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Abstract. For a certain class of one-dimensional diffusions X(t), we
study the distribution of maxt∈[0,T ] X(t) and the distribution of the first in-
stant at which X(t) attains the maximum by reducing X(t) to Brownian mo-
tion. Moreover, for T fixed or random, we study the asymptotics of threshold
crossing probability, i.e. the rate of decay of P

`
maxs∈[0,T ] X(s) > z

´
as

z goes to infinity. Some examples are also reported.
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1. INTRODUCTION

In this note, we consider a temporally homogeneous one-dimensional diffu-
sion X and we study the distribution of the maximum process St =maxs∈[0,t] X(s)
or, equivalently, the distribution of the first-crossing time τz of X(t) through
a given threshold value z. The knowledge of the distribution of St is very useful
in a variety of applications ranging from biology and engineering to mathematical
finance: for instance, when modelling neural activity, in queueing theory, in ruin
problems, in modelling option prices.

Really, unlike the case of Brownian motion (BM), for general stochastic pro-
cesses closed formulae for P (St ¬ z) are not available; so in certain applications
one is satisfied with the determination of the tail behaviour of P (ST > z) for
some fixed T > 0. The evaluation of the tail probability P (ST > z) for a fixed z
is a key point in many statistical problems (for some examples in parametric and
nonparametric statistics, in imaging processing and in genetical problems, see the
references quoted in [10]).

For instance, a numerical method to compute the distribution of the maximum
of a Gaussian random process was developed in [10]. Some theoretical results on
Gaussian random fields were proved e.g. in [13], [14], [6]; in particular, if X(t)
is a Gaussian process with stationary increments, under certain conditions on the
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variance and covariance functions of the process, in [7] and [20] the following
estimate was shown for z → +∞ :

(1.1) P (ST > z) ∼ const · zβΨ
(

z

σX(T )

)
,

where β is a positive constant, Ψ(x) = P (W > x) is the tail distribution of
a standard Gaussian random variable W, and σ2

X(t) is the variance function of
X(t) (here f(x) ∼ g(x) means that limx→+∞ f(x)/g(x) = 1). In particular, as
well known, if X(t) is (standard) BM, for any z ­ 0 the following equality holds:

(1.1′) P (ST > z) = 2Ψ
(

z√
T

)
.

A different type of asymptotics was obtained in [3] for a certain class of diffu-
sions X(t) by studying the behaviour of P (ST ¬ z) for fixed z > 0, as T → ∞.
By a variable change, X(t) transforms into a local martingale Y (t) (see Section 2);
if its quadratic variation is bounded from above and below by two deterministic in-
creasing functions β(t) and α(t), then (see [3])

(1.2) lim inf
T→∞

P (ST ¬ z)
√

β(T ) ­ c−, lim sup
T→∞

P (ST ¬ z)
√

α(T ) ¬ c+,

where c− and c+ are positive constants.
Another interesting aspect of the problem is to estimate P (ST > z) in the case

when T is a random variable independent of X. The asymptotics of P (ST > z),
as z → +∞, can be reduced, e.g., to those of an overflow probability in queueing
theory (see [23]); another interpretation is that of a ruin probability for a certain
risk process (see [23]).

Let X(t) be a Gaussian process with stationary increments, and assume that
T is a nonnegative random variable, independent of X, with regularly varying
tail distribution at ∞ with index ν > 0, i.e. P (T > x) = L(x)x−ν , L(·) being
a function slowly varying at ∞. Moreover, suppose that the variance function
σ2

X(t) is continuous on [0, +∞) and it is regularly varying at infinity with index
α ∈ (0, 2]. Then, under an additional condition on the behaviour of σX(t) at t = 0,
the following holds (see [12]):

(1.3) P (ST > z) ∼ C · P (
T > σ−1

X (z)
)

as z → +∞,

where C = E
(
maxt∈[0,1] Bα(t)

