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Abstract. The paper gives some insight into the relations between two
types of Markov processes – in the strict sense and in the wide sense – as
well as into two aspects of periodicity. It concerns Markov processes with
finite state space, the elements of which are complex numbers. Firstly it is
shown that under some assumptions this space can be transformed in such
a way that the resulting Markov process is also Markov in the wide sense.
Next, sufficient conditions are given under which periodic homogeneous
Markov chain is a periodically correlated process.
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1. INTRODUCTION

The paper deals with a relation between the notion of a Markov process in
the strict sense (MP) and a Markov process in the wide sense (WM), also called
wide-sense Markov. These processes are considered both in a continuous time and
a discrete time; in the latter case they are called Markov chains (MC). For this,
let T be the set of time indices, i.e. T = [0,∞) for a continuous time and T =
{0, 1, . . . } ≡ N for a discrete time. We say that the process {Xt, t ∈ T } ≡ {Xt}
with values in C and mean zero is WM if for each positive integer m and t > t1 >
t2 > . . . > tm the following holds:

Ê[Xt|Xt1 , . . . , Xtm ] = Ê[Xt|Xt1 ],

where for the random vector Y = (Y1, . . . , Ym)T the notation Ê[X|Y1, . . . , Ym]
≡ Ê[X|Y] is used, which is the minimum mean-square error projection of random
variable X on the linear space generated by coordinates of Y, i.e. E

∣∣X−Ê[X|Y]
∣∣2

= mina∈Cm E|X − aTY|2. Here and below we use the notation xT for transposi-
tion of a vector or matrix x. If the discrete time WM process is stationary, then it
is an autoregressive process of order one, denoted by AR(1). The notion of WM



76 A. Kasprzyk and W. Szczotka

processes was introduced by J. L. Doob in [2], where he proved the following char-
acterization of such processes. Process {Xt} with E[Xt] = 0 and E|Xt|2 < ∞
is WM iff its normalized autocovariance function R(t, s) := E[XtXs](E|Xs|2)−1

satisfies the following functional equation, called the triangular relation:

R(t3, t1) = R(t3, t2)R(t2, t1) for each t3 > t2 > t1.(1.1)

This characterization indicates the second order nature of WM property. Hence in-
vestigation of the autocovariance function of the given process must be performed
in order to determine if the process is or not WM.

The main problem of the paper deals with comparing two types of Markov
property (Section 3) and two types of periodicity (Section 5). As for the first prob-
lem we compare properties of Markov process in the strict sense and in the wide
sense. Markov process in the strict sense has not to have numerical values, but if
we assume so, it has not to have the mean zero or finite second moment. Therefore
the strict MP has not to be Markov in the wide sense. In Section 4 we show that if
the infinitesimal operator of MP is diagonalizable and at least one of its right eigen-
vectors is real and has distinct coordinates, then MP can be transformed to a real-
valued WM process (Theorem 4.1). To get a complex-valued process it is enough to
assume that there exists a right eigenvector with distinct coordinates, which can be
also complex. A similar result is formulated for homogeneous Markov processes
in a discrete time, i.e. for homogeneous Markov chains (HMC) (Theorem 4.2). In
Section 5 we consider two types of periodicity of MP, namely, periodicity in the
usual sense of HMC (see [1], p. 72) and periodically correlated Markov chains.
Theorem 5.1 gives conditions under which a periodic HMC is periodically corre-
lated. Furthermore, we give an asymptotic of autocovariance function in a general
case of HMC.

2. PRELIMINARIES

In this section we introduce some notation and assumptions for homogeneous
Markov processes (HMP). Next, in terms of this notation we recall some well-
known results which will be used in next sections.

Let {Xt} be a continuous time HMP with finite state space X = {x0, . . . , xN},
xi ∈C, an irreducible transition probability matrix P(t)=

(
pij(t) : 06 i, j 6N

)
,

where pij(t)=P{Xt = xj |X0 = xi}, and an initial distribution p=(p0, . . . , pN ),
where pi = P{X0 = xi}, i = 0, 1, . . . , N . Assume that the transition semi-
group {P(t) : t > 0} is continuous at t = 0, i.e. limt→0 P(t) = P(0) = I,
where I is the identity matrix. Then (see [1], p. 339) it has an infinitesimal operator
Q = (qij : 0 6 i, j 6 N) which is stable, i.e. 0 6 −qii < ∞, and conservative,
i.e. Q1 = 0, where 1 := (1, 1, . . . , 1)T ∈ RN+1. Moreover,

P(t) = exp(tQ) =
∞∑

k=0

tkQk

k!
, t > 0.(2.1)
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The distribution of Xt at any time t > 0 is defined as

p(t) :=
(
p0(t), p1(t), . . . , pN (t)

)
, where pi(t) := P{Xt = xi}.

