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WITH APPLICATION TO M -ESTIMATION
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Abstract. Let Xj =
∑∞

r=0 ArZj−r be a one-sided m-dimensional
linear process, where (Zn) is a sequence of i.i.d. random vectors with zero
mean and finite covariance matrix. The aim of this paper is to prove the
moment inequalities of the form

(0.1) E |Sn|Q ¬ Cn
Q/2

for the sum

(0.2) Sn =
n∑

j=1

`
G(Xj)− EG(Xj)

´
,

where G is a real function defined on Rm. The form of the constant C in
(0.1) plays an important role in applications concerning the problems of
M -estimation, especially the Ghosh representation.
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1. INTRODUCTION

The one-sided linear process (LP) is defined as follows:

Xj =
∞∑

r=0

arZj−r, j = 1, 2, . . . , n,

where the innovations (Zn) are i.i.d. random variables with zero mean and unit
variance, and ar are constant coefficients satisfying the condition

∞∑

r=0

a2
r <∞.

Linear processes have a wide range of applications in time series analysis.
A large class of time series processes can be modelled in such a way, including
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a subset of the fractional ARIMA processes (see Brockwell and Davis (1987)). In
addition, we say that (Xn) has a short memory (is short-range dependent) if the
following condition is satisfied:

∞∑

j=1

|Cov(X1, X1+j)| <∞.

It is obvious that if ∞∑

j=0

∣∣ ∞∑
r=0

arar+j

∣∣ <∞,

then the linear process (Xn) is short-range dependent.
The generalization of the one-sided linear process is the multidimensional lin-

ear process (MLP), defined as follows:

Xj =
∞∑

r=0

ArZj−r,

where the innovations (Zn) = (Z(1)
n , . . . , Z

(m)
n ) are i.i.d. random vectors in Rm

such that
E (Z1) = 0 and E |Z1|2 = 1.

The Ar’s are the nonrandom matrices, where
∑∞

r=0 ‖Ar‖2 <∞, A0 = I, and

(1.1) |Arz| ¬ ‖Ar‖ |z| for any z ∈ Rm,

where |·| is the usual Euclidean norm.
We will also consider the following assumptions:

(a0)
∞∑

r=0

‖Ar‖ <∞,

(b1) the density of the vector Z1 is the Lipschitz function,

(b2(t)) E |Z1|t <∞ for some t ­ 2.

In Section 2, we will prove the inequality for the moment bound of the sum of
the functionals of linear processes. Namely, we will show that if

(1.2) Yn = G(Xn)− EG(Xn),

then for different classes of functions G

(1.3) E
∣∣ n∑

j=1

Yj

∣∣Q ¬ CnQ/2, n = 1, 2, . . . ,
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where the constant C may depend on Q, G and the distribution of (Xn), but does
not depend on n.

The basic idea in the proof of our result is the martingale decomposition of the
process (1.2). This decomposition has the following form (see also Ho and Hsing
(1996), (1997)):

(1.4) Yn =
∞∑

s=0

Un,s, where Un,s = E{Yn | Fn−s} − E{Yn | Fn−s−1},

where Fn := σ(. . . , Zn−1, Zn) is the σ-field generated by the innovations in the
“past”¬ n, (Xn) denotes an m-dimensional process (MLP), and G : Rm → R
stands for a real function such that E |Y1|Q <∞ for some Q ­ 2.

In Section 3, we will show how to use these moment bounds in order to obtain
the Ghosh representation for M -estimation in the case of the short-range depen-
dent observations. We will apply here Andrews and Pollard (1994) results (see
Remark 3.2). The basic condition required for the proof of the Ghosh representa-
tion is the condition of the asymptotic stochastic equicontinuity (ASE). We obtain
this condition from the Pisier result (see Lemma 3.2).

The Ghosh representation is especially useful for the proof of the asymptotic
normality of M -estimators, provided the central limit theorem (CLT) holds for
the sums Sn. Ho and Hsing (1997), Wu (2002), and Furmańczyk (2007) proved
the CLT for the sums (0.2), where (Xn) is a one-dimensional linear process or
a multidimensional linear process, in the case of short-range dependence. In Sub-
section 3.1, we will prove Theorem 3.1 together with some conclusions from this
theorem (see Propositions 3.1 and 3.2). At the end of Section 3, we will state a lem-
ma about the consistence of M -estimators.