)ν/α and Bα(t) denotes a fractional Brownian
motion (FBM) with Hurst parameter α ∈ (0, 1] (i.e. a centered Gaussian process
with stationary increments, continuous sample paths, Bα(0) = 0 and Var

(
Bα(t)

)

= t2α). In the special case when X(t) is FBM itself, formula (1.3) is nothing but
the classical result of Breiman [8].
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In this paper, motivated by the intention of extending the results above to Itô
processes, we consider a class of temporally homogeneous one-dimensional diffu-
sion processes X(t), t ­ 0, characterized by drift b(x) and infinitesimal variance
σ2(x), where b(·) and σ(·) are regular enough functions. Therefore, our aim is to
study the rate of decay of P (ST > z) as z → ∞, and to show that results on the
maximum process St, analogous to (1.1) and (1.3), hold for X(t). Moreover, we
show that the distribution of the first instant at which X(t) attains the maximum
in the interval [0, T ] follows a compound arc-sine law. All this is done by reducing
the process X(t) to BM, by using the arguments considered in [3] and [5], that
is, by combining a deterministic transformation of the process X with a random
time-change.

2. NOTATION AND MAIN RESULTS

Let X(t) ∈ I = (r1, r2) (−∞ ¬ r1 ¬ 0 < r2 ¬ +∞) be the solution of the
stochastic differential equation (SDE):

(2.1) dX(t) = b
(
X(t)

)
dt + σ

(
X(t)

)
dBt, X(0) = 0,

where Bt is (standard) BM. Throughout the paper we will suppose that the usual
conditions (see e.g. [15], [17]) for the existence and uniqueness of the solution of
(2.1) are satisfied. Moreover, we require that X(t) ∈ I for all t ­ 0 (for conditions
implying this see e.g. [2], [16], [17]).

For x, y ∈ I = (r1, r2), let τy(x) .= inf{t > 0 : X(t) = y |X(0) = x} be the
first-hitting time of X to y when starting from x. We recall that the diffusion X(t)
is said to be regular if for any x, y ∈ I the condition P

(
τy(x) < ∞)

> 0 holds,
while it is said to be recurrent if for any x, y ∈ I the condition P

(
τy(x) <∞)

= 1
is satisfied (see e.g. [16], [3]). Let us consider now the infinitesimal generator L
associated with the diffusion (2.1):

(2.2) Lh(x) = b(x)h′(x) +
1
2
h′′(x)σ2(x), h ∈ C2(I).

The scale function u(x) is the solution of the problem:

(2.3) Lu(x) = 0, x ∈ I; u(0) = 0, u′(0) = 1;

u is strictly increasing and it is explicitly given by

(2.4) u(x) =
x∫
0

exp
(
−

t∫
0

2b(z)
σ2(z)

dz

)
dt.

If the boundaries r1 and r2 of I are unattainable (see e.g. [15], [16]), the recurrence
of X(t) is equivalent to u(x)→∞ as x→ ri. For instance, BM is recurrent, being
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in this case u(x) = x. The process Y (t) .= u
(
X(t)

)
turns out to be a local martin-

gale, since by Itô’s formula we have dY (t) = u′
(
u−1

(
Y (t)

))
σ
(
u−1

(
Y (t)

))
dBt.

The quadratic variation of the process Y (t) will be denoted by

〈Y 〉t =
t∫
0

[
u′

(
X(s)

)
σ
(
X(s)

)]2
ds.

Finally, we say that the diffusion process X(t) ∈ I, which is the solution of the
SDE (2.1), is conjugated to BM if there exists an increasing differentiable function
v : I −→ IR with v(0) = 0, such that the process Z(t) .= v

(
X(t)

)
is BM. Notice

that if X(t) is conjugated to BM, then X is recurrent.
Now, we go to investigate the distribution of ST = maxs∈[0,T ] X(s), where

X(t) is the solution of (2.1). The maximum of the process X(t) is naturally related
to τz

.= inf{t > 0 : X(t) ­ z}; in order to make the first-crossing time problem
meaningful, we shall assume that X(t) is recurrent.