Its stationary distribution (if it exists) is denoted by π = (π0, π1, . . . , πN ). Hence
we have p = p(0), p(t) = pP(t), p(t + s) = p(t)P(s) and π = πP(t) for all
t > 0.

Recall that Q is diagonalizable (in [5] it is called simple) if there exist a di-
agonal matrix Λ and a nonsingular matrix H such that Q = HΛH−1. In this case,
P(t) is also diagonalizable, for each t > 0, by (2.1). Let λ0, λ1, . . . , λN be the
eigenvalues of Q such that Re λ0 > Re λ1 > . . . > Re λN and let l0, l1, . . . , lN
and r0, r1, . . . , rN be the sequences of the corresponding left and right eigenvec-
tors, respectively. Then the following holds:

PROPOSITION 2.1 (see [1], [5]). If Q is diagonalizable, then:
(i) Λ = diag(λ0, λ1, . . . , λN ) ;

(ii) the systems of eigenvectors {rj} and {lj} can be chosen in such a way
thatH = [r0, r1, . . . , rN ] andH−1 = [l0, l1, . . . , lN ]T , so they are quasi-biorthogo-
nal, i.e. lTj rk = δjk (see [5]); if all eigenvalues are distinct, then {rj} and {lj} are
uniquely determined;

(iii) λ0 = 0 > Re λ1 > . . . > Re λN (the Perron–Frobenius theorem; see [1]
or [5], [6], [9]);

(iv) r0 = (1, 1, . . . , 1) ∈ RN+1 and lT0 is the stationary distribution of {Xt},
i.e. lT0 = π.

If {rj} and {lj} are quasi-biorthogonal, then

Q =
N∑

j=0

λjGj , where Gj = rjlTj .(2.2)

Gj’s are called constituent matrices of Q (see [5]) and they have the following
properties: GjGk = δjkI,

∑N
j=0Gj = HH−1 = I, rank(Gj) = 1, and

Gjrk = δjkrk.(2.3)

The relation (2.3) implies spectral representation for the transition probability ma-
trix. Namely,

P(t) =
N∑

r=0

exp(tλr)Gr = HK(t)H−1,(2.4)

whereK(t) = diag
(
exp(tλ0), exp(tλ1), . . . , exp(tλN )

)
= exp(tΛ). This implies

that Q =
∑N

j=1 λjGj and the rank of Q is at most N . Furthermore, we have

P(t) = G0 +
N∑

j=1

exp (tλj)Gj = 1π + Z(t)→ 1π, t→∞,



78 A. Kasprzyk and W. Szczotka

whenever the process {Xt} is irreducible. This convergence implies that Z(t) con-
verges to zero matrix as t tends to infinity. Moreover, πZ(t) = 0T and Z(t)1 = 0.
In order to formulate the next auxiliary result let us put x := (x0, x1, . . . , xN )T

and D := diag(x). Then, obviously, D1 = x.

LEMMA 2.1. If {Xt, t ∈ [0,∞)} is HMP with initial distribution p, then
its moments Ep[Xt], Ep|Xt|2 and Ep[Xt+hXt] and its covariance function
Cov(Xt+h, Xt) have the following form:

µ(t;p) := Ep[Xt] = p(t)x, t > 0,(2.5)

µ2(t;p) := Ep|Xt|2 = p(t)Dx, t > 0,(2.6)

µ(t + h, t;p) := Ep[Xt+hXt] = p(t)DP(h)x, t > h > 0,(2.7)

Γ(t + h, t;p) := Cov(Xt+h, Xt) = p(t)D
(
I− 1p(t)

)
P(h)x.(2.8)

P r o o f. Formula (2.5) comes directly from the definition of expectation of
r.v. Xt. Formula (2.6) follows from Dx = (|x0|2, |x1|2, . . . , |xN |2)T and from the
definition of expectation of r.v. |Xt|2. To see (2.7) observe that

Ep[Xt+hXt] =
∑

i

∑

j

xjxiP(Xt+h = xj , Xt = xi)

=
∑

i

∑

j

xjxi P(Xh = xj |X0 = xi)P(Xt = xi)

=
∑

i

pi(t)
( ∑

j

pij(h)xj

)
xi = p(t)DP(h)x.

