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LAWS OF LARGE NUMBERS
FOR TWO TAILED PARETO RANDOM VARIABLES

BY
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Abstract. We sample m random variables from a two tailed Pareto
distribution. A two tailed Pareto distribution is a random variable whose
right tail is ;mf2 and whose left tail is q:c*2, where p + ¢ = 1. Next, we
look at the largest of these random variables and establish various Weak
and Strong Laws that can be obtained with weighted sums of these random
variables. The case of m = 1 is completely different from m > 1.
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1. INTRODUCTION

In this paper we observe weighted sums of order statistics from a two tailed
Pareto distribution. We sample m i.i.d. random variables with density

qr 2 ifx < —1,
flz)=40 if —1l<xz<1,
pr 2 ifex >1,

where p + ¢ = 1. We then observe the largest of these m random variables, X ).
What is striking is that the case of m = 1 and m > 1 are completely different.
If m = 1, we are just looking at one random variable and both tails are equally
important. However, if m > 1, then ¢ has a much lesser importance. It only appears
as p = 1 —q in our limits. Likewise, in the case of m = 1, if p = ¢ = 1/2, then our
random variables are symmetrical and both our Strong and Weak Laws will have
a limit of zero. But when m exceeds one, that is never the case.

Our goal is to establish laws of large numbers for weighted sums of these ran-
dom variables. It should be noted that E|X| = oo in every case. We will show
which sequences of constants {a,,,n > 1} and {b,,n > 1} will allow our partial
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sums Zgzl anX(myn/bN to converge to a nonzero constant. As usual, we set
lgz = log(max{e,z}) and lgo = lg(lgz) and we use the constant C' to de-
note a generic real number that is not necessarily the same in each appearance.

2. STRONG LAWS

We first present the case of m = 1. Here the larger of the two tails influences
our limit. If p > g, then the limit is positive, and if p < ¢, the limit is negative.

THEOREM 2.1. If{X,,n > 1} are i.i.d. two tailed Pareto random variables,
then for all 3 > 0 we have

SN (1gn)2/n)Xn  p—gq

A}i_r)noo g N)? = 3 almost surely.

Proof. Leta, = (Ign)*~2/n, b, = (Ign)? and ¢, = b,/a, = n(lgn)>.
We use the partition

1 X 1 XN
N Xy = Y X I(1X| < en) — EXI(IX] < )]
an:l an:l

N 1 N
3 an Xl (Xl > en) + 5 3 anEXI(X] < ).
n=1 N

1
N n=1

The first term vanishes almost surely by the Khintchine—Kolmogorov Conver-
gence Theorem (see [1], p. 113) and Kronecker’s lemma since

i | > 1
Y S EXI(X <) = X 5 7 qdw+fpdx}
n=1 Ch n=1"n —cp
> 1
=3 C—Q[q(cn —1) +p(en — 1)
n=1"n
[e's] Cn 1 > 1 00 1
= < _— = .
712::1 cs nzz:l Cn 712::1 n(lgn)? =

The second term of the partition vanishes, with probability one, by the Borel—
Cantelli lemma since

ST P{X|>cn} = [_fnq:ﬂ 2dx + fpa: ?dz]
n=1 n= 1 —00 Cn
ptaq _ 1 1
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The truncated first moment is

EXI(|X|<cy f qx 1dm+fpa: Yz

—cCn

= —qlgcn +plgen = (P —q)lge, ~ (p—q)1gn.
Therefore

N N
S awBXI(X| <) (p—a) X0, (gn)’ Y n  pg
b ko 7

which completes the proof. m

Now we turn our attention to our order statistics. Here the results are quite
surprising. We start with a random sample of m random variables with the density

qr 2 ifex < —1,
flx)=<¢0 if —1<ax<l,
px*Q ifx > 1.

The largest of these, X,,), has the density

mq™(—z)"m 1 ife < -1,
fXmy (@) =140 if —1<z<1,
mp(1 —p/x)" g2 ifx>1.