THEOREM 2.1. Let T > 0 be given, let us assume that the solution X(t) of
(2.1) is recurrent, and that 〈Y 〉∞ = ∞, where Y (t) = u

(
X(t)

)
. Moreover, we

suppose that there exist two deterministic, continuous increasing functions α(t)
and β(t), with α(0) = β(0) = 0, such that, for every t < T, α(t) ¬ 〈Y 〉t ¬ β(t).
Then, for any z > 0,

(2.5) 2Ψ
(

u(z)√
α(T )

)
¬ P (ST > z) ¬ 2Ψ

(
u(z)√
β(T )

)
,

where

Φ(x) = 1−Ψ(x) =
x∫
−∞

1√
2π

exp(−t2/2)dt,

and u(·) is given by (2.4).

P r o o f. For z > 0 we have

P (ST ¬ z) = P
(

max
t∈[0,T ]

u
(
X(t)

) ¬ u(z)
)

= P
(

max
t∈[0,T ]

Y (t) ¬ u(z)
)
.

Since 〈Y 〉∞ =∞, we can use a random time-change (see e.g. [21]), which implies
that there exists a Wiener process B̃t such that a.s. Y (t) = B̃〈Y 〉t . Thus

P (ST ¬ z) = P
(

max
t∈[0,T ]

B̃〈Y 〉t ¬ u(z)
)

= P
(

max
t∈[0,〈Y 〉T ]

B̃t ¬ u(z)
)
.

Since α(t) ¬ 〈Y 〉t ¬ β(t), we obtain

max
t∈[0,α(T )]

B̃t ¬ max
t∈[0,〈Y 〉T ]

B̃t ¬ max
t∈[0,β(T )]

B̃t,
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that is,

P
(

max
t∈[0,β(T )]

B̃t ¬ u(z)
) ¬ P

(
max

t∈[0,〈Y 〉T ]
B̃t ¬ u(z)

)

¬ P
(

max
t∈[0,α(T )]

B̃t ¬ u(z)
)
.

Thus, (2.5) follows by (1.1′). ¥

If the quadratic variation 〈Y 〉t of Y (t) is deterministic, (2.5) becomes

P (ST > z) = 2Ψ
(

u(z)√
α(T )

)

(note the affinity with (1.1)). Moreover, if X(t) is conjugated to BM by means of
the function v, then 〈Y 〉t = α(t) = β(t) = t, so we obtain

P (ST > z) = 2Ψ
(

v(z)√
T

)
.

Let T be a nonnegative random variable whose distribution F (t) = P (T ¬ t)
has regularly varying tails with index ν ­ 0, that is, P (T > t) = L(t)t−ν , L(·)
being a function slowly varying at +∞ (i.e. limx,y→+∞ L(x)/L(y) = 1). We will
write T ∈ RV (ν), following the notation of [12]. A slightly weaker tail behaviour
arises in the case when two positive constants a and b exist such that, as t→ +∞,
aL(t)t−ν ¬ 1− F (t) ¬ bL(t)t−ν . In this case we will write T ∈ V (ν).

Before studying the case of a diffusion, we consider BM with drift µ∈R.
For T deterministic, the following holds (see [11]).

PROPOSITION 2.1. Let T be given and fixed and let µ < 0; then, as z →∞,

(2.6) P
(

max
t∈[0,T ]

(Bt + µt) > z
) ∼ Ψ

(
z − µT√

T

)
.

For T random we have (see [23])

THEOREM 2.2. Let T ∈ RV (ν). Then BT +µT and maxt∈[0,T ](Bt +µt) are
tail-equivalent, i.e.

(2.7) P
(

max
t∈[0,T ]

(Bt + µt) > z
) ∼ P (BT + µT > z) as z → +∞.

