

1√
n

zn
τn
j
εn
j+1+∆kn

τn
j+1

.(3.1)
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By a solution of (3.1) we mean a triple (Y n, Zn,Kn) = (Y n
t , Zn

t ,Kn
t )t∈[0,Tn]

of Fn adapted processes in D̄×Rd×m×Rd such that |Kn|τn < ∞, Kn
0 = 0,

and
∫ τn

0
(Y n

t− − An
t−)dKn

t ¬ 0 for every Fn adapted process An with values in

D̄, where Y n
t = yn

τn
[nt]

, Zn
t = zn

τn
[nt]

, Kn
t =

∑[nt]
j=1 ∆kn

τn
j
. Moreover, on the set

{t ­ τn}, we have Y n
t = Y n

τn , Zn
t = 0, Kn

t = Kn
τn .

Observe that (3.1) can be written in the equivalent form

Y n
t∧τn = g(Xn

τn) +
τn∫

t∧τn

f(%n
s−, Xn

s−, Y n
s−, Zn

s−)d%n
s

−
τn∫

t∧τn

Zn
s−dWn

s + Kn
τn −Kn

t∧τn , t ∈ R+,

(3.2)

and that (Y n, Zn,Kn) is a unique solution of equation (3.2) (see Lemma 5.4 (b)).
To solve (3.1) we first set

zn
τn
j

= zn
τn
j
1{[nτn]>j} =

√
nE(yn

τn
j+1

εn
j+1|Fn

j/n)1{[nτn]>j},

and next we find a solution hn
τn
j

of the equation

hn
τn
j

= yn
τn
j+1

+
1
n

f
(
j/n, xn

τn
j
, π(hn

τn
j
), zn

τn
j

)
1{[nτn]>j} −

1√
n

zn
τn
j
εn
j+1.

Note that since f and π are Lipschitz, hn
τn
j

is well defined for n > L. Now put
yn

τn
j

= π(hn
τn
j
) and ∆kn

τn
j+1

= yn
τn
j
− hn

τn
j
. Observe that hn

τn
j
, yn

τn
j

and ∆kn
τn
j+1

are
Fn

j/n-measurable. Similarly to Section 2 it can be shown that, for any Fn adapted
process An with values in D̄,

τn∫
0

(Y n
t− −An

t−)dKn
t =

[nτn]∑

j=1

〈yn
τn
j−1
−An

τn
j−1

, ∆kn
τn
j
〉 ¬ 0.

THEOREM 3.1. Assume that (i)–(v) hold. Let {τn} be a sequence of Fn stop-
ping times such that supn E exp(λτn)(1 + |Xn

τn |2q) <∞.

(a) If (Wn, τn) D−→(W, τ), then

(
Xn, Y n,

·∫
0

Zn
s−dWn

s , Kn,Wn
) D−→(

X,Y,
·∫
0

ZsdWs,K, W
)

in D(R+,Rm×D̄ ×R2d×Rm).
(b) If supt¬T |Wn

t −Wt| P−→0, T ∈ R+ and τn P−→τ, then

(
sup
t¬T
|Y n,τn

t − Y τ
t |+

T∫
0

‖Zn,τn

t− − Zτ
t ‖2dt + sup

t¬T
|Kn,τn

t −Kτ
t |

) P−→ 0.

The proof will be given in Section 5.
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Similarly to Section 2, we may consider another numerical scheme for RBSDE
(1.1), which is easier to simulate. For j = nTn, . . . , 0, on the set {τn ¬ j/n} we
put ŷn

τn
j

= g(xn
τn
j
), ẑn

τn
j

= 0, ∆k̂n
τn
j+1

= 0. On the set {[nτn] > j} we first take

ẑn
τn
j

=
√

nE(ŷn
τn
j+1

εn
j+1|Fn

j/n), and then find a solution ĥn
τn
j

of the equation

ĥn
τn
j

= ŷn
τn
j+1

+
1
n

f(j/n, xn
τn
j
, ȳn

τn
j
, ẑn

τn
j
)1{[nτn]>j} −

1√
n

ẑn
τn
j
εn
j+1,

where ȳn
τn
j

= E(ŷn
τn
j+1
|Fn

j/n). Next, put ŷn
τn
j

= π(ĥn
τn
j
) and ∆k̂n

τn
j+1

= ŷn
τn
j
− ĥn

τn
j
.

Finally, let us define processes on R+ by setting Ŷ n
t = ŷn

τn
[nt]

, Ẑn
t = ẑn

τn
[nt]

, K̂n
t =

∑[nt]
j=1 ∆k̂n

τn
j

, Ȳ n
t = ȳn

τn
[nt]

, so that

Ŷ n
t∧τn =g(Xn

τn)+
τn∫

t∧τn

f(%n
s−, Xn

s−, Ȳ n
s−, Ẑn

s−)d%n
s−

τn∫
t∧τn

Ẑn
s−dWn

s + K̂n
τn − K̂n

t∧τn

for t ∈ R+.

PROPOSITION 3.1. Assume that (i)–(v) hold. Let {τn} be a sequence of Fn

stopping times such that supn E exp(λτn)(1 + |Xn
τn |2q) < ∞ and assume that

(Y n, Zn,Kn), (Ŷ n, Ẑn, K̂n) are given as above. Then, for every T ∈ R+,

E
(
sup
t¬T
|Y n,τn

t − Ŷ n,τn

t |2 +
T∫
0

‖Zn,τn

t− − Ẑn,τn

t− ‖2d%n
t + sup

t¬T
|Kn,τn

t − K̂n,τn

t |2)→ 0.

The proof of Proposition 3.1 is deferred to Section 5.

We end this section with a simple example of a sequence of stopping times
{τn} satisfying the assumptions of Theorem 3.1.

EXAMPLE 3.1. Let a ∈ R+. Define

τ = inf{t ­ 0; |Wt| > a}, τn = inf{t ­ 0; |Wn
t | > a} ∧ n.

By [19] it is known that (Wn, τn) D−→(W, τ). One can show that there exists
a constant C(a) such that, for every λ<C(a), supn E exp(λτn)<∞ (see Sec-
tion 5 for details). On the other hand, it is not true that supn E exp(λτn) < ∞
for every λ > 0. It is a consequence of the fact that E exp(λτ) < ∞ only for
λ < C(a) (see e.g. [12], Lemma 1.3).

4. APPLICATIONS

4.1. Discrete RBSDE and the obstacle problem for parabolic PDE. In this
section we will consider the case where D = [a1, b1]× [a2, b2]× . . .× [ad, bd] and
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τ = T ∈ R+. For each (s, x) ∈ [0, T ] × Rm let Xs,x denote the solution of the
SDE

Xs,x
t = x +

t∫
s

b(θ, Xs,x
θ )dθ +

t∫
s

σ(θ,Xs,x
θ )dWθ, t ∈ [s, T ],(4.1)

and let (Y s,x, Zs,x,Ks,x) denote the solution of the equation

Y s,x
t = (Xs,x

T )+
T∫
t

f(θ, Xs,x
θ , Y s,x

θ , Zs,x
θ )dθ −

T∫
t

Zs,x
θ dWθ + Ks,x

T −Ks,x
t(4.2)

for t ∈ [s, T ]. Under the assumptions (i)–(iii), u(s, x) := Y s,x
s is a continuous

function of (s, x), which is a viscosity solution (see [7], p. 35, for a definition) of
the following obstacle problem:





min
(
ui(t, x)− ai, max

(
ui(t, x)− bi,−F i

u(t, x)
))

= 0,

t ∈ [s, T ), x ∈ Rm,

u(T, x) = g(x), x ∈ Rm,

(4.3)

for i = 1, . . . , d, where

F i
u(t, x) =

∂ui

∂t
(t, x) +

1
2

∑

1¬j,k¬d

∂2ui

∂xj∂xk
(t, x)(σσT )jk(t, x)

+
∑

1¬j¬d

∂ui

∂xj
(t, x)bj(t, x) + fi

(
t, x, u(t, x), (∇uσ)(t, x)

)

(see e.g. [23]). The approximation of the solution of parabolic PDE using the dis-
crete scheme for BSDE (without reflection) was considered in [2]. Here, we pro-
pose a numerical scheme for the obstacle problem (4.3) which uses the discrete ap-
proximation of RBSDE (4.2). Fix x ∈ Rm and set xn

j/n = x, j = 0, . . . , [ns]. Next,
define Xs,x,n

t = xn
[nt]/n, where xn

(j+1)/n is given by (2.3), j = [ns], . . . , [nT ]− 1.

Observe that Xs,x,n is a strong solution of the SDE

Xs,x,n
t = x +

t∫
s

b(%n
θ , Xs,x,n

θ− )d%n
θ +

t∫
s

σ(%n
θ , Xs,x,n

θ− )dWn
θ , t ∈ [s, T ].