Finally, equality (2.8) is an immediate consequence of (2.5) and (2.7). Namely,

Cov(Xt+h, Xt) = µ(t + h, t;p)− µ(t;p)µ(t + h;p)

= p(t)DP(h)x− p(t)D1p(t)P(h)x = p(t)D
(
I− 1p(t)

)
P(h)x,

which completes the proof of the lemma. ¥

All the theory above can be easily adopted to the discrete time case if the
considered HMC is irreducible. The difference is that we consider the one-step
transition probability matrix P instead of infinitesimal operator Q. For this case
we denote the eigenvalues of P by κ0, κ1, . . . , κN , where κ0 = 1 > |κ1| >
. . . > |κN |, and the corresponding left and right eigenvectors by l0, l1, . . . , lN
and r0, r1, . . . , rN , respectively, as in the continuous case. The assertions (ii) and
(iv) of Proposition 2.1 remain valid and the analogue of (2.4) can be expressed in
the following proposition.

PROPOSITION 2.2 (see [1], p. 196). If the transition probability matrix P of
HMC is irreducible and diagonalizable, then its spectral representation has the
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following form:

Pn =
N∑

j=0

κn
jGj = HKnH−1,

where K = diag(κ0, κ1, . . . , κN ) and Gj = rjlTj .

LEMMA 2.2. If {Xt, t∈N} is HMC with initial distribution p, then the fol-
lowing holds:

µ(n;p) = p(n)x, n > 0,(2.9)

µ2(n;p) = p(n)Dx, n > 0,(2.10)

µ(n + h, n;p) = p(n)DP(h)x, n > h > 0,(2.11)

Γ(n + h, n;p) = p(n)D
(
I− 1p(n)

)
P(h)x, n > h > 0.(2.12)

The following theorem from [4] gives the form of the spectral density for
stationary non-periodic HMC.

THEOREM 2.1 (Lai [4]). Let the transition probability matrix P be irreducible,
aperiodic and diagonalizable with stationary distribution π. Then the stationary
HMC {Xn} with the state space X = {0, 1, . . . , N} and the transition probability
matrix P has the following spectral density function:

f(ω) =
1
2π

N∑

j=1

τj(1− κ2
j )

|1− κjeiω|2 , −π 6 ω 6 π,

where τj = πDGjx and i2 = −1. Moreover, this process is an autoregressive
process of order one if the following conditions hold:

(i) all eigenvalues κj are distinct and real,
(ii) either πDrj = 0 or lTj x = 0 for all j = 2, 3, . . . , N (where rj and lj are

the right and left eigenvectors, respectively, corresponding to κj).

3. TWO TYPES OF MARKOV PROPERTY

This section deals with a relation between the Markov property and Markov
property in the wide sense for process {Xt} with complex state space and general
time index set T .

THEOREM 3.1. Let {Xt} be an HMP with complex state space, E[Xt] = 0
and E|Xt|2 <∞ for all t ∈ T . If E[Xt|Xs] = a(t, s)Xs, where a(t, s) ∈ C, then
{Xt} is a Markov process in the wide sense.

P r o o f. By the assumption that E[Xt|Xs] = a(t, s)Xs for some a(t, s) ∈ C
and by the properties of conditional expectation and the linear prediction we have
the following relations:
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E|Xt − a(t, s)Xs|2 = E
∣∣Xt −E[Xt|Xs]

∣∣2,
E

∣∣Xt−E[Xt|Xs]
∣∣2 = E

∣∣Xt−E[Xt|Xr, r 6 s]
∣∣2 6 E

∣∣Xt−Ê[Xt|Xr, r 6 s]
∣∣2

6 E
∣∣Xt − Ê[Xt|Xs]

∣∣2 6 E|Xt − a(t, s)Xs|2 = E
∣∣Xt −E[Xt|Xs]

∣∣2.
Hence

Ê[Xt|Xr, r 6 s] P1= Ê[Xt|Xs] and Ê[Xt|Xs] = E[Xt|Xs],

which gives the assertion of the theorem. ¥

The following corollary is an immediate consequence of Theorem 3.1.

COROLLARY 3.1 (see [2]). If {Xt} is a Gaussian HMP with mean zero, then
{Xt} is a WM process.

Reynolds gave an analytical condition for HMP with discrete state space for
which E[Xt|Xs] is a linear function of Xs (see [7], formula (11)). Some queueing
example of such a process is also given there.