Now, let us go to consider a diffusion process which is the solution of the SDE
(2.1); we obtain the following preliminary results:

PROPOSITION 2.2. Let T ∈ RV (ν) and let us suppose that all the assump-
tions of Theorem 2.1 are satisfied. Then

(2.8) L
(
α−1(z)

)(
α−1(z)

)−ν ¬ P (〈Y 〉T > z) ¬ L
(
β−1(z)

)(
β−1(z)

)−ν
,

where 〈Y 〉t, α(t), β(t) are defined in Theorem 2.1.



112 M. Abundo

P r o o f. From the inequalities α(t) ¬ 〈Y 〉t ¬ β(t) we obtain

P
(
α(T ) > z

) ¬ P (〈Y 〉T > z) ¬ P
(
β(T ) > z

)
,

i.e.
P

(
T > α−1(z)

) ¬ P (〈Y 〉T > z) ¬ P
(
T > β−1(z)

)
.

Since T ∈ RV (ν), the assertion (2.8) immediately follows. ¥

PROPOSITION 2.3. Under the assumptions of Proposition 2.2, if α−1(t) and
β−1(t) are regularly varying at +∞ with index γ > 0, i.e. there exist constants
cα, cβ > 0 such that α−1(t) ∼ cαtγ and β−1(t) ∼ cβtγ as t → ∞, then 〈Y 〉T ∈
V (γν). In the case when cα = cβ, we have 〈Y 〉T ∈ RV (γν).

P r o o f. Since α−1(t) and β−1(t) are regularly varying at +∞ with index γ,

it follows that as z →∞,
(
α−1(z)

)−ν ∼ cαz−γν ,
(
β−1(z)

)−ν ∼ cβz−γν , and so
〈Y 〉T ∈ V (γν). The other assertion can be trivially verified. ¥

REMARK 2.1. If 〈Y 〉t is deterministic, then 〈Y 〉t = α(t) ≡ β(t), so Propo-
sition 2.2 implies that P (〈Y 〉T > z) = L

(
α−1(z)

)(
α−1(z)

)−ν
, while if c = cα

= cβ, Proposition 2.3 implies that P (〈Y 〉T > z) ∼ cL̃(z)z−γν .

Now, we can obtain

THEOREM 2.3. Let T ∈ RV (ν) and let us suppose that all the assumptions
of Theorem 2.1 are satisfied. Moreover, let us assume that the functions α−1(t)
and β−1(t) are regularly varying at +∞ with index γ > 0. Then for z → +∞ it
follows that

(2.9) L
(
α−1(z2)

)(
α−1(z2)

)−ν ¬ P (ST > z) ¬ L
(
β−1(z2)

)(
β−1(z2)

)−ν
,

where L is a function slowly varying at∞.

P r o o f. We recall from [12] that if B̃t is BM and Λ is a nonnegative random
variable such that Λ ∈ RV (µ), then as z →∞
(2.10) P ( max

s∈[0,Λ]
B̃s > z) = P (

√
Λ max

s∈[0,1]
B̃s > z) ∼ E( max

s∈[0,1]
B̃s)2µP (Λ > z2).

Moreover,

E( max
s∈[0,1]

B̃s)2µ =
2µ

√
π

Γ
(

1
2

+ µ

)
.= E(µ).

Then

P (ST > z) = P
(

max
s∈[0,T ]

Y (s) > u(z)
)

= P
(

max
s∈[0,T ]

B̃〈Y 〉s > u(z)
)

= P
(

max
s∈[0,ρ(T )]

B̃s > u(z)
)
.
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Consequently, if 〈Y 〉t is deterministic, we have 〈Y 〉T ∈ RV (γν). Therefore, by
(2.10) with Λ = 〈Y 〉T and µ = γν, we get, for z →∞,

P (ST > z) ∼ E( max
s∈[0,1]

B̃s)2γνP (〈Y 〉T > z2) = E(γν)L(z2)z−2γν .

If 〈Y 〉t is non-deterministic, by the same arguments as those used in the proof of
Proposition 2.3, we see that a, b > 0 exist such that

aE( max
s∈[0,1]

B̃s)2γνP (〈Y 〉T > z2)

¬ P (ST > z) ¬ bE( max
s∈[0,1]

B̃s)2γνP (〈Y 〉T > z2).