Furthermore, (Xs,x,n,Wn) D−→(Xs,x,W ), where Xs,x is given by (4.1). The next
step is to solve the discrete RBSDE. To do this we put yn

[nT ]/n= g(xn
[nT ]/n) and
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solve (2.4) for j = [nT ]− 1, . . . , [ns]. Let us put

Dn
+u(j, x) =

1
2

u

(
j, x +

1
n

b (j/n, x) +
1√
n

σ (j/n, x)
)

+
1
2

u

(
j, x +

1
n

b (j/n, x)− 1√
n

σ (j/n, x)
)

,

Dn
−u(j, x) =

1
2

u

(
j, x +

1
n

b (j/n, x) +
1√
n

σ (j/n, x)
)

− 1
2

u

(
j, x +

1
n

b (j/n, x)− 1√
n

σ (j/n, x)
)

.

LEMMA 4.1. Assume that vn:N×Rm→D, n > L, is a function such that
vn([nT ], x) = g(x) and, for j = [ns], . . . , [nT ] − 1, vn(j, x) is defined as
a unique solution of the equation

vn(j, x)=π

(
Dn

+vn(j+1, x)+
1
n

f
(
j/n, x, vn(j, x),

√
nDn

−vn(j+1, x)
))

.(4.4)

Then yn
j/n = vn(j, xn

j/n), zn
j/n =

√
nDn− vn(j + 1, xn

j/n).

P r o o f. We proceed by induction. First note that since f and π are Lip-
schitz functions, the solution of (4.4) is unique for n>L. By definition we have
vn([nT ], xn

[nT ]/n) = g(xn
[nT ]/n) = yn

[nT ]/n. Suppose that

yn
(j+1)/n = vn(j + 1, xn

(j+1)/n).

As
Dn

+vn(j + 1, xn
j/n) = E

(
vn(j + 1, xn

(j+1)/n)|Fn
j/n

)

and
Dn
−vn(j + 1, xn

j/n) = E
(
vn(j + 1, xn

(j+1)/n)εn
j+1|Fn

j/n

)

we have zn
j/n =

√
nDn−vn(j + 1, xn

j/n) and

hn
j/n = Dn

+vn(j + 1, xn
j/n) +

1
n

f
(
j/n, xn

j/n, π(hn
j/n),

√
nDn
−vn(j + 1, xn

j/n)
)
.

Since yn
j/n = π(hn

j/n) and the solution of (4.4) is unique, the lemma follows. ¥

PROPOSITION 4.1. Let un(t, x) = vn(j, x), t ∈ [
j/n, (j + 1)/n

)
, x ∈ Rm,

n > L. For each fixed s ∈ [0, T ], the sequence un(s, ·) converges uniformly on
compact sets in Rm to u(s, ·), where u is a solution of the system (4.3).

The proof of this proposition runs analogously to the proof of Theorem 5.2 in
[2], so we omit it.
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REMARK 4.1. Suppose that v̂n satisfies v̂n([nT ], x) = g(x),

v̂n(j, x)=π

(
Dn

+v̂n(j+1, x)+
1
n

f
(
j/n, x, Dn

+v̂n(j+1, x),
√

n Dn
−v̂n(j+1, x)

))

for j = [ns], . . . , [nT ]− 1. Then we have

ŷn
j/n = v̂n(j, xn

j/n)

and
ẑn
j/n =

√
nDn
−v̂n(j + 1, xn

j/n),

where ŷn
j/n satisfies

ŷn
j/n = ŷn

(j+1)/n +
1
n

f(j/n, xn
j/n, ȳn

j/n, ẑn
j/n)− 1√

n
ẑn
j/nεn

j+1 + ∆k̂n
(j+1)/n

for j = [nT ] − 1, . . . , [ns]. Moreover, if we define ûn(t, x) = v̂n(j, x),
t ∈ [

j/n, (j + 1)/n
)
, x ∈Rm, then ûn(s, ·)→ u(s, ·), where u is a solution of

the system (4.3).
Observe that the equality ŷn

(j+1)/n = v̂n(j + 1, xn
(j+1)/n) implies that ȳn

j/n =
(ŷn

(j+1)/n|Fn
j/n) = Dn

+v̂n(j + 1, xn
j/n). Therefore the result follows by Proposi-

tions 2.1 and 4.1.

4.2. Discrete RBSDE and the obstacle problem for elliptic PDE. As in the
previous section let D = [a1, b1] × [a2, b2] × . . . × [ad, bd] and let, moreover,
assume that the functions b, σ, f do not depend on time. For each x ∈ Rm let Xx

denote the solution of the SDE

Xx
t = x +

t∫
0

b(Xx
s )ds +

t∫
0

σ(Xx
s )dWs, t ∈ R+.(4.5)

Let G be an open bounded set in Rm. Define τx=inf{t­0;Xx
t /∈G} and assume

that supx∈Ḡ E exp(λτx)(1 + |Xτx |2q) <∞. It can be shown that the mapping
x 7→ τx is a.s. continuous ([15], Proposition 4.1). Consider now for each x ∈ Ḡ
the following RBSDE:

Y x
t∧τx = g(Xx

τx)+
τx∫

t∧τx

f(Xx
s , Y x

s , Zx
s )ds−

τx∫
t∧τx

Zx
s dWs + Kx

τx −Kx
t∧τx(4.6)

for t∈R+. Under the assumptions (i)–(iii), u(x) = Y x
0 , x∈ Ḡ, is a continuous

function, which is a viscosity solution of the following obstacle problem:
{

min
(
ui(x)− ai, max

(
ui(x)− bi,−F i

u(x)
))

= 0, x ∈ G,

u(x) = g(x), x ∈ ∂G,
(4.7)
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for i = 1, . . . , d, where

F i
u(x) = fi

(
x, u(x),∇uσ(x)

)
+ Lui(x) = fi

(
x, u(x),∇uσ(x)

)

+
1
2

∑

1¬j,l¬m

∂2ui

∂xj∂xl
(x)(σσT )jl(x) +

∑

1¬j¬m

∂ui

∂xj
(x)bj(x)

(see [16]). In what follows we propose a numerical scheme for (4.7) which uses
the discrete approximation of RBSDE (4.6).

Let us fix x∈ Ḡ. As in Theorem 3.1, we need to approximate the stopping
time τx by a sequence of bounded stopping times {τx,n}. We also assume that

(Wn, τx,n) D−→(W, τx). Let Tx,n ∈N be such that τx,n ¬ Tx,n and let τx,n
j =

(j/n) ∧ ([nτx,n]/n), j ∈ N. We set xn
0 = x and

xn
τx,n
j+1

= xn
τx,n
j

+
1
n

b(xn
τx,n
j

) +
1√
n

σ(xn
τx,n
j

)εn
j+1

for j = 0, 1, . . . , nTx,n − 1. Observe that Xx,n defined as Xx,n
t = xn

τx,n
[nt]

satisfies

Xx,n
t = x +

t∧τx,n∫
0

b(Xx,n
s− )d%n

s +
t∧τx,n∫

0

σ(Xx,n
s− )dWn

s , t ∈ R+.

Furthermore, (Xx,n,Wn, τx,n) D−→(Xx,W, τx), where Xx is given by (4.5).
The next step is to solve the discrete RBSDE. Assume that

sup
n

E exp(λτx,n)(1 + |Xn
τx,n |2q) <∞.

Put yn
τx,n
j

= g(xn
τx,n
j

), zn
τx,n
j

= 0, ∆kn
τx,n
j+1

= 0 on the set {τx,n ¬ j/n} and as in

Section 3 solve the equation

yn
τx,n
j

= yn
τx,n
j+1

+
1
n

f(xn
τx,n
j

, yn
τx,n
j

, zn
τx,n
j

)1{[nτx,n]>j} −
1√
n

zn
τx,n
j

εn
j+1 + ∆kn

τx,n
j+1

on the set {[nτx,n] > j} for j = nTx,n, . . . , 0. Let us put

Dn
+u(x) =

1
2

u

(
x +

1
n

b (x) +
1√
n

σ (x)
)

+
1
2

u

(
x +

1
n

b (x)− 1√
n

σ (x)
)

,

Dn
−u(x) =

1
2

u

(
x +

1
n

b (x) +
1√
n

σ (x)
)
− 1

2
u

(
x +

1
n

b (x)− 1√
n

σ (x)
)

.

LEMMA 4.2. Assume that un: Ḡ → D, n > L, satisfies un(x) = g(x) for
x ∈ ∂G and, for x ∈ G, un(x) is defined as a unique solution of the equation

un(x) = π

(
Dn

+un(x) +
1
n

f
(
x, un(x),

√
nDn

−un(x)
))

.(4.8)

Then yn
τx,n
j

= un(xn
τx,n
j

), zn
τx,n
j

=
√

nDn−un(xn
τx,n
j

)1{[nτx,n]>j}, j = 0, . . . , nTx,n.
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P r o o f. We proceed by induction. Since xn
τx,n∈∂G, we have yn

τx,n=g(xn
τx,n)

= un(xn
τx,n). Note that it is enough to consider the case {[nτx,n] > j}. Suppose

that yn
τx,n
j+1

= un(xn
τx,n
j+1

). Then

zn
τx,n
j

=
√

nE
(
un(xn

τx,n
j+1

)εn
j+1|Fn

j/n

)
1{[nτx,n]>j} =

√
nDn
−un(xn

τx,n
j

)1{[nτx,n]>j}.