It is clear that Markov process with mean zero has not to be Markov process
in the wide sense. To see this it is enough to consider HMP with autocovariance
function not satisfying the triangular condition (1.1). The autocovariance function
for HMP withQ diagonalizable with state space X = {0, 1, . . . , N} is given in [8]
in the following form:

γ(h) = Γ(t + h, t; π) =
N∑

j=1

τj exp(λjh),

where τj = πDGjx. It is obvious that this function satisfies the triangular condition
(1.1) iff the given sum reduces to the single term, e.g. τj = 0 for all j > 1.

The following corollary is an immediate consequence of Theorems 2.1
and 3.1.

COROLLARY 3.2. Let {Xn} be a stationary HMC with mean zero and with
transition probability matrix P satisfying the conditions of Theorem 2.1 jointly with
conditions (i) and (ii). Then {Xn} is a WM process in a discrete time.

4. TRANSFORMATION OF MARKOV PROCESS
TO A MARKOV PROCESS IN THE WIDE SENSE

4.1. Continuous time case. Let {Xt} be a continuous time HMP with infinites-
imal operator Q and let A and B mean the following conditions:

A. The infinitesimal operator Q is diagonalizable and at least one of its right
eigenvectors, say r = (r0, r1, . . . , rN )T, is such that all its coordinates are distinct,
i.e. ri 6= rj for i 6= j.

B. The eigenvector satisfying the condition A is real, i.e. r ∈ RN+1.
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Condition B implies that the eigenvalue λ corresponding to r is also real, i.e.
λ ∈ R. For r satisfying the condition A let us define transformation g : X →
X̃ = {r0, r1, . . . , rN} as follows: g(xi) = ri, where ri is the i-th coordinate of the
eigenvector r. Thus we can identify the state space X̃ with coordinates of r. Let us
associate with an HMP {Xt} with the infinitesimal operatorQ an HMP {X̃t} with
state space X̃ and the same infinitesimal operator Q.

THEOREM 4.1. If the infinitesimal operator Q satisfies the condition A, then
the HMP {X̃t} is a WM process for any initial distribution p such that pr = 0.
If the initial distribution p is the stationary distribution π for {Xt}, then {X̃t} is
WM with the covariance function of the following form:

γ(h) := Γ(t + h, t;π) = eλhµ2,(4.1)

where µ2 := Eπ|X0|2 ≡
∑N

i=0 πi|xi|2, π = (π0, π1, . . . , πN ) and λ is the eigen-
value corresponding to the eigenvector r.

If additionally the condition B is satisfied, then {X̃t} is a real-valued WM
process.

P r o o f. We shall show that for the process {X̃t} we have Ep[X̃t] = 0 and
the triangular property (1.1) holds for any initial distribution p. First observe that
from Lemma 2.1 we get the formulas for moments of the process {X̃t}. Namely,

µ(t;p) := Ep[X̃t] = p(t)r, t > 0,

µ2(t;p) := Ep|X̃t|2 = p(t)Dr, t > 0,

µ(t + h, t;p) := Ep[X̃t+hX̃t] = p(t)DP(h)r, t > h > 0,

where D = diag(r) and D is the conjugate of D. Notice that r 6= r0 = 1 as we de-
mand that r has all coordinates distinct. Thus, if λ is the eigenvalue corresponding
to r, then Re λ < 0. Moreover, by (2.2), properties of Gj’s and the relation (2.3)
we get P(h)r = eλhr, where λ is the eigenvalue corresponding to r. This in turn
gives

µ(t + h, t;p) = eλhµ2(t;p)(4.2)

and

µ(t;p) = eλtµ(0;p) = eλtpr = 0(4.3)

by the assumption that pr = 0. Hence the normalized autocovariance is of the
form R(u, t) = µ(u, t;p)µ2(t;p)−1 = eλ(u−t), u > t, which implies

R(u, s) = eλ(u−s) = eλ(u−t)eλ(t−s) = R(u, t)R(t, s), u > t > s.

Thus the triangular property holds.
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Now observe that π = lT0 and r 6= r0, so πr = 0, which gives µ(t; π) =
eλtµ(0; π) = 0 for all t > 0. Similarly, µ(t + h, t; π) = eλhµ2(t; π). If p = π,
then {X̃t} is stationary and µ2(t; π) = µ2(0;π) = µ2, which implies

γ(h) = µ(t + h, t;π) = eλhµ2.