Then we repeat this » times to form the sequence { X ;,,),,, 7 > 1}. Our next result
shows how these order statistics behave over time.

THEOREM 2.2. If {X(m)n, n > 1} is a sample of the largest order statistics
from a two tailed Pareto distribution, then for all 3 > 0 we have

len)?~2/n (m)n
A}im Z” ! ((gélg)N)/ ) m % almost surely.

Proof. As before, let a,,=(Ign)’?~2/n, b,=(Ign)?, ¢, =bn/a,=n(lgn)?
and

1 N
+-— Z anX(m)nI(‘X(m)n’ > cp) + E Z anEX(m)nI(’X(m)n| < ¢p).
= n=1
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The first term is almost surely negligible since

Z EX WA X | < cn)
n=1 n
Sl | -1 Cn
=> —2[ f mqm(—l)m_laj_m+1d$—|— fmp(l —p/x)m_ldx]
n=1 Cn —Cn 1
Ciicfndx<0§i—0§ ! < 00
b n=1 721 1 h n=1 Cn n=1 n(lgn)Q .

Next we have

Z P{‘X(m)n’ > Cn}
n=1

= i [ mqm(—l)m’lx*mfldﬂ%ofomp(l —p/x)" e dx]

n=1 —oo n
SCY [z27%de=C>Y —=C)> < 00.
n:lcfn n=1"-n n=1 n(lg n)2
The truncated first moment is
EX(mynl (| X myn| < cn)
= mqg™(—-1)""! f x mdx+mpf (1—p/z)" e~ d

—cCn

= mg™(-1)™"! f x”"dx + mp Z < j 1>(—p)j7bx_j_1d:z

1

—cCn

= mqg™(-1)™"! f T mda:+mpfa:

—Cn

'S ( - 1) (—p)’ f:cdx

Jj=1 J

Cn
~ mpf:c_ldx =mplgc, ~ mplgn.
1

Putting this all together we have

N
2 it W EX gy (1 X(myn < ) mp YN (1gn)®~t/n mp

by (e N)7 T8

which completes this proof. =

We see how our parameters are involved in the final answer. By observing just
the maximum of two random variables, our left tail loses nearly all of its influence.
The only contribution we have from ¢ in that caseisp =1 — q.
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3. WEAK LAWS

We next look at Weak Laws of these same random variables. Once again the
case of m = 1 and m > 1 are completely different. Here, we have a little more
flexibility in our weights, a,, = n*L(n), where L(-) is any slowly varying function.
In our Strong Laws we cannot play with our constants in this same manner that we
can in our Weak Laws. We can change the coefficients in our Strong Laws from
powers of logarithms to any regularly varying function of exponent —1 (see [2],
p. 275), but that will greatly affect the norming sequence {b,,n > 1}. In the
corresponding Weak Laws that kind of change does affect the norming sequence,
but in a very straightforward and simplistic manner. The new norming sequence is
just increased by that same quantity L(-). The following theorem only considers
m = 1.

THEOREM 3.1. If {X,,,n > 1} are i.i.d. two tailed Pareto random variables,
then for all « > —1 and any slowly varying function L(-) we have as N — oo

N
> n*L(n)X, P P-4
NoHL(N)lgN  a+1

Proof. This theorem is a consequence of the Degenerate Convergence The-
orem which can be found on page 356 of [1]. As usual, set a, = n“L(n) and
b, = n®*1L(n)lgn. By choosing N sufficiently large we have by /a,, as large as
we wish. Thus for all € > 0 we have

N N —eby/an )
Y P{X|>ebn/an}y=> [ [ qz%dz+ [ pzda]
n=1

n=1 —00 ebn /an
N Tqan | pay, 1 X

= Z —_— + —_— = —_— an
o Lebn o eby eby

C ZN n®L(n) C

n=1
< NetlL(N)IgN ~1gN 0
and
N 2 ) 1 N ) -1 by /an
> anEX I(| X]| <bN/an):b7 oar| [ qdv+ [ pdz]
n=1"YN N n=1 —bn/an 1
1 N 9 [qu pr} 1 X
< —= A | — +— = — Qp — 0.
72w e ] T
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While