On the set {[nτx,n] > j} we have E
(
un(xn

τx,n
j+1

)|Fn
j/n

)
= Dn

+un(xn
τx,n
j

) and

hn
τx,n
j

= E
(
un(xn

τx,n
j+1

)|Fn
j/n

)
+

1
n

f
(
xn

τx,n
j

, π(hn
τx,n
j

), zn
τx,n
j

)

= Dn
+un(xn

τx,n
j

) +
1
n

f
(
xn

τx,n
j

, π(hn
τx,n
j

),
√

nDn
−un(xn

τx,n
j

)
)
.

Since yn
τx,n
j

= π(hn
τx,n
j

) and the solution of (4.8) is unique (functions f and π are

Lipschitz), the proof is complete. ¥

PROPOSITION 4.2. Let un(x), x ∈ Ḡ, n > L, be as defined above. Then
un(x)→ u(x), where u is a solution of (4.7).

P r o o f. Observe that if x ∈ ∂G, then un(x) = g(x) = u(x). Take x ∈ G.
We have un(x) = un(xn

0 ) = yn
0 = Y x,n

0 and u(x) = Y x
0 . Since Y x,n

0 , Y x
0 are

constant, by Theorem 3.1 we get the result. ¥

REMARK 4.2. Assume that ûn(x) = g(x), x ∈ ∂G, and

ûn(x) = π

(
Dn

+ûn(x) +
1
n

f
(
x,Dn

+ûn(x),
√

nDn
−ûn(x)

))
,

x∈G. Then we have ŷn
τx,n
j

= ûn(xn
τx,n
j

), ẑn
τx,n
j

=
√

nDn−ûn(xn
τx,n
j

)1{[τx,n]>j}, j =

0, . . . , Tx,n, where ŷn, ẑn are as in Section 3.
Moreover, for every x ∈ Ḡ, ûn(x)→ u(x), where u is a solution of (4.7).

4.3. Backward stochastic viability property. In this section we investigate
a viability property in a general convex domain D̄ ⊂ Rd for solutions of non-
reflected BSDEs with random terminal time

(4.9) Yt∧τ = g(Xτ ) +
τ∫

t∧τ

f(s,Xs, Ys, Zs)ds−
τ∫

t∧τ

ZsdWs, t ∈ R+.

We recall that a stochastic process {Yt}t∈R+ is viable in D̄ if and only if for each
t ∈ R+

Yt(ω) ∈ D̄ P-a.s.

Following [4], we assume that the generator f satisfies
〈
h− π(h), f

(
t, x, π(h), z

)〉 ¬ Cd2(h) P-a.s.(4.10)

for every (t, x, z) ∈ R+ ×Rm ×Rd×m and for all h ∈ Rd such that d2(·) is twice
differentiable at h, where d(·) denotes the distance function from the set D̄.
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COROLLARY 4.1. Assume that (i)–(v) and (4.10) hold and that τ is an F
stopping time of the form τ = inf{t ­ 0; |Wt| > a}. Then the process {Yt}t∈R+

being the first component of the solution (4.9) is viable in D̄.

P r o o f. Consider the sequence of stopping times τn as in Example 3.1, i.e.
τn = inf{t ­ 0; |Wn

t | > a}∧n. Put τ (M) = τ∧M and τn,(M) = τn∧M, M ∈ N.
Define Xn, Y n, Zn,Kn as in Section 3 but with τn replaced by τn,(M). By (2.6)
and (2.7), for every j = 0, . . . , [nTn]− 1 we have

|∆kn
τn
j+1
|2 = 〈hn

τn
j
− π(hn

τn
j
), hn

τn
j
− π(hn

τn
j
)〉

=
〈

yn
τn
j+1

+
1
n

f
(
j/n, π(hn

τn
j
), zn

τn
j

)− 1√
n

zn
τn
j
εn
j+1−yn

τn
j
, hn

τn
j
− π(hn

τn
j
)
〉

¬
〈

yn
τn
j+1
− yn

τn
j
− 1√

n
zn
τn
j
εn
j+1, h

n
τn
j
− π(hn

τn
j
)
〉

+
C

n
|hn

τn
j
− π(hn

τn
j
)|2

¬
〈
− 1√

n
zn
τn
j
εn
j+1, h

n
τn
j
− π(hn

τn
j
)
〉

+
C

n
|∆kn

τn
j+1
|2,

where the first inequality follows by (4.10) and the second one by (2.7). Thus,
for sufficiently large n, E|∆kn

τn
j+1
|2 = 0, and hence Kn = 0. Since τn,(M) is

bounded uniformly in n, supn E exp(λτn,(M))(1 + |Xn
τn,(M) |2q) <∞. Moreover,

(Wn, τn,(M)) D−→(W, τ (M)). Therefore, by Theorem 3.1,

(
Xn, Y n,

·∫
0

Zn
s−dWn

s ,Kn,Wn
) D−→(

X(M), Y (M),
·∫
0

Z(M)
s dWs, 0,W

)

in D(R+,Rm×D̄×R2d×Rm), where (Y (M), Z(M)) is a solution of the equation

Y
(M)

t∧τ (M) = g(Xτ (M))+
τ (M)∫

t∧τ (M)

f(s,Xs, Y
(M)
s , Z(M)

s )ds−
τ (M)∫

t∧τ (M)

Z(M)
s dWs, t ∈ R+,

such that, for every M ∈ N and t ∈ R+, Y
(M)
t ∈ D̄ P-a.s. Since τ (M) → τ a.s.

and g(Xτ (M))→ g(Xτ ) a.s., Y τ (M)

t → Y τ
t a.s., where Yt is the first component of

the solution (4.9). Hence Yt ∈ D̄ P-a.s., i.e., Y is viable in D̄. ¥

5. PROOFS

Before proving main results from Sections 2 and 3 we will give four technical
lemmas.
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LEMMA 5.1. Assume that (i)–(iii) hold. For every T >0 and p­1 there ex-
ists a constant C > 0 such that for every n ∈ N and a ∈ D

E
(

sup
t¬T
|Y n

t − a|2p +
( T∫

0

‖Zn
t−‖2d%n

t

)p
+ |Kn|2p

T

)

¬ CE
(|g(Xn

T )− a|2p +
T∫
0

|f(%n
t−, Xn

t−, a, 0)|2pd%n
t

)
.

P r o o f. Let us first show that

E(sup
t¬T
|Y n

t |2p + ‖Zn
t ‖2p) <∞.(5.1)

To prove it, we proceed by induction. For j = [nT ]− 1,

E|yn
(j+1)/n|2p = E|g(xn

(j+1)/n)|2p ¬ κ2pE(1 + |Xn
T |q)2p <∞.

Therefore, ‖zn
j/n‖2p ¬ np

∥∥E(‖yn
(j+1)/nεj+1‖2p|Fn

j/n)
∥∥ is integrable. Since

|yn
j/n| = |π(hn

j/n)| ¬ |hn
j/n| =

∣∣∣∣E(yn
(j+1)/n|Fn

j/n) +
1
n

f(j/n, xn
j/n, yn

j/n, zn
j/n)

∣∣∣∣

¬ E(|yn
(j+1)/n||Fn

j/n) +
1
n
|f(j/n, xn

j/n, yn
j/n, zn

j/n)|

¬ E(|yn
(j+1)/n||Fn

j/n) +
L

n
(|yn

j/n|+ ‖zn
j/n‖) +

1
n
|f(j/n, xn

j/n, 0, 0)|,

E|yn
j/n|2p < ∞ for n such that n > L. It implies also that E|∆kn

(j+1)/n|2p < ∞.
Inductively, E(|Y n

t |2p + |Kn
t |2p) <∞, t ∈ [0, T ], and hence

E sup
t¬T
|Y n

t |2p ¬ E
[nT ]∑

j=1

|yn
(j−1)/n|2p <∞.

Moreover, observe that zn
j/n =

√
nE

(
(yn

(j+1)/n−yn
j/n)εn

j+1|Fn
j/n

)
implies that for

any p ∈ N

E
(T∫

t

‖Zn
s−‖2d%n

s

)p
= E

( [nT ]−1∑

j=[nt]

‖zn
j/n‖2

1
n

)p

¬ ppE([Y n]Tt )p.(5.2)
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Fix a ∈ D. By Itô’s formula,

|Y n
t − a|2p + p(2p− 1)

T∫
t

|Y n
s− − a|2p−2d[Y n]s

¬ |g(Xn
T )− a|2p

+2p
T∫
t

|Y n
s− − a|2p−2(Y n

s− − a)f(%n
s−, Xn

s−, Y n
s−, Zn

s−)d%n
s

+2p
T∫
t

|Y n
s− − a|2p−2(Y n

s− − a)dKn
s

−2p
T∫
t

|Y n
s− − a|2p−2(Y n

s− − a)Zn
s−dWn

s .