Since P
(
T > α−1(z2)

)¬ P (〈Y 〉T > z2) ¬ P
(
T > β−1(z2)

)
, the assertion (2.9)

easily follows. ¥

REMARK 2.2. A trivial case where 〈Y 〉t is deterministic occurs when X(t) ≡
Y (t) =

∫ t

0
σ̄(s)dBs, where σ̄(·) > 0 is a deterministic function and 〈Y 〉t =∫ t

0
σ̄2(s)ds behaves like tγ , t→∞. For such a process, if T is given and fixed, it

follows that
P (ST > z) = 2Ψ

(
z/

√∫ T

0
σ̄2(s)ds

)
.

Instead, if T ∈ RV (ν), let ρ−1(s) be the inverse function of ρ(t) .= 〈Y 〉t and let
us suppose that ρ−1(s) behaves like sγ (s→∞). By using also (2.9), for z →∞
we obtain

P (ST > z) = P ( max
s∈[0,T ]

Bρ(s) > z)

= P ( max
s∈[0,ρ(T )]

Bs > z) ∼ E(γν)P
(
ρ(T ) > z2

)

= E(γν)P
( T∫

0

σ̄2(s)ds > z2
)

= E(γν)L(z2)z−2γν .

THE ARC-SINE LAW

Let us consider now, for T given and fixed, the first instant θ at which X(t)
attains its maximum value in the interval [0, T ], i.e.

X(θ) = max
t∈[0,T ]

X(t) = ST .

Notice that θ is not a stopping time. As is well known (see [19]), when X(t) ≡ Bt,
the distribution of θ follows the arc-sine law, that is:

(2.11) P (θ ¬ t) =
2
π

arcsin

√
t

T
, 0 < t < T.
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Let X(t) be a diffusion process satisfying the assumptions of Theorem 2.1; first
we suppose that the quadratic variation 〈Y 〉t = ρ(t) is deterministic. Then

u(ST ) = max
t∈[0,T ]

u
(
X(t)

)
= max

t∈[0,T ]
B̃ρ(t) = max

s∈[0,ρ(T )]
B̃s,

and so B̃ρ(θ) = u
(
X(θ)

)
= maxt∈[0,ρ(T )] B̃t. Therefore, ρ(θ) follows the arc-sine

law, i.e.

P
(
ρ(θ) ¬ t

)
=

2
π

arcsin

√
t

ρ(T )
, t ∈ [0, ρ(T )].

Thus,

P (θ ¬ t) = P
(
ρ(θ) ¬ ρ(t)

)
=

2
π

arcsin

√
ρ(t)
ρ(T )

, t ∈ [0, T ].

In particular, if X(t) is conjugated to BM, then ρ(t) = t, and so θ follows the
arc-sine law. If ρ(t) is not deterministic, recalling that α(t) ¬ ρ(t) ¬ β(t), we get
maxt∈[0,α(T )] B̃t ¬ u(ST ) ¬ maxt∈[0,β(T )] B̃t. If we denote by θ̃α and θ̃β the first
instant at which B̃t attains its maximum in the interval [0, α(T )] and in the interval
[0, β(T )], respectively, we obtain θ̃α ¬ ρ(θ) ¬ θ̃β. Thus,

2
π

arcsin

√
t

β(T )
¬ P

(
ρ(θ) ¬ t

) ¬ 2
π

arcsin

√
t

α(T )
, t ∈ (

0, α(T )
)
,

and therefore

2
π

arcsin

√
α(t)
β(T )

¬ P (θ ¬ t) ¬ 2
π

arcsin

√
β(t)
α(T )

, 0 < t < β−1
(
α(T )

)
.