N a, N a, -1 . by /an .
> SEEXI(X] < by/an) = 3 b—[ [ g ldz+ [ palda]
n=1 "N n=1"N " _py/ay 1

_ N
b4 ; anllg(bn) —lg(an)]

= ariT lgN Z n*L(n)[lg (N*T'L(N)1g N) —lg (n“L(n))]

(a + 1YY n®L(n) . SN noLn)lg (L(N))

=9 No+LL(N) Na+1L(N) g N
N a N a

L 2 LM N oY " Ln)lgn ¥ n°L(n)lg (L(n))
Na+lL(N) lgN Na+1L( )1gN NO‘+1L(N) lgN

The first term converges to one since

(@+ 1)), n°Ln)  a+1

— =1.
Net+lL(N) a+1

The second term converges to zero since

SN neL(n)lg (L(N)) _Cls (L(N)) B
NetlL(N)lg N lg N

using the fact that L(+) is slowly varying. Similarly, the third term is bounded above

by the function
Clgy N
— 0

lg N

However, the fourth term

—ay n)lg(n)  —a

— .
Na+1L(N) lgN a+1

Lastly, we have

YN neL(n)lg (L(n))  Clg(L(N)) -
Ne+1L(N)1lg N lg N

Collecting all our terms we have

N

> SEXT(X| < by/an) = (p—a) [1 _
n=1YN

a |l_p—q
a+1 a+1’

which completes this proof. m
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We conclude with a Weak Law for our largest order statistic from these two
tailed Pareto random variables. Hence, we are once again taking repeat samples of
the largest of our m random variables.

THEOREM 3.2. If { X (s)n,n > 1} is a sample of the largest order statistics
from a two tailed Pareto distribution, then for all o > —1 and any slowly varying
function L(-) we have as N — oo

N
Zn:l naL(n)X(m)n £> mp
Net1L(N)Ig N a+1

Proof. Seta, = n®L(n) and b, = n®"1L(n)lgn. By choosing N suffi-
ciently large we have by /a,, as large as we wish. Thus for all € > 0 we have

N
ZP{‘X(m)n’ > 6bN/an}
n=1

N _be/an [e'e)

= [ [ md™=)" e e+ [ mp(l - p/a)™ a2 dal
n=1 o ebn /an
N —ebN/an %)
<CY [ [ amldet [ alda
n=1 -0 ebn /an
C X CYN n°Lin)  C
< Qp = a+7117 < — 0
by &= " T NotIL(N)IgN " IgN
and
N (12 )
n=1"N
1 N 2 -1 1 1 bN/a'n .
= bT Z an[ f mqm(_l)m— x—m—i— dr + f mp(l —p/l?)m_ d:r]
N n=1 —bn/an 1
1 N 2 -1 1 bN/an )
2 Soar| [ mg™(—x) " de+ [ mp(l—p/a)" dx]
N n=1 —bn/an 1
by /an by /an

aZ| [ mg™u"du+ [ mp(l—p/2)" " dx]
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Then our limit is

N
Qn
Z 7EX(m)nI(|X(m)n| < bN/an)
b
n=1 YN
N Qnp, -1 1 bN/a’ﬂ 1 )
= bi[ [ mg"(=1)""'z e+ [ mp(l —p/x)" e dx]
n=1 N _bN/an 1
N -1 by /an
=2 "[mq’"(—l)m‘1 [ 2 dz+mp [ a7'de
n=1 Y —by/a 1
N /On
m—1 -1 bN/an .
+mp Y <m > [ (~p/xyz" dz
j=1 J 1
N a, N 1 mp & mp
~ - Yz =3 aylglby/an) — ——
mPZ::bN { zdx angla g(N/a)—>a+1

as in the proof of Theorem 2.2. m

Note that in Theorem 3.2, as in Theorem 2.2, we see that the right tail domi-
nates the left tail as long as we are observing the maximum of at least two random
variables from our underlying distribution.
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