(5.3)

In the rest of the proof C will denote a constant the values of which may change
from line to line but do not depend on n. By (2.7) and the fact that |Y n

s− − a|2p−2

is nonnegative, the third component on the right-hand side of the above inequality
is less than or equal to zero. By the Burkholder–Davis–Gundy inequality and by
Hölder’s inequality,

E sup
t¬T

∣∣ T∫
t

|Y n
s− − a|2p−2(Y n

s− − a)Zn
s−dWn

s

∣∣(5.4)

¬ C(E sup
t¬T
|Y n

t − a|2p)1/2
(
E

T∫
0

|Y n
s− − a|2p−2‖Zn

s−‖2d%n
s

)1/2

¬ 1
4p

E sup
t¬T
|Y n

t − a|2p + C2pE
T∫
0

|Y n
s− − a|2p−2‖Zn

s−‖2d%n
s <∞.

(It follows by (5.1) and the fact that the last component of (5.4) is bounded by
C

(
E

∫ T

0
|Y n

s− − a|2pd%n
s

)(2p−2)/2p(
E

∫ T

0
‖Zn

s−‖2pd%n
s

)1/p
<∞.) Therefore, tak-

ing the expectation and using Young’s inequality from (5.3) we obtain

E
(|Y n

t −a|2p + p(2p− 1)
T∫
t

|Y n
s− − a|2p−2‖Zn

s−‖2d%n
s

)

¬ E|g(Xn
T )− a|2p

+CE
T∫
t

|f(%n
s−, Xn

s−, a, 0)|2pd%n
s + CE

T∫
t

|Y n
s− − a|2pd%n

s

+
p(2p− 1)

2
E

T∫
t

|Y n
s− − a|2p−2‖Zn

s−‖2d%n
s .
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Hence, by Gronwall’s lemma,

E
(|Y n

t − a|2p +
T∫
t

|Y n
s− − a|2p−2‖Zn

s−‖2d%n
s

)
(5.5)

¬ CE
(|g(Xn

T )− a|2p +
T∫
t

|f(%n
s−, Xn

s−, a, 0)|2pd%n
s

)
.

Combining (5.3) with (5.4) and (5.5) we get

E sup
t¬T
|Y n

t − a|2p ¬ CE
(|g(Xn

T )− a|2p +
T∫
0

|f(%n
s−, Xn

s−, a, 0)|2pd%n
s

)
.

Now, observe that by (5.3)

[Y n]T ¬ |g(Xn
T )− a|2 + 2

T∫
0

(Y n
s− − a)f(%n

s−, Xn
s−, Y n

s−, Zn
s−)d%n

s

− 2
T∫
0

(Y n
s− − a)Zn

s−dWn
s .

Therefore, by (5.2) and arguments used previously, we obtain

E
(T∫
0

‖Zn
s−‖2d%n

s

)p ¬ CE
(|g(Xn

T )− a|2p +
T∫
0

|f(%n
s−, Xn

s−, a, 0)|2pd%n
s

)
.

To complete the proof note that since E(yn
(j+1)/n|Fn

j/n) ∈ D̄ and

hn
j/n = E(yn

(j+1)/n|Fn
j/n) +

1
n

f(j/n, xn
j/n, yn

j/n, zn
j/n),

we have

|Kn|T =
[nT ]∑

j=1

|∆kn
j/n| =

[nT ]∑

j=1

|dist(hn
(j−1)/n, D̄)|

¬
[nT ]∑

j=1

1
n

∣∣f(
(j − 1)/n, xn

(j−1)/n, yn
(j−1)/n, zn

(j−1)/n

)∣∣

=
T∫
0

|f(%n
s−, Xn

s−, Y n
s−, Zn

s−)|d%n
s

¬
T∫
0

(
L(|Y n

s− − a|+ ‖Zn
s−‖) + |f(%n

s−, Xn
s−, a, 0)|)d%n

s .

Therefore, by previous estimates we obtain

E|Kn|2p
T ¬ CE

(|g(Xn
T )− a|2p +

T∫
0

|f(%n
s−, Xn

s−, a, 0)|2pd%n
s

)
. ¥
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Before proving the second lemma we introduce some notation. We denote by
M2

d(0, T ; γ) the set of F progressively measurable d-dimensional processes X

such that E
∫ T

0
eγt|Xt|2dt < ∞, and byMn,2

d (0, T ; γ) the set of Fn adapted d-

dimensional processes Xn such that E
∫ T

0
exp(γ%n

t )|Xn
t−|2d%n

t < ∞. Moreover,
we set

B2 =M2
d(0, T ; γ)×M2

d×m(0, T ; γ)

and
B2

n =Mn,2
d (0, T ; γ)×Mn,2

d×m(0, T ; γ).

Clearly, if we set

‖(Y, Z)‖2γ = E
T∫
0

exp(γt)(|Yt|2 + ‖Zt‖2)dt

and

‖(Y n, Zn)‖2n,γ = E
T∫
0

exp(γ%n
t )(|Y n

t−|2 + ‖Zn
t−‖2)d%n

t ,

then (B2, ‖ · ‖γ) and (B2
n, ‖ · ‖n,γ) are Banach spaces.

LEMMA 5.2. (a) Define Φ:B2 → B2 by putting Φ(U, V ) = (Y, Z), where
Y and Z are the first two components of the solution (Y, Z, K) of the following
RBSDE:

Yt = g(XT ) +
T∫
t

f(s,Xs, Us, Vs)ds−
T∫
t

ZsdWs + KT −Kt.

Then, for γ ­ 4L2 + 1, Φ is a contraction in (B2, ‖ · ‖γ).
(b) Define Φn:B2

n → B2
n by putting Φ(Un, V n) = (Y n, Zn), where Y n and

Zn are the first two components of the solution (Y n, Zn,Kn) of the following
RBSDE:

Y n
t = g(Xn

T ) +
T∫
t

f(%n
s−, Xn

s−, Un
s−, V n

s−)d%n
s −

T∫
t

Zn
s−dWn

s + Kn
T −Kn

t .

Then, for γ ­ 4L2 + 1, Φn is a contraction in (B2
n, ‖ · ‖n,γ).

P r o o f. We will only give the proof of (b). The proof of (a) follows by the
same method. Let (Un, V n), (Ūn, V̄ n) ∈ B2

n and set (Y n, Zn) = Φn(Un, V n),
(Ȳ n, Z̄n) = Φn(Ūn, V̄ n). Using Itô’s formula for any γ ∈ R we get

E exp(γ%n
t )|Y n

t − Ȳ n
t |2

+ γE
T∫
t

exp(γ%n
s )|Y n

s− − Ȳ n
s−|2ds + E

T∫
t

exp(γ%n
s )d[Y n − Ȳ n]s
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= 2E
T∫
t

exp(γ%n
s )(Y n

s− − Ȳ n
s−)

(
f(%n

s−, Xn
s−, Un

s−, V n
s−)

− f(%n
s−, Xn

s−, Ūn
s−, V̄ n

s−)
)
d%n

s

+ 2E
T∫
t

exp(γ%n
s )(Y n

s− − Ȳ n
s−)d(Kn

s − K̄n
s )

¬ 4L2E
T∫
t

exp(γ%n
s )|Y n

s− − Ȳ n
s−|2d%n

s

+
1
2
E

T∫
t

exp(γ%n
s )(|Un

s− − Ūn
s−|2 + ‖V n

s− − V̄ n
s−‖2)d%n

s .

Notice that exp(γ%n
s ) ¬ exp(γs) for s ∈ [(j − 1)/n, j/n). Since

E
T∫
0

‖Zn
s− − Z̄n

s−‖2d%n
s ¬ E[Y n − Ȳ n]T ,

putting γ = 4L2 + 1 we obtain

E
T∫
0

exp(γ%n
s )(|Y n

s− − Ȳ n
s−|2 + ‖Zn

s− − Z̄n
s−‖2)d%n

s

¬ 1
2
E

T∫
0

exp(γ%n
s )(|Un

s− − Ūn
s−|2 + ‖V n

s− − V̄ n
s−‖2)d%n

s ,

which completes the proof. ¥

LEMMA 5.3. Assume (Y, H,K) are continuous and (Y n,Hn,Kn), n∈N,
are càdlàg processes satisfying Yt = Ht + KT −Kt and Y n

t = Hn
t + Kn

T −Kn
t ,

where Y, Ȳ take values in D̄, K, Kn are processes of bounded variation such
that K0 = Kn

0 = 0 and
∫ T

0
(Yt − At)dKt¬0,

∫ T

0
(Y n

t− − At)dKn
t ¬0 for every

process A with values in D̄. Then

|Y n
t − Yt|2 +

∑

t<s¬T

|∆Kn
s |2

¬ |Hn
t −Ht|2 + 2

T∫
t

(
Hn

t −Ht − (Hn
s− −Hs)

)
d(Kn

s −Ks).