In the special case when X(t) is an integral process with deterministic inte-
grand, by combining the result of [4] and that of [22], we are able to obtain

THEOREM 2.4. Let X(t) =
∫ t

0
σ̄(s)dBs, where σ̄(·) is a deterministic posi-

tive function, and let us suppose that ρ(∞) =∞, where ρ(t) =
∫ t

0
σ̄2(s)ds. Then

the following holds:

inf
τ∈[0,1]

E[ST −X(τ)]2 = inf
τ∈[0,1]

E[X(θ)−X(τ)]2 = ρ(1) · inf
τ∈[0,1]

[
E|θ̃− τ |+ 1

2

]
,

where the infimum is taken over all stopping times τ ∈ [0, 1] of X(t) and θ̃ is the
first instant at which B̃t attains its maximum in the interval [0, 1].

Moreover, let us consider the following two optimal stopping problems:

(i) inf
τ∈(0,1)

E [X(θ)−X(τ)]2 and (ii) inf
τ∈(0,1)

E [|θ − τ |]2 .
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Then the optimal stopping times in (i) and (ii) are the same and they are equal to

τ∗ = inf{0 < t < ρ(1) : max
s∈[0,t]

Bs −Bt ­ z∗0
√

ρ(1)− t},

where z∗0 is the unique positive root of the equation 4Φ(z) − 2zφ(z) − 3 = 0,
and φ(z) and Φ(z) are the density and the distribution function, respectively, of
a standard Gaussian variable. If one considers the optimal stopping problem
(i) or (ii) in the interval [0, T ], in the above formulae ρ(1) has to be replaced
with ρ(T ).

P r o o f. Let (F B̃
t )0¬t¬1 be the filtration generated by B̃t. Then by Lemma 1

of [22] which is true for BM, for any (F B̃
t )-stopping time τ ∈ [0, 1], we have

E[B̃θ̃ −Bτ ]2 = E[|θ̃ − τ |] +
1
2
.

By reducing X(t) to BM, we obtain

inf
τ∈[0,1]

E [X(θ)−X(τ)]2 = inf
τ∈[0,1]

E[B̃ρ(θ) − B̃ρ(τ)]
2

= inf
τ ′∈[0,ρ(1)]

E[B̃θ′ − B̃τ ′ ]2,

where we have set θ′ = ρ(θ) and τ ′ = ρ(τ) ∈ [0, ρ(1)]. By the scaling property
of BM, B̃ρ(1)·t/

√
ρ(1) .= Wt is also BM. Thus, setting s = τ ′/ρ(1), we can write

the last infimum as

ρ(1) inf
s∈[0,1]

E[ max
r∈[0,1]

Wr −Ws]2 = ρ(1) inf
τ∈[0,1]

E[B̃θ̃ − B̃τ ]2,

which implies the main assertion. The other assertions are obtained by using The-
orem 2.2 of [4]. ¥

3. SOME EXAMPLES

EXAMPLE 3.1 (Ornstein–Uhlenbeck process). For b, σ > 0, let us consider
the process X(t) such that dX(t) = −bX(t)dt + σdBt, X(0) = x0. The explicit
solution is X(t) = e−btU(t), where U(t) = x0 +

∫ t

0
σebsdBs. Setting Y (t) =∫ t

0
σebsdBs and using a random time-change, we obtain U(t) = x0 +Bρ(t), where

the quadratic variation 〈Y 〉t = (σ2/2b)(e2bt − 1) is deterministic. Thus, we have

P (ST > z) = P
(

max
s∈[0,T ]

e−bsU(s) > z
) ¬ P

(
max

s∈[0,T ]
U(s) > z

)

= P ( max
s∈[0,T ]

Bρ(s) > z − x0) = P ( max
t∈[0,ρ(T )]

Bt > z − x0).
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If T is given and fixed, we obtain

P (ST > z) ¬ 2Ψ
(

z − x0√
ρ(T )

)
.