2. MOMENT INEQUALITIES

Let us put
‖X‖Q = E1/Q |X|Q

and

Gs(x) := EG
( s−1∑

r=0

ArZk−r + x
)

=
∫

G(z + x)dFs(z),

where Fs is the distribution function of
∑s−1

r=0 ArZk−r. We will use the following
condition:

(Lip) |Gs(x)−Gs(y)| ¬ Lip(Gs) |x− y|

for each s = 1, 2, . . . and for all x, y ∈ Rm, where

sup
s­0

Lip(Gs) < C for some constant C.
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THEOREM 2.1. Let ‖G(X1)‖Q < ∞ for some Q ­ 2 and let (Xn) be an
m-dimensional linear process (MLP) satisfying (a0) and the assumption (b2(t))
with t = Q. Then, if (Lip) holds, we have for every n ∈ N

(2.1) E
∣∣ n∑

j=1

(
G(Xj)− EG(Xj)

)∣∣Q ¬ CnQ/2

with C = CA,QC(G), where

CA,Q = CQ

( ∞∑
r=0

‖Ar‖
)Q

, C(G) =
(‖G(X1)‖Q + sup

s­1
Lip(Gs)

)Q
,

and CQ is a constant dependent on Q and ‖Z1‖Q.

For the proof of Theorem 2.1 we will need the following lemmas:

LEMMA 2.1. Let (Xn) be an m-dimensional linear process (MLP) and as-
sume that (Lip) holds. Then

(2.2) |Uk,s| ¬ Lip(Gs) ‖As‖ (1 + |Zk−s|) a.s. for s = 1, 2, . . .

P r o o f. By the definition of Gs, we obtain

Uk,s = E{G(Xk) | Fk−s} − E{G(Xk) | Fk−s−1} = Gs(Rk,s)−Gs+1(Rk,s+1),

where Rk,s = Xk −
∑s−1

r=0 ArZk−r. From independence of AsZk−s and Rk,s+1

we have
Gs+1(x) =

∫
Gs(x + z)dF1,s(z)

and
Gs+1(Rk,s+1) =

∫
Gs(Rk,s+1 + z)dF1,s(z),

where F1,s is the distribution function of AsZk−s. Hence, applying the condition
(Lip), we get

|Uk,s| ¬
∫
|Gs(Rk,s)−Gs(Rk,s+1 + z)| dF1,s(z)

¬ Lip(Gs)
∫
|Rk,s −Rk,s+1 − z| dF1,s(z)

¬ Lip(Gs)
(|Rk,s −Rk,s+1|+

∫
|z| dF1,s(z)

)

¬ Lip(Gs) (|AsZk−s|+ E |AsZk−s|) .

From (1.1) and the fact that E |Z1|2 = 1 we have

(2.3) |AsZk−s| ¬ ‖As‖ |Zk−s|
and

(2.4) E |AsZk−s| ¬ ‖As‖.
The relations (2.3) and (2.4) imply the desired result (2.2). ¥
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LEMMA 2.2 (Burkholder (1966)). Let (Yn, Fn) be a stationary sequence of
the martingale differences such that E |Y1|Q < ∞ for some Q ­ 2. Then there
exists a universal constant C

′
Q, dependent on Q, such that

(2.5) E
∣∣ n∑

j=1

Yj

∣∣Q ¬ C
′
QnQ/2E |Y1|Q for every n ∈ N.

P r o o f. Notice that from the Burkholder inequality (see Stout (1974), 3.3.14)
we have

(2.6) E
∣∣ n∑

j=1

Yj

∣∣Q ¬ C
′
QE

∣∣ n∑

j=1

Y 2
j

∣∣Q/2
.

In addition, by the Hölder inequality, we get
n∑

j=1

1 · Y 2
j ¬

( n∑

j=1

|Yj |Q
)2/Q

n1−2/Q for Q > 2.

This together with (2.6) imply (2.5). ¥

We now prove Theorem 2.1, the main result of our paper.