P r o o f. By Itô’s formula and assumptions,

|Kn
T −Kn

t − (KT −Kt)|2

= 2
T∫
t

(
Kn

T −Kn
s− − (KT −Ks)

)
d(Kn

s −Ks)−
∑

t<s¬T

|∆Kn
s −∆Ks|2



60 K. Jańczak

= 2
T∫
t

(
Y n

s− −Hn
s− − (Ys −Hs)

)
d(Kn

s −Ks)−
∑

t<s¬T

|∆Kn
s |2

¬ −2
T∫
t

(Hn
s− −Hs)d(Kn

s −Ks)−
∑

t<s¬T

|∆Kn
s |2.

Since

|Y n
t − Yt|2 = |Hn

t −Ht|2 + |Kn
T −Kn

t − (KT −Kt)|2
+ 2〈Hn

t −Ht,K
n
T −Kn

t − (KT −Kt)〉,
by the above inequality, we have

|Y n
t − Yt|2 +

∑

t<s¬T

|∆Kn
s |2

¬ |Hn
t −Ht|2− 2

T∫
t

(Hn
s−−Hs)d(Kn

s −Ks) + 2
T∫
t

(Hn
t −Ht)d(Kn

s −Ks),

which completes the proof. ¥

LEMMA 5.4. Assume that (i)–(v) hold and

sup
n

E exp(λτn)(1 + |Xn
τn |2q) <∞.

(a) There exists a constant C > 0 such that for every n ∈ N and a ∈ D

E
(

sup
t¬τn

exp(λt)|Y n
t − a|2 +

τn∫
0

exp(λ%n
t )‖Zn

t−‖2d%n
t + |Kn|2τn

)

¬ CE
(
exp(λτn)|g(Xn

τn)− a|2 +
τn∫
0

exp(λ%n
t )|f(%n

t−, Xn
t−, a, 0)|2d%n

t

)
.

(b) The solution of (3.2) is unique.

P r o o f. (a) Similarly to the proof of Lemma 5.1 one can show that

E( sup
t¬τn

exp(λt)|Y n
t |2 + ‖Zn

t ‖2 + |Kn
t |2) <∞.

By Itô’s formula,

exp
(
λ(t ∧ τn)

)|Y n
t∧τn − a|2 + λ

τn∫
t∧τn

exp(λs)|Y n
s− − a|2d%n

s +
τn∫

t∧τn

exp(λ%n
s )d[Y n]s

¬ exp(λτn)|g(Xn
τn)− a|2 + 2

τn∫
t∧τn

exp(λ%n
s )(Y n

s−− a)f(%n
s−, Xn

s−, Y n
s−, Zn

s−)d%n
s

− 2
τn∫

t∧τn

exp(λ%n
s )(Y n

s− − a)Zn
s−dWn

s
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¬ exp(λτn)|g(Xn
τn)− a|2 + (2µ + L2/ε + η)

τn∫
t∧τn

exp(λ%n
s )|Y n

s− − a|2d%n
s

+ ε
τn∫

t∧τn

exp(λ%n
s )‖Zn

s−‖2d%n
s +

1
η

τn∫
t∧τn

exp(λ%n
s )|f(%n

s−, Xn
s−, a, 0)|2d%n

s

− 2
τn∫

t∧τn

exp(λ%n
s )(Y n

s− − a)Zn
s−dWn

s .

Choosing ε < 1 and η > 0 such that 2µ + L2/ε + η < λ, by (5.2) we get

E
(

exp
(
λ(t ∧ τn)

)|Y n
t∧τn − a|2 +

τn∫
t∧τn

exp(λ%n
s )‖Zn

s−‖2d%n
s

)

¬ CE
(
exp(λτn)|g(Xn

τn)− a|2 +
τn∫

t∧τn

exp(λ%n
s )|f(%n

s−, Xn
s−, a, 0)|2d%n

s

)
.

Using similar arguments to those in the proof of Lemma 5.1 we complete the proof
of part (a).

(b) Suppose that (Y n, Zn,Kn) and (Ỹ n, Z̃n, K̃n) are two solutions of (3.2).
By Itô’s formula,

exp
(
λ(t ∧ τn)

)|Y n
t∧τn − Ỹ n

t∧τn |2 + λ
τn∫

t∧τn

exp(λs)|Y n
s− − Ỹ n

s−|2d%n
s

+
τn∫

t∧τn

exp(λ%n
s )d[Y n − Ỹ n]s

¬(2µ + L2/ε)
τn∫

t∧τn

exp(λ%n
s )|Y n

s−−Ỹ n
s−|2d%n

s + ε
τn∫

t∧τn

exp(λ%n
s )‖Zn

s−−Z̃n
s−‖2d%n

s

− 2
τn∫

t∧τn

exp(λ%n
s )(Y n

s− − Ỹ n
s−)(Zn

s− − Z̃n
s−)dWn

s .

Now, we choose ε < 1 such that 2µ + L2/ε < λ. Integrating the above inequality,
by (5.2) we prove the lemma. ¥

P r o o f o f T h e o r e m 2.1. (a) Note that (b) implies (a) easily. By the
Skorokhod representation theorem there exists a probability space (Ω̃, G̃, P̃) with
a Wiener process W̃ and Bernoulli symmetric sequences {ε̃n

j }j∈N such that

sup
t¬T
|W̃n

t − W̃t| P−→0,

where W̃n
t = n−1/2

∑[nt]
j=1 ε̃n

j , t ∈ R+. Then, by part (b), as n→∞, we get

Ẽ
(
sup
t¬T
|Ỹ n

t − Ỹt|2 +
T∫
0

‖Z̃n
t− − Z̃t‖2dt + sup

t¬T
|K̃n

t − K̃t|2
)→ 0.
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Since L(
X̃n, Ỹ n,

∫ ·
0

Z̃n
s−dW̃n

s , K̃n, W̃n
)

= L(
Xn, Y n,

∫ ·
0

Zn
s−dWn

s , Kn,Wn
)

and L(
X̃, Ỹ ,

∫ ·
0

Z̃sdW̃s, K̃, W̃
)

= L(
X, Y,

∫ ·
0

ZsdWs,K, W
)
, part (a) easily

follows.
(b) We will follow the proof of Theorem 2.1 in [2]. Consider the decomposi-

tions:

Y n − Y = (Y n − Y n,(q)) + (Y n,(q) − Y (q)) + (Y (q) − Y ),

Zn − Z = (Zn − Zn,(q)) + (Zn,(q) − Z(q)) + (Z(q) − Z),(5.6)

Kn −K = (Kn −Kn,(q)) + (Kn,(q) −K(q)) + (K(q) −K),

where the superscript (q) stands for the approximation of the solution to the
RBSDE by the Picard method. More precisely, set Y

(0)
t = E

(
g(XT )|Ft

)
, Y

n,(0)
t =

E
(
g(Xn

T )|Fn
t

)
, K

(0)
t = K

n,(0)
t = 0,

T∫
t

Z(0)
s dWs = g(XT )− E

(
g(XT )|Ft

)
,

T∫
t

Z
n,(0)
s− dWn

s = g(Xn
T )− E

(
g(Xn

T )|Fn
t

)
,

and then define (Y (q+1), Z(q+1),K(q+1)) and (Y n,(q+1), Zn,(q+1),Kn,(q+1)) as
solutions of the equations

Y
(q+1)
t = g(XT ) +

T∫
t

f(s,Xs, Y
(q)
s , Z(q)

s )ds

−
T∫
t

Z(q+1)
s dWs + K

(q+1)
T −K

(q+1)
t

(5.7)

and

Y
n,(q+1)
t = g(Xn

T ) +
T∫
t

f(%n
s−, Xn

s−, Y
n,(q)
s− , Z

n,(q)
s− )d%n

s

−
T∫
t

Z
n,(q+1)
s− dWn

s + K
n,(q+1)
T −K

n,(q+1)
t ,

(5.8)

respectively. Norms ‖ ·‖γ and ‖ ·‖0 are equivalent, so by Lemma 5.2 it follows that