Thus the first part of the theorem is proved.
If condition B is satisfied, then the state space X̃ consists of real numbers and

the eigenvalue λ corresponding to r must be also real. Consequently, Γ(u, t;p) is
also real. This completes the proof of the theorem. ¥

4.2. Discrete time case. It is clear that Theorem 4.1 holds for a discrete time
HMC under the following reformulations of conditions A and B:

A′. The one-step transition probability matrix P of HMC is diagonalizable
and at least one of its right eigenvectors, say r = (r0, . . . , rN )T, is such that ri 6= rj

for i 6= j.
B′. The eigenvector satisfying the condition A′ is real, i.e. r ∈ RN+1.
Analogously to the continuous case, condition B′ implies that the eigenvalue

κ of P corresponding to r is real, i.e. κ ∈ R. Let us associate with an HMP {Xn}
with state space X = {x0, x1, . . . , xN} and transition probability matrix P an HMP
{X̃n} with state space X̃ = {r0, r1, . . . , rN} and the same transition probability
matrix P. Now, we have the following analogue of Theorem 4.1 for the discrete
time case.

THEOREM 4.2. If the transition probability matrix P satisfies the condition
A′, then the HMC {X̃n} is a WM process for any initial distribution p such that
pr = 0. If the initial distribution p is the stationary distribution π, then the co-
variance function of {X̃n} is of the following form:

γ(h) = κhµ2, h ∈ N,(4.1′)

where µ2 := Eπ|X0|2 ≡
∑N

i=0 πi|xi|2, π = (π0, π1, . . . , πN ) and κ is the eigen-
value corresponding to the eigenvector r.

If additionally the condition B′ is satisfied, then {X̃n} is a real-valued WM
process.

P r o o f. The proof carries over from the proof of Theorem 4.1 with the only
difference that eλ should be replaced with eigenvalue κ of P. Then, for example,
formulas (4.2) and (4.3) take the following form:

µ(n + h, n;p) = κhµ2(n;p)(4.2′)

and

µ(n;p) = κnµ(0;p) = κnpr = 0.(4.3′)
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Then the normalized autocovariance function is of the form R(n,m) = κn−m,
n > m. Thus the triangular relation (1.1) obviously holds.

In the stationary case we have µ2(n; π) = µ2(0, π) ≡ µ2. Moreover, πr = 0,
and hence µ(n; π) = 0, n > 0, which gives the formula (4.1′). This completes the
proof of the theorem. ¥

5. TWO TYPES OF PERIODICITY

In this section we consider a relation between two types of periodicity of
HMC. The first one is the periodicity of HMC in the usual sense as defined, for
example, in [1], p. 72. The second type is defined by periodicity of the covari-
ance function. We say that the process {Xt} is periodically correlated with period
T > 0 if

E[Xt] = E[Xt+T ], t ∈ T ,

and
E[XtXs] = E[Xt+T Xs+T ], t, s ∈ T ,

where T is the smallest number with this property.
Let {Xn} be irreducible HMC with finite state space X = {x0, x1, . . . , xN}.

Thus it is positive recurrent and its stationary distribution is unique. We shall show
that if {Xn} is periodic with period T , then it is periodically correlated with some
period T ′ if its initial distribution is of special form, i.e. it is cyclostationary (see
Definition 5.1). We can reduce the period of the autocovariance function by choos-
ing a special cyclostationary distribution. Furthermore, we investigate an asymp-
totic of the autocovariance function of {Xn} depending on its initial distribution.

We assume that the HMC {Xn} with state space X = {x0, x1, . . . , xN},
where N < ∞, xr ∈ C, is periodic with period T > 1. Then X consists of
T disjoint subspaces X0, X1, . . . , XT−1, called cyclic classes (see [1]), such
that X =

⋃T−1
i=0 Xi and

∑
x∈Xi

P(Xn = x | Xn−1 = y) = 1 for y ∈ Xi−1,
i = 1, 2, . . . , T with XT = X0. Let Di denote the set of indices of elements from
the i-th cyclic class and assume, for simplicity, that for each i = 0, 1, . . . , T − 2
the elements of the cyclic class Xi have smaller indices than elements of the class
Xi+1. Then the transition probability matrix P has the following superdiagonal
block form:

P =




S0,1 · · ·
S1,2 · · ·

...
...

. . . . . .
...

· · · ST−2,T−1

ST−1,0 · · ·



,(5.1)

where the empty entries are zeros. The matrix Si,i+1 represents the probability
transitions in one step from the cyclic class Xi to Xi+1, i.e.

∑
s∈Di+1

pr,s = 1 for
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r ∈ Di, where DT := D0. If |Xi| = Ni, then the block Si,i+1 has size Ni ×Ni+1

for i = 0, 1, . . . , T − 2 and ST−1,0 has size NT−1 × N0, i.e. the matrix P is
(N0, N1, . . . , NT−1)-superdiagonal (in the terminology of [6]). Then

PT = diag(P(0),P(1), . . . ,P(T−1)),

where Pn = Pn−1P, n > 0, and

P(i) := Si,i+1 . . .ST−1,0S0,1 . . . Si−1,i.