P r o o f o f T h e o r e m 2.1. We first use the martingale representation of
the form (1.4) for the transformed sequence (Yn):

(2.7)
n∑

k=1

Yk =
n∑

k=1

∞∑

s=0

Uk,s =
∞∑

s=0

Wn,s,

where Wn,s :=
∑n

k=1 Uk,s. Since for every s ­ 0 the sequence (Uk,s, Fk−s)k is
a stationary sequence of the martingale differences, (Wm,s, Fm−s)m is a martin-
gale. Applying the Burkholder inequality (see Lemma 2.2), we obtain

E |Wn,s|Q ¬ C
′
QnQ/2E |U1,s|Q .

Moreover, it follows from Lemma 2.1 that

(2.8) |U1,s| ¬ Lip(Gs) ‖As‖ (1 + |Z1−s|) for s = 1, 2, . . .

and that

‖Wn,0‖Q ¬ (C
′
Q)1/Qn1/2 ‖U1,0‖Q ¬ (C

′
Q)1/Qn1/2 ‖G(X1)‖Q.

Put Sn =
∑n

k=1 Yk. Then

‖Sn‖Q ¬ ‖Wn,0‖Q+
∞∑

s=1

‖Wn,s‖Q ¬ C
1/Q
Q n1/2

(‖G(X1)‖Q+
∞∑

s=1

‖As‖Lip(Gs)
)

for some constant CQ dependent on Q and ‖Z1‖Q, which implies the desired
result (2.1). ¥
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With reference to Theorem 2.1 and Lemma 2.1 the following property is worth
proving.

PROPOSITION 2.1. The following statements are true:
(i) If G is Lipschitz, then (Lip) is satisfied with the constant Lip(Gs) bounded

as follows:
Lip(Gs) ¬ Lip(G).

(ii) If G is integrable, i.e. G ∈ L1(Rm) and (b1) holds, then (Lip) is satisfied
with the constant Lip(Gs) bounded as follows:

Lip(Gs) ¬ Lip(f1)
∫
|G(s)| ds,

where f1 is the density of Z1.

P r o o f. The condition (i) is clear. In order to prove (ii), notice that

|Gs(x)−Gs(y)| = ∣∣∫ G(z + x)fs(z)dz −
∫

G(z + y)fs(z)dz
∣∣,

where fs means the density of the random vector
∑s−1

r=0 ArZk−r. Since fs = gs∗f1

is the convolution of gs and f1, where gs is the density of
∑s−1

r=1 ArZk−r, and f1

is the density of Z1, by (b1) we obtain
∣∣∫ G(z + x)fs(z)dz −

∫
G(z + y)fs(z)dz

∣∣
=

∣∣∫ G(z)
(
fs(z − x)− fs(z − y)

)
dz

∣∣
=

∣∣∫ G(z)
(
gs ∗ f1(z − x)− gs ∗ f1(z − y)

)
dz

∣∣
¬ |x− y|Lip(f1)

∫
|G(z)| dz. ¥

3. AN APPLICATION TO M -ESTIMATION

Let X1, X2, . . . be an m-dimensional process (MLP) and let Pθ, where θ ∈
Θ ⊂ Rk, denote the marginal distribution of X1. Let, in addition, ψ : Θ × Rm →
Rk be a map and

Ψ(θ) := Eψ(θ, X1) =
∫

ψ(θ, x)dPθ(x).

Moreover, we assume that Ψ(θ0) = 0 for some θ0 ∈ int(Θ). Consider the M -
estimator θn of a parameter θ0 as a random function of the form

Ψn(θn) = oP (n−1/2),

where

Ψn(θ) :=
1
n

n∑

i=1

ψ(θ, Xi).
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Moreover, define an empirical process

(3.1) υnψ(θ, ·) :=
√

n
(
Ψn(θ)−Ψ(θ)

)

indexed by functions ψ. The following conditions will be used in this section:

(C) |θn − θ0| P→ 0 as n→∞,

where P→ denotes the convergence in probability P.

(V) Ψ(θ) = V(θ − θ0) + o(|θ − θ0|) as θ → θ0,

where V is certain nonsingular matrix