E
T∫
0

(|Y (q)
t − Yt|2 + ‖Z(q)

t − Zt‖2)dt→ 0
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and

sup
n∈N

E
T∫
0

(|Y n,(q)
t− − Y n

t−|2 + ‖Zn,(q)
t− − Zn

t−‖2)d%n
t → 0

as q →∞. Since, by the Burkholder–Davis–Gundy inequality,

E sup
t¬T
|Y (q)

t − Yt|2 ¬ CE
T∫
0

(|Y (q)
t − Yt|2 + ‖Z(q)

t − Zt‖2)dt

+ E
T∫
0

(|Y (q−1)
t − Yt|2 + ‖Z(q−1)

t − Zt‖2)dt

and

E sup
t¬T
|Y n,(q)

t − Y n
t |2 ¬ CE

T∫
0

(|Y n,(q)
t− − Y n

t−|2 + ‖Zn,(q)
t− − Zn

t−‖2)d%n
t

+ E
T∫
0

(|Y n,(q−1)
t− − Y n

t−|2 + ‖Zn,(q−1)
t− − Zn

t−‖2)d%n
t ,

we have

E sup
t¬T
|Y (q)

t − Yt|2 + sup
n∈N

E sup
t¬T
|Y n,(q)

t − Y n
t |2 → 0 as q →∞,

which implies also that

E sup
t¬T
|K(q)

t −Kt|2 → 0 and sup
n∈N

E sup
t¬T
|Kn,(q)

t −Kn
t |2 → 0

as q → ∞. Hence the first and the third components of the decompositions (5.6)
converge to zero. The convergence of the second term will be shown by induction
on q. Let q=0. Recall that Kn,(0) =K(0) =0. Since {Wn} is a sequence of pro-

cesses with independent increments such that supt¬T |Wn
t −Wt| P−→0, we obtain

sup
t¬T
|E(H|Fn

t )− E(H|Ft)| P−→ 0(5.9)

for every FT -measurable integrable random variable H (see, e.g., [6], Proposi-
tion 2 and Remark 1). From (5.9) and the maximal Doob inequality it follows that
if E|H|p <∞, p ∈ N, then

E sup
t¬T
|E(H|Fn

t )− E(H|Ft)|p → 0, p ∈ N.(5.10)

Hence, in particular, E supt¬T |Y n,(0)
t − Y

(0)
t |2 tends to zero and

E
T∫
0

‖Zn,(0)
s− − Z(0)

s ‖2ds→ 0.
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Now, assume that the convergence holds for fixed q. We will prove it for q + 1. To
simplify the notation we drop the superscript (q), so that equations (5.7) and (5.8)
become

Yt = g(XT ) +
T∫
t

f(s,Xs, Us, Vs)ds−
T∫
t

ZsdWs + KT −Kt, t ∈ [0, T ],

and

Y n
t = g(Xn

T ) +
T∫
t

f(%n
s−, Xn

s−, Un
s−, V n

s−)d%n
s −

T∫
t

Zn
s−dWn

s + Kn
T −Kn

t ,

respectively, where

(U, V ) = (Y (q), Z(q)), (Y, Z) = (Y (q+1), Z(q+1)),

(Un, V n) = (Y n,(q), Zn,(q)), (Y n, Zn) = (Y n,(q+1), Zn,(q+1)).

By assumption, (Un, V n) converges to (U, V ). We have to prove that (Y n, Zn,Kn)
converges to (Y, Z,K). We begin by studying the convergence of Kn

T to KT . By
Itô’s formula,

|KT −Kn
T |2 +

∑

t¬T

|∆Kn
t |2 = 2

T∫
0

(
KT −Kt − (Kn

T −Kn
t−)

)
d(Kt −Kn

t )

= 2
T∫
0

(Yt − Y n
t−)d(Kt −Kn

t )− 2
T∫
0

(
g(XT )− g(Xn

T )
)
d(Kt −Kn

t )

− 2
T∫
0

( T∫
t

f(s, Xs, Us, Vs)ds−
T∫
t−

f(%n
s−, Xn

s−, Un
s−, V n

s−)d%n
s

)
d(Kt −Kn

t )

+ 2
T∫
0

( T∫
t

ZsdWs −
T∫
t−

Zn
s−dWn

s

)
d(Kt −Kn

t ).

Due to (2.7) the first term on the right-hand side of the above equality is less than
or equal to zero. On the other hand, by Lemma 5.1, supn E|Kn|pT < ∞, p∈ N,
and by the arguments from the proof of Lemma 5.2 in [8] (pp. 122 and 126)
E|K|pT < ∞. Therefore, the convergence of (Xn, Un, V n) to (X, U, V ) implies
that the second and the third terms converge to zero in probability. What is left
is to show that the fourth component of the above equality converges to zero. To
simplify the notation let us put Nt =

∫ t

0
ZsdWs and Nn

t =
∫ t

0
Zn

s−dWn
s . Now the

fourth component is equal to

T∫
0

(NT −Nt)dKt +
T∫
0

(Nn
T −Nn

t−)dKn
t −

T∫
0

(NT −Nt)dKn
t

−
T∫
0

(Nn
T −Nn

t−)dKt = I1 + I2 − I3 − I4.
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Clearly, E|NT |p +supn E|Nn
T |p <∞, p ∈ N. Since N is a continuous martingale

with respect to F and K is a continuous process of finite variation,

EI1 = ENT KT −E
T∫
0

Nt dKt = ENT KT − E
(
NT KT −

T∫
0

Kt dNt

)
= 0.

Similarly, since Nn is a martingale with respect toFn and Kn is a process of finite
variation,

EI2 = ENn
T Kn

T − E
(
Nn

T Kn
T −

T∫
0

Kn
t−dNn

t −
∑

t¬T

∆Nn
t ∆Kn

t

)
= 0.

To estimate EI3 set Bn
t = E(NT |Fn

t ). Since Bn is an Fn martingale,

E
T∫
0

E(NT |Fn
t )dKn

t = E
T∫
0

Bn
t dKn

t = E
∑

t¬T

∆Bn
t ∆Kn

t + E
T∫
0

Bn
t−dKn

t

= E
∑

t¬T

∆Bn
t ∆Kn

t + E
(
Bn

T Kn
T −

T∫
0

Kn
t−dBn

t −
∑

t¬T

∆Bn
t ∆Kn

t

)

= EBn
T Kn

T = ENT Kn
T = E

T∫
0

NT dKn
t .

By the above and (5.10),

EI3 = E
T∫
0

(NT −Nt)dKn
t = E

T∫
0

(
E(NT |Fn

t )−Nt

)
dKn

t

= E
T∫
0

(
E(NT |Fn

t )− E(NT |Ft)
)
dKn

t

¬ (
E sup

t¬T
|E(NT |Fn

t )− E(NT |Ft)|2
)1/2

(E|Kn|2T )1/2 → 0

as n→∞. It remains to prove that EI4 → 0. Let us write K%n

t = Kj/n for
t ∈ [

j/n, (j + 1)/n
)

and Gn
t = E(K%n

t |Fn
t ). Since Nn

t is Fn
t -measurable,

ENn
(j−1)/nKj/n = ENn

(j−1)/nGn
j/n,

ENn
(j−1)/nK(j−1)/n = ENn

(j−1)/nGn
(j−1)/n,
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and, as a consequence,

E
T∫
0

Nn
t−dKt = E

[nT ]∑

j=1

Nn
(j−1)/n(Gn

j/n −Gn
(j−1)/n) = E

T∫
0

Nn
t−dGn

t

= E
(
Nn

T Gn
T −

T∫
0

Gn
t−dNn

t −
[nT ]∑

j=1

∆Gn
j/n∆Nn

j/n

)

= ENn
T Gn

T − E
[nT ]∑

j=1

∆Gn
j/n ∆Nn

j/n.

Since ENn
T Gn

T = ENn
T E(KT |Fn

T ) = ENn
T KT ,

EI4 = E
[nT ]∑

j=1

∆Gn
j/n ∆Nn

j/n

¬ (
E

[nT ]∑

j=1

|Nn
j/n −Nn

(j−1)/n|2
)1/2(

E
[nT ]∑

j=1

|Gn
j/n −Gn

(j−1)/n|2
)1/2

¬ (sup
n

E[Nn]T )1/2(E[Gn]T )1/2.

The first term on the right-hand side of the above inequality is bounded, so we
need to prove that the second one converges to zero. Since K%n

is a process of
finite variation, it can be decomposed into a difference of two increasing processes
K%n

= K%n+ −K%n− such that K%n+
T ¬ |K%n |T and K%n−

T ¬ |K%n |T . More-
over, the processes Gn+

t = E(K%n+
t |Fn

t ), Gn−
t = E(K%n−

t |Fn
t ), t ∈ [0, T ], are

submartingales, so from [6], p. 317, and by Lemma 5.1 in Section 5 it follows that
for any p ∈ N

sup
n
‖Gn‖Hp(S) ¬ sup

n
‖Gn+‖Hp(S) + sup

n
‖Gn−‖Hp(S)

¬ Cp sup
n

(E sup
t¬T
|Gn+

t |p)1/p + Cp sup
n

(E sup
t¬T
|Gn−

t |p)1/p

¬ 2Cp sup
n

(E|K%n |pT )1/p ¬ 2Cp(E|K|pT )1/p <∞,

where ‖ · ‖Hp(S) means the norm of a special semimartingale X with a canonical

decomposition X = M + A which is defined by ‖X‖Hp(S) = ‖[M ]1/2
T ‖Lp +

‖|A|T ‖Lp . Therefore, Gn satisfies the (UT) condition considered in [11]. Moreover

supt¬T |Gn
t − Kt| P−→0. To see this we first note that from Theorem 1 and the

Comment on p. 319 in [6] we have

sup
t¬T
|E(Kt|Fn

t )−Kt| P−→0.
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Next, by Doob’s inequality,

E sup
t¬T
|Gn

t −E(Kt|Fn
t )|2¬E sup

t¬T

∣∣E(sup
t¬T
|K%n

t −Kt| |Fn
t )

∣∣2 ¬ 4E sup
t¬T
|K%n

t −Kt|2.