Instead, if T is random and P (T > z) = L(z)
(
ρ(z)

)−ν
(z → ∞), then we have

P
(
ρ(T ) > z

)
= P

(
T > ρ−1(z)

)
= L

(
ρ−1(z)

)
z−ν , and so ρ(T ) ∈ RV (ν). By

using Theorem 2.3, we obtain

P
(

max
s∈[0,T ]

X(s) > z
) ¬ 2ν

√
π

Γ
(

1
2

+ ν

)
L

(
ρ−1

(
(z − x0)2

))
(z − x0)−2ν .

EXAMPLE 3.2 (Feller process). Let us consider the process X(t) ∈ [0,+∞)
such that dX(t) = 1

4dt +
√

X(t) ∨ 0 dBt, X(0) = 0. The process X(t) is con-
jugated to Brownian motion by means of the function v(x) = 2

√
x. Thus, if T is

given and fixed, we obtain

P (ST > z) = P
(

max
s∈[0,T ]

v
(
X(s)

)
> v(z)

)

= P ( max
s∈[0,T ]

Bs > 2
√

z) = 2Ψ
(

2
√

z√
T

)
.

If T ∈ RV (ν), for z →∞ we get

P (ST > z) = P ( max
s∈[0,T ]

Bs > 2
√

z) ∼ 2ν

√
π

Γ
(

1
2

+ ν

)
P (T > 4z)

=
2ν

√
π

Γ
(

1
2

+ ν

)
L(4z)(4z)−ν .

For what concerns θ, it follows the arc-sine law, since X(t) is conjugated to BM.

EXAMPLE 3.3 (Geometrical Brownian motion). For b, σ > 0, let us con-
sider the diffusion equation dX(t) = bX(t) + σX(t)dBt, X(0) = x0. In the
framework of the Black–Scholes model in mathematical finance, it describes the
time course of the price X(t) of risky assets. The explicit solution is given by
X(t) = x0 exp

(
(b− σ2/2)t + σBt

)
. If b ¬ σ2/2, we get

P (ST > z) ¬ P

(
max

s∈[0,T ]
exp(σBs) >

z

x0

)
= P

(
max

s∈[0,T ]
Bs >

log(z/x0)
σ

)
.

Consequently, if T is given and fixed, we have P (ST > z) ¬ 2Ψ
(

log(z/x0)

σ
√

T

)
;

if T ∈ RV (ν), for z →∞ we obtain

P (St > z) ¬ 2ν

√
π

Γ
(

1
2

+ ν

)
L

(
log2(z/x0)

σ2

)(
log(z/x0)

σ

)−2ν

.
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EXAMPLE 3.4 (Wright & Fisher-like process). Let X(t) be such that

dX(t) =
(

1
4
− 1

2
X(t)

)
dt +

√
X(t)

(
1−X(t)

) ∨ 0 dBt, X(0) = 0.

It is a particular case of the Wright & Fisher diffusion equation for population
genetics, and it is also used in certain diffusion models for neural activity (see
[18]). It can be shown (see e.g. [1] and [2]) that X(t) ∈ [0, 1] for all t ­ 0, and it
is conjugated to BM by means of the function v(x) = 2 arcsin

√
x. For T given

and fixed, we have

P (ST > z) = 2Ψ
(

2 arcsin
√

z√
T

)
.

Clearly, θ follows the arc-sine law.

EXAMPLE 3.5. The usefulness of inequalities (2.5) for T fixed, and (2.9) for
T ∈RV (ν), relies on the fact that the function α(t) is close enough to β(t). Here
we show an example of diffusion satisfying all the assumptions of Section 2, for
which this holds. Let σ > 0 and ε > 0, and consider the SDE

dX(t) =
εσ2 sin

(
2X(t)

)

2
(
1 + ε cos2 X(t)

)dt + σdBt.

We have

u(x) =
1

1 + ε

[(
1 +

ε

2

)
x +

ε

4
sin(2x)

]
.