For each i = 0, 1, . . . , T − 1 the block P(i) is of size Ni × Ni and is a transition
probability matrix of the irreducible and non-periodic HMC {X(i)

n = XTn} with
the state space Xi. Let 1i := (1, 1, . . . , 1)T ∈ RNi , i = 0, 1, . . . , T − 1. The
following lemma will be used in the proof of the next results. Its assertions can be
found in [3], however not stated explicitly, so we show our simple proof of it.

LEMMA 5.1. Let {Xn} be an irreducible, periodic HMC with period T and
a finite state space X =

⋃T−1
i=0 Xi, where Xi’s are its cyclic classes. Let the row

vectors π(i) ∈ RNi be some probability distributions on Xi, i = 0, 1, . . . , T − 1.
Then the following statements are equivalent:

(i) π = T−1(π(0), π(1), . . . , π(T−1)) is a stationary distribution of the pro-
cess {Xn};

(ii) π(i)Si,i+1 = π(i+1) for i = 0, 1, . . . , T − 2 and π(T−1)ST−1,0 = π(0);
(iii) π(i) is a stationary distribution of {X(i)

n } for i = 0, 1, . . . , T − 1.

P r o o f. The equivalence of (i) and (ii) is obvious. If (i) holds, then πP = π
and πPT = π. Hence for each i = 0, 1, . . . , T − 1 the equality π(i)P(i) = π(i)

holds, which gives (iii). Suppose now that (iii) holds and p is the stationary dis-
tribution of {Xn}. If we divide the vector p into T subvectors of length Ni, i.e.
p = (p(0),p(1), . . . ,p(T−1)), such that p(i) ∈ RNi , then also p(i)P(i) = p(i) for
each i. However, by uniqueness of the stationary distribution of the irreducible and
positive recurrent HMC, applied to the process {X(i)

n }, we get p(i) = qiπ
(i) for

some constant qi. Moreover, p(i)Si,i+1 = p(i+1) and qiπ
(i)Si,i+1 = qi+1π

(i+1).
Therefore, postmultiplying each side of this equation by 1i+1 we get qi = qi+1,
i = 0, 1, . . . , T − 2, which implies qi = T−1. This shows that p = π, which
completes the proof of the lemma. ¥

DEFINITION 5.1. Let {Xn} be an irreducible periodic HMC with period
T > 1, state space X =

⋃T−1
i=0 Xi, where Xi’s are its cyclic classes, and with

the transition probability matrix P of the form (5.1). We say that a probability dis-
tribution p on the state space X is a cyclostationary distribution for {Xn} if

pPT = p.
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Let π(i) be the stationary distribution of {X(i)
n }, i = 0, 1, . . . , T−1, and define

the mapping π : CT → CN+1 in the following way:
If a = (a0, a1, . . . , aT−1) ∈ CT , then

π(a) ≡ π(a0, a1, . . . , aT−1) := (a0π
(0), a1π

(1), . . . , aT−1π
(T−1)).

In the next two lemmas we give a characterization of cyclostationary distribu-
tions together with some important properties. Before this, assume the following
notation. Let 〈m〉 := m MOD T for the integer m. For vector a = (a0, . . . , aT−1)
define an := (aT−n, . . . , aT−1, a0, . . . , aT−n−1) for 0 6 n < T, and then an :=
a〈n〉 for all n ∈ Z.

LEMMA 5.2. Let {Xn} be an HMC which is irreducible, periodic with period
T > 1, with finite state space X =

⋃T−1
i=0 Xi, where Xi’s are its cyclic classes, and

with the transition probability matrix P of the form (5.1). Then, for a probability
distribution p on X, the following statements are equivalent:

(i) p is a cyclostationary distribution of {Xn};
(ii) p = π(q0, . . . , qT−1) for some probability vector q = (q0, . . . , qT−1);
(iii) pPn is cyclostationary for all n > 0.

If we additionally assume that P is of full rank, then (i), (ii) and (iii) are equivalent
to the following condition:

(iv) pPn is cyclostationary for some n ∈ N.

P r o o f. First we show the equivalence (i) ⇔ (ii). Suppose (i) holds and di-
vide the vector p into T subvectors of length Ni, i.e. p = (p(0),p(1), . . . ,p(T−1)).
Then directly from Definition 5.1 we see that p(i)P(i) = p(i) for each i. This
implies p(i) = qiπ

(i) for some vector (q0, q1, . . . , qT−1), which must be the prob-
ability distribution. The converse implication is obvious.

The implication (ii)⇒ (iii) is a consequence of Lemma 5.1 (ii), which yields

π(q)Pn = π(qn).(5.2)

The converse implication is trivial.
Now we shall prove the equivalence (iv) ⇔ (ii) under the assumption that P

is full. Suppose that (iv) holds, i.e. pPn = π(qn) for some probability vector q.
This in view of (5.2) implies that there exists a row vector e = (e1, e2, . . . , eN ),∑

ej = 0, for which p = π(q) + e, and then

pPn = π(qn) + ePn.

Thus ePn=0, which is possible only for e=0 if P is full. Hence (iv) implies (ii).
The condition (ii) implies (iii) and the implication (iii)⇒ (iv) is trivial. This

completes the proof of the lemma. ¥
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LEMMA 5.3. Let the conditions of Lemma 5.2 hold. Then for all initial dis-
tributions p of {Xn} and for all integers 0 6 h < T the following convergence
holds:

lim
n→∞pPnT+h = π(qT−h . . . qT−1, q0, . . . , qT−h−1) ≡ π(qh),(5.3)

where qi = P(X0 ∈ Xi). If additionally P(X0 ∈ Xi) = T−1 holds true for all
i = 0, 1, . . . , T − 1, then

lim
n→∞pPn = π(T−1, T−1, . . . , T−1) = π.

P r o o f. It is enough to show (5.3) for h = 0; then the general form for h > 1
comes from (5.2). Observe that qi = P(X0 ∈ Xi) =

∑
j∈Di

pj . Then p =
(q0p̃(0), q1p̃(1), . . . , qT−1p̃(T−1)) where for each i = 0, 1, . . . , T − 1 the vector
p̃(i) is a probability distribution on the cyclic class Xi. Now, observe that

pPnT =
(
q0p̃(0)(P(0))n, q1p̃(1)(P(1))n, . . . , qT−1p̃(T−1)(P(T−1))n

)

→ (q0π
(0), q1π

(1), . . . , qT−1π
(T−1)), n→∞,

which completes the proof of the lemma. ¥

THEOREM 5.1. Let {Xn} be an irreducible and periodic HMC with period
T > 1 and with a transition probability matrix P of the form (5.1). If an initial
distribution p is cyclostationary for {Xn}, then {Xn} is periodically correlated
with period T ′ which is a divisor of T . If p = π(q0, q1, . . . , qT−1), then T ′ is
a period of a sequence {q0, q1, . . . }, where we define qm := q〈m〉 for m > T .

P r o o f. Let B(n, h;q) := Cov
(
Xn+h, Xn; π(q)

)
, where n, h > 0. Using

the formulas for moments of HMC given in Lemma 2.2 we get the following

B(n, h;q) = µ
(
n + h, n; π(q)

)− µ
(
n + h; π(q)

)
µ
(
n; π(q)

)

= π(q)PnD
(
I− 1π(q)Pn

)
Phx.

Thus in view of (5.2) we get

B(n, h;q) = π(qn)D
(
I− 1π(qn)

)
Phx,

where qn := (qT−n . . . qT−1, q0, . . . , qT−n−1) for 0 6 n < T and qn := q〈n〉
for n > T . Thus the function B(n, h;q) is periodic in n with the period T ′ of the
sequence {q0, q1, . . . }. Obviously, T ′ is a divisor of T . ¥

Let {X◦n} be an irreducible and stationary HMC with transition probability
matrix P, and

{
X
◦(k)
n

}
be a stationary HMC with transition probability matrix

P(k). It means that their initial distributions are stationary distributions π and π(k),
respectively.
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LEMMA 5.4. Let {Xn} be an irreducible and periodic HMC with period
T > 1. Then for any x ∈ Xk and h > 0 the following convergence holds:

Cov(XnT+h, XnT |X0 = x)

→ ∑

i∈Dk

(E[XhX0|X0 = xi]− µ(k)E[Xh|X0 = xi])π
(k)
i , n→∞,

where µ(k) := E[X◦(k)
0 ] =

∑
i∈Dk

xiπ
(k)
i .

P r o o f. Notice that for any n > 1 and h > 0 the following relations hold:

E[XnT+hXnT |X0 = x] =
∑

i∈Dk

E[XhX0|X0 = xi]P(XnT = xi|X0 = x),

E[XnT+h|X0 = x] =
∑

i∈Dk

E[Xh|X0 = xi]P(XnT = xi|X0 = x), h > 0.

But
P(XnT = xi|X0 = x)→ π

(k)
i for i ∈ Dk and x ∈ Xk.

Hence, by the definition of the covariance

Cov(XnT+h, XnT |X0 = x)

= E[XnT+hXnT |X0 = x]−E[XnT+h|X0 = x]E[XnT |X0 = x]

and by the above equalities, we get the assertion of the lemma. ¥

LEMMA 5.5. Let {Xn} be an irreducible and periodic HMC with period
T > 1 and with transition probability matrix P given by (5.1). Then for any non-
negative integer h and n→∞ the following convergences hold:

1
n

n∑

k=1

E[Xk+hXk]→ E[X◦0X
◦
h],(5.4)

1
n

n∑

k=1

E[Xk]→ E[X◦0 ],(5.5)

1
T

T−1∑

i=0

E[Xn+i]→ E[X◦0 ].(5.6)

If the initial distribution p = (p0, p1, . . . , pN ) is such that qk :=
∑

i∈Dk
pi = T−1

for all k = 0, 1, . . . , T − 1, then

(5.7) E[Xn]→ E[X◦0 ].
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P r o o f. Notice that

1
n

n∑

k=1

E[XkXk+h] =
∑

i

1
n

n∑

k=1

E[XkXk+h|Xk = xi]P(Xk = xi)

=
∑

i

E[X0Xh|X0 = xi]
1
n

n∑

k=1

P(Xk = xi)

→∑

i

E[X0Xh|X0 = xi]πi = E[X◦0X
◦
h].

This proves the convergence (5.4). The proof of the second convergence runs over
in a similar way to the above.

To prove the convergence (5.6) notice first that

1
T

T−1∑

i=0

E[Xn+i] =
(

1
T

T−1∑

i=0

p(n + i)
)
x =

(
1
T

T−1∑

i=0

pPn+i

)
x,

where p is the initial distribution of {Xn}. Notice that

T−1∑

i=0

p(n + i) =
T−1∑

i=0

p(mnT + i)

for some positive integer mn. By (5.3) we have the following convergence:

lim
n→∞

1
T

T−1∑

i=0

pPmnT+i =
1
T

T−1∑

i=0

π(q〈i〉),

where q = (q0, q1, . . . , qT−1), and qi = P(X0 ∈ Xi). Moreover,

1
T

T−1∑

i=0

π(q〈i〉) =
1
T

π
( T−1∑

i=0

q〈i〉
)

=
1
T

π
(
1, 1, . . . , 1

)
= π.

This implies (
1
T

T−1∑

i=0

p(n + i)
)
x→ πx = E[X◦0 ],

which proves the convergence (5.6).
The convergence (5.7) comes from (5.3), where for each h = 〈h〉 we have

E[XmT+h] = pPmT+hx→ 1
T

π(1, 1, . . . , 1)x = πx = E[X◦0 ],

by the assumption that q0 = q1 = . . . = qT−1 = 1/T . This completes the proof of
the theorem. ¥
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THEOREM 5.2. Let {Xn} be an HMC, irreducible, recurrent, periodic with
period T > 1 and transition probability matrix P given by (5.1). Then for any
nonnegative integer h the following convergence holds:

(5.8)
1
n

n∑

k=0

Cov
(

Xk+h,
1
T

T−1∑

i=0

Xk−T+i

)
→ 1

T

T−1∑

i=0

γ(h + T − i),

where

(5.9) γ(h) = Cov(X◦0 , X◦h) = E[X◦0X
◦
h]− |E[X◦0 ]|2

and {X◦n} is the stationary process corresponding to {Xn}.
If the initial distribution p = (p0, p1, . . . , pN ) is such that qk :=

∑
i∈Dk

pi =
T−1 for all k = 0, 1, . . . , T − 1, then

(5.10)
1
n

n∑

k=0

Cov(Xk, Xk+h)→ γ(h),

where γ(h) is given by (5.9).

P r o o f. It is well known that the convergences

xn → x and
1
n

n∑

k=1

yk → y

imply the convergence
1
n

n∑

k=1

xkyk → xy.

Hence, using the form Cov(Xk, Xl) = E[XkX l]−E[Xk]E[X l] and convergences
(5.4)–(5.6) in Lemma 5.5, we get (5.8). The convergence (5.10) follows from (5.7)
in Lemma 5.5. This completes the proof of the theorem. ¥
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