Since K is a continuous process, Gn P−→K. Hence, by Theorem 1.4 in [9] (see
also [11]) we deduce that also

∑[nT ]
j=1 |∆Gn

j/n|2 = [Gn]T
P−→[K]T = 0. Moreover,

since E[Gn]2T ¬ C‖Gn‖H4(S) ¬ C(E|K%n |4T )1/4 <∞, we obtain E[Gn]T → 0.
This implies that E|Kn

T −KT |2 → 0.
In order to complete the proof notice that the process

Mn
t = Y n

t +
t∫
0

f(%n
s−, Xn

s−, Un
s−, V n

s−)d%n
s + Kn

t

is an Fn martingale, which satisfies

Mn
t = Mn

0 +
t∫
0

Zn
s−dWn

s .(5.11)

Set Mt = Yt +
∫ t

0
f(s,Xs, Us, Vs)ds + Kt. Then we have

|Mn
T −MT | =

∣∣Mn
T − YT −

T∫
0

f(s,Xs, Us, Vs)ds−KT

∣∣

¬ |g(Xn
T )− g(XT )|+ |Kn

T −KT |

+
∣∣T∫
0

f(%n
s−, Xn

s−, Un
s−, V n

s−)d%n
s −

T∫
0

f(s,Xs, Us, Vs)ds
∣∣.

Since we have already known that Kn
T →KT in L2, from our assumptions on

Xn, Un, V n it follows that Mn
T →MT in L2. Hence, by (5.10) we deduce that

E supt¬T |Mn
t −Mt|2→0 and, in particular, Y n

0 →Y0. By (5.11) and by Theo-
rem 3.1 in [2],

E
T∫
0

‖Zn
t− − Zt‖2dt→ 0,

where Mt = M0 +
∫ t

0
ZsdWs. Thus, E supt¬T |Y n

t − Yt + Kn
t − Kt|2 → 0.

Now, set Hn
t = g(Xn

T )+
∫ T

t
f(%n

s−, Xn
s−, Un

s−, V n
s−)d%n

s −
∫ T

t
Zn

s−dWn
s and Ht =

g(XT ) +
∫ T

t
f(s,Xs, Us, Vs)ds−

∫ T

t
ZsdWs. Since we have shown that

sup
t¬T
|Hn

t −Ht| P−→0 and E|K|T + sup
n

E|Kn|T <∞,

by Lemma 5.3 it follows that supt¬T |Y n
t −Yt| P−→0. Hence supt¬T |Kn

t −Kt| P−→0.
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Moreover, by Lemma 5.1, E supt¬T |Yt|4 + supn E supt¬T |Y n
t |4 < ∞, which

implies that
E sup

t¬T
(|Y n

t − Yt|2 + |Kn
t −Kt|2)→ 0

and the proof is complete. ¥

P r o o f o f P r o p o s i t i o n 2.1. Similarly to the proof of Lemma 5.1 one
can show that

sup
n

E
(
sup
t¬T
|Ŷ n

t − a|2 +
T∫
0

‖Ẑn
t−‖2d%n

t + sup
t¬T
|K̂n

t |2
)

<∞.(5.12)

By Itô’s formula and (2.8),

exp(γ%n
t )|Y n

t − Ŷ n
t |2 + γ

T∫
t

exp(γs)|Y n
s−−Ŷ n

s−|2ds

+
T∫
t

exp(γ%n
s )d[Y n−Ŷ n]s

¬ 2
T∫
t

exp(γ%n
s )(Y n

s−−Ŷ n
s−)

(
f(%n

s−, Xn
s−, Y n

s−, Zn
s−)

− f(%n
s−, Xn

s−, Ȳ n
s−, Ẑn

s−)
)
d%n

s

+ 2
T∫
t

exp(γ%n
s )(Y n

s−−Ŷ n
s−)d(Kn

s −K̂n
s )

− 2
T∫
t

exp(γ%n
s )(Y n

s−−Ŷ n
s−)(Zn

s−−Ẑn
s−)dWn

s

¬ 4L2
T∫
t

exp(γ%n
s )|Y n

s− − Ŷ n
s−|2d%n

s

+
1
2

T∫
t

exp(γ%n
s )(|Y n

s−−Ȳ n
s−|2 + ‖Zn

s−−Ẑn
s−‖2)d%n

s

− 2
T∫
t

exp(γ%n
s )(Y n

s− − Ŷ n
s−)(Zn

s− − Ẑn
s−)dWn

s .

(5.13)

Note that for s = j/n, j ∈ N,

E|Y n
s− − Ȳ n

s−|2 ¬ 2E|Y n
s− − Ŷ n

s−|2 + 2E|Ŷ n
s− − Ȳ n

s−|2

¬ 2E|Y n
s− − Ŷ n

s−|2 +
2
n2

E|f(%n
s−, Xn

s−, Ȳ n
s−, Ẑn

s−)|2,
where the last inequality follows from the fact that

Ŷ n
s− = π

(
Ȳ n

s− +
1
n

f(%n
s−, Xn

s−, Ȳ n
s−, Ẑn

s−)
)

.
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Moreover, E|Ȳ n
s− − a|2 = E|E(Ŷ n

s − a|Fn
s−)|2 ¬ E|Ŷ n

s − a|2. Therefore, setting
γ = 4L2 + 1 and integrating (5.13) we have

E exp(γ%n
t )|Y n

t − Ŷ n
t |2 +

1
2

E
T∫
t

exp(γ%n
s )‖Zn

s− − Ẑn
s−‖2d%n

s

¬ 1
n2

E
T∫
t

exp(γ%n
s )|f(%n

s−, Xn
s−, Ȳ n

s−, Ẑn
s−)|2d%n

s

¬ C

n2
E

T∫
t

exp(γ%n
s )

(|Ȳ n
s− − a|2 + ‖Ẑn

s−‖2 + |f(%n
s−, Xn

s−, a, 0)|2)d%n
s

¬ C

n2
E

T∫
t

exp(γ%n
s )

(|Ŷ n
s − a|2 + ‖Ẑn

s−‖2 + |f(%n
s−, Xn

s−, a, 0)|2)d%n
s .

By (5.12) it is obvious that the right-hand side of the above inequality tends to zero.
Moreover, since

2E sup
t¬T

∣∣ T∫
t

exp(γ%n
s )(Y n

s− − Ŷ n
s−)(Zn

s− − Ẑn
s−)dWn

s

∣∣

¬ CE
( T∫

0

exp(2γ%n
s )|Y n

s− − Ŷ n
s−|2‖Zn

s− − Ẑn
s−‖2d%n

s

)1/2

¬ 1
2
E sup

t¬T
exp(γt)|Y n

t − Ŷ n
t |2 + CE

T∫
0

exp(γ%n
t )‖Zn

t− − Ẑn
t−‖2d%n

t ,

in the same manner as before one can prove that

E sup
t¬T

exp(γ%n
t )|Y n

t − Ŷ n
t |2 → 0.

It implies also that E supt¬T |Kn
t − K̂n

t |2 → 0. ¥

P r o o f o f T h e o r e m 3.1. (a) Note that (b) implies (a) similarly to the
proof of Theorem 2.1. To see this it is sufficient to use the arguments from the
proof of Theorem 2.1 and to observe that if L(τ̃ , W̃ ) = L(τ, W ) (respectively,
L(τ̃n, W̃n) = L(τn, Wn)), then τ̃ is a stopping time with respect to the natural
filtration generated by a Wiener process W̃ (respectively, τ̃n is a stopping time
with respect to the natural filtration generated by a Wiener process W̃n) (see e.g.
[20], lemme 1.1.21).

(b) S t e p 1. Let M ∈ N and let ξM = E
(
g(Xτ )|FM

)
. Since ξM is FM -

measurable and f satisfies (i) and (ii) it follows by results of [8] that there exists
a unique solution (Y M

t , ZM
t , KM

t )t∈[0,M ] of the following RBSDE:

Y M
t =ξM +

M∫
t

1[0,τ ](s)f(s,Xs, Y
M
s , ZM

s )ds−
M∫
t

ZM
s dWs+KM

M −KM
t(5.14)
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for t ∈ [0,M ]. Notice that on the set {t ­ τ} we have ξM = g(Xτ ) = Y M
t and

ZM
t = 0, so (5.14) can be rewritten as

Y M
t = ξM +

M∧τ∫
t∧τ

f(s,Xs, Y
M
s , ZM

s )ds−
M∧τ∫
t∧τ

ZM
s dWs + KM

M∧τ −KM
t∧τ .