As easily seen, X(t) is recurrent, and

〈Y 〉t =
t∫
0

(
1 + ε cos2 X(s)

)2

(1 + ε)2
σ2ds

(note that 〈Y 〉t is non-deterministic). Thus

α(t) .=
σ2t

(1 + ε)2
¬ 〈Y 〉t ¬ σ2t

.= β(t).

Evidently, if ε ' 0, then β(t) ' α(t).

EXAMPLE 3.6 (A temporally non-homogeneous SDE). For t∈ [0, 1], let us
consider the SDE

dZ(t) = −Z(t)
1− t

dt + dBt, Z(0) = Z(1) = 0,
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whose solution is

Z(t) = (1− t)
t∫
0

1
1− s

dBs.

The diffusion Z(t) is the Brownian bridge, i.e. BM conditioned to take the value
0 at time t = 1. Now, set X(t) = Z(t)/(1− t). The quadratic variation of X(t)
is 〈X〉t = ρ(t) = t/(1− t), 0 ¬ t ¬ 1. Consequently, by a random time-change
we obtain X(t) = B̃

(
t/(1− t)

)
for a suitable BM B̃. If T ∈ (0, 1) is given and

fixed and z > 0, we have

P (ST > z) = P
(

max
t∈[0,T ]

X(t) > z
)

= 2Ψ
(

z/

√
T

1− T

)
.

If τZ denotes the first-passage time of Z(t) over the straight line y = z(1− t), we
get P (ST > z) = P (τZ ¬ T ). The distribution of the first instant θ at which X(t)
attains its maximum is

P (θ ¬ t) =
2
π

arcsin

√
t(1− T )
T (1− t)

, 0 ¬ t < T < 1.

4. CONCLUSION AND FINAL REMARKS

For a certain class of one-dimensional diffusions X(t), we have studied the
rate of decay of P

(
maxs∈[0,T ] X(s) > z

)
as z → ∞, both in the case when

T is fixed (Theorem 2.1) and when T is a random variable independent of the
process X (Theorem 2.3). Moreover, we have studied the distribution of the first
instant at which X(t) attains its maximum. By combining a deterministic trans-
formation of the process X(t) with a random time-change, the quantities under
investigation have been related to those regarding a suitable Brownian motion.
It is worthy to note that, by using the Donsker’s approximating procedure, it is
possible to approximate Bt by means of a binomial random walk. Precisely, let
{Un}n­1 be a sequence of independent identically distributed random variables
such that P (Un =−1)=P (Un =1)= 1

2 . Setting V0 =0 and Vn =U1 + . . . + Un,
n ­ 1, it is well known that the sequence of processes defined by

B
(n)
t =

(
V[nt] + (nt− [nt])U[nt]+1

)
/
√

n

converges in distribution to a standard BM as n→∞ (see e.g. [21]).
Now, let X(t) be a diffusion belonging to the class considered in Theorem 2.1

or Theorem 2.3, for which ρ(t)= 〈Y 〉t is deterministic. Using the arguments and
the notation of Section 2, we are able to infer that the sequence of processes de-
fined by

X(n)(t) = u−1
((

V[nρ(t)] +
(
nρ(t)− [nρ(t)]

)
U[nρ(t)]+1

)
/
√

n
)
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converges in distribution to X(t) as n → ∞ (note, however, that this approxi-
mation scheme becomes somehow ambiguous if ρ(t) is a random process). Thus,
since quantities of the form E[f(Bt,maxs∈[0,t] Bs)] have been estimated, e.g. in
[9], by using the Donsker’s approximating procedure, analogous estimations could
be obtained for quantities of the form E

[
f
(
X(t), maxs∈[0,t] X(s)

)]
, by using

X(n)(t).
We conclude noting that the arguments of this paper can be used also to ob-

tain information about the distribution of s(T ) .= mint∈[0,T ] X(t), by using the
distribution of the minimum of BM, that is,

P ( min
t∈[0,T ]

Bt ¬ x) = 1 if x ­ 0,

P ( min
t∈[0,T ]

Bt ¬ x) = 2Φ
(

x√
T

)
if x < 0.
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