Moreover, note that

Yt = YM∧τ +
M∧τ∫
t∧τ

f(s,Xs, Ys, Zs)ds−
M∧τ∫
t∧τ

ZsdWs+KM∧τ−Kt∧τ , t ∈ [0,M ].

Now, similarly to the proof of Theorem 3.1 in [15], using Itô’s formula we have for
t ∈ [0, M ]

exp
(
λ(t ∧ τ)

)|Yt∧τ − Y M
t∧τ |2 +

M∧τ∫
t∧τ

exp(λs)(λ|Ys − Y M
s |2 + ‖Zs − ZM

s ‖2)ds

= exp
(
λ(M ∧ τ)

)|YM∧τ − Y M
M∧τ |2

+ 2
M∧τ∫
t∧τ

exp(λs)(Ys − Y M
s )

(
f(s,Xs, Ys, Zs)− f(s,Xs, Y

M
s , ZM

s )
)
ds

− 2
M∧τ∫
t∧τ

exp(λs)(Ys − Y M
s )(Zs − ZM

s )dWs

+ 2
M∧τ∫
t∧τ

exp(λs)(Ys − Y M
s )d(Ks −KM

s )

¬ exp
(
λ(M ∧ τ)

)|YM∧τ − ξM |2 + (2µ + L2/ε)
M∧τ∫
t∧τ

exp(λs)|Ys − Y M
s |2ds

+ ε
M∧τ∫
t∧τ

exp(λs)‖Zs − ZM
s ‖2ds−2

M∧τ∫
t∧τ

exp(λs)(Ys − Y M
s )(Zs − ZM

s )dWs.

Choosing ε such that ε < 1 and 2µ + L2/ε < λ we get

(5.15) E exp
(
λ(t ∧ τ)

)|Yt∧τ − Y M
t∧τ |2 + E

M∧τ∫
t∧τ

exp(λs)‖Zs − ZM
s ‖2ds

¬ CE exp
(
λ(M ∧ τ)

)|YM∧τ − ξM |2.

Analogously, choosing ε < 1 such that 2µ + L2/ε = λ′ < λ we get (5.15) with λ′

in place of λ. Since

E exp
(
λ(M ∧ τ)

)|YM∧τ − ξM |2
¬ 2E sup

t¬τ
exp(λt)|Yt|2 + 2E exp(λτ)|g(Xτ )|2 <∞
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and

E exp
(
λ′(M ∧ τ)

)|YM∧τ − ξM |2
¬ exp

(
(λ′ − λ)M

)
E exp

(
λ(M ∧ τ)

)|YM∧τ − ξM |2,

we have

E exp
(
λ′(t ∧ τ)

)|Yt∧τ − Y M
t∧τ |2 + E

M∧τ∫
t∧τ

exp(λ′s)‖Zs − ZM
s ‖2ds→ 0

as M →∞. Moreover, by the Burkholder–Davis–Gundy inequality,

E sup
t¬M

exp
(
λ′(t ∧ τ)

)|Yt∧τ − Y M
t∧τ |2 → 0

and, as a consequence,

E sup
t¬M
|Kt∧τ −KM

t∧τ |2 → 0 as M →∞.

S t e p 2. Let ξn
M = E

(
g(Xn

τn)|Fn
M

)
. For j = nM let us put yn,M

τn
j

= ξn
M =

E
(
g(Xn

τn)|Fn
M

)
, zn,M

τn
j

= 0, ∆kn,M
τn
j+1

= 0 and, as in Section 3, solve

yn,M
τn
j

= yn,M
τn
j+1

+
1
n

f(j/n, xn
τn
j
, yn,M

τn
j

, zn,M
τn
j

)1(τn>j/n) −
1√
n

zn,M
τn
j

εn
j+1 + ∆kn,M

τn
j+1

for j = nM−1, . . . , 0. Defining Y n,M
t = yn,M

τn
[nt]

, Zn,M
t = zn,M

τn
[nt]

, and Kn,M
t =

∑
j¬[nt] ∆kn,M

τn
j

we see that

Y n,M
t∧τn = ξn

M +
M∧τn∫
t∧τn

f(%n
s−, Xn

s−, Y n,M
s− , Zn,M

s− )d%n
s(5.16)

−
M∫

t∧τn

Zn,M
s− dWn

s + Kn,M
M∧τn −Kn,M

t∧τn , t ∈ [0, M ].

By (3.2) we have

Y n
t∧τn = Y n

M∧τn +
M∧τn∫
t∧τn

f(%n
s−, Xn

s−, Y n
s−, Zn

s−)d%n
s

−
M∧τn∫
t∧τn

Zn
s−dWn

s + Kn
M∧τn −Kn

t∧τn , t ∈ [0,M ].
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Therefore, using the fact that E
∫ t∧τn

0
‖Zn

s− − Zn,M
s− ‖2d%n

s ¬ E[Y n − Y n,M ]t∧τn

and

sup
n

E exp
(
λ(M ∧ τn)

)|Y n
M∧τn − ξn,M |2

¬ 2 sup
n

E
(

exp
(
λ(M ∧ τn)

)|Y n
M∧τn |2 + exp

(
λ(M ∧ τn)

)∣∣E(
g(Xn

τn)|Fn
M

)∣∣2
)

¬ 2 sup
n

E sup
t¬τn

exp(λt)|Y n
t |2 + 2 sup

n
E exp(λτn)|g(Xn

τn)|2 <∞

(see Lemma 5.4 (a)) and arguing as in Step 1 we conclude that

sup
n

E
(
sup
t¬M

exp(λ′t ∧ τn)|Y n
t∧τn − Y n,M

t∧τn |2

+
M∧τn∫
t∧τn

exp(λ′s)‖Zn
s− − Zn,M

s− ‖2d%n
s + sup

t¬M
|Kn

t∧τn −Kn,M
t∧τn |2

)→ 0

as M →∞.
S t e p 3. By the same method as in the proof of Theorem 2.1 (b) we show that

for any M ∈ N
(

sup
t¬M
|Y n,M

t∧τn − Y M
t∧τ |+

M∫
0

‖Zn,M
t−∧τn − ZM

t∧τ‖2dt + sup
t¬M
|Kn,M

t∧τn −KM
t∧τ |

) P−→0.

Combing this with results from Steps 1 and 2 completes the proof. ¥

P r o o f o f P r o p o s i t i o n 3.1. The proof runs similarly to the proof of
Proposition 2.1, so we omit it. ¥

P r o o f o f E x a m p l e 3.1. Obviously, it suffices to consider the case
where λ > 0. It is known (see [5], [20]) that P (Wt ∈ [−A,A]) ¬ 2A/

√
2πt

for any A > 0 and P x(τn > t) ¬ P (|Wn
t +x| ¬ a) = P (Wn

t ∈ [−a−x, a−x]),
where P x is such that P x(Wn

0 = x) = 1. Since

sup
x∈[−a,a]

|P (Wn
t ∈ [−a− x, a− x])− P (Wt ∈ [−a− x, a− x])| → 0

as n→∞, there exists n0 ∈ N such that for any n ­ n0

sup
x∈[−a,a]

P x(τn > t) ¬ 2a√
πt

.

Moreover, for n ­ n0 and k ∈ N
P

(
τn > (k + 1)t

)
= P (τn > kt, sup

s∈(kt,(k+1)t]
|Wn

s | ¬ a)

¬ E1{τn>kt}PW n
kt( sup

s∈(0,t]
|Wn

s | ¬ a)

¬ E1{τn>kt}PW n
kt(τn > t) ¬ P (τn > kt)

2a√
πt

,
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so iterating the above inequality yields P (τn > kt) ¬ (
2a/
√

πt
)k for n ­ n0.

Therefore, for u > 1 we have

E exp(λτn) =
∞∫
0

P
(
α ¬ exp(λτn)

)
dα

=
1∫
0

P
(
α ¬ exp(λτn)

)
dα +

∞∑

k=0

uk+1∫
uk

P
(
α ¬ exp(λτn)

)
dα

¬ 1+
∞∑

k=0

uk(u− 1)P
(
uk ¬ exp(λτn)

)

¬ 1+
∞∑

k=0

uk(u− 1)P (τn ­ k lnu/λ)

¬ 1 + (u− 1)
∞∑

k=0

(
u 2a
√

λ/
√

π lnu
)k

,

where the last inequality follows from the previous calculations for t = ln u/λ.
Hence supn E exp(λτn) <∞ if 2ua

√
λ/
√

π ln u < 1. ¥
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[14] J . Mémin, S. Peng and M. Xu, Convergence of solutions of discrete reflected backward
SDE’s with numerical simulations, preprint.

[15] É. Pardoux, Backward stochastic differential equations and viscosity solutions of systems of
semilinear parabolic and elliptic PDEs of second order, in: Stochastic Analysis and Related
Topics, VI (Geilo, 1996), pp. 79–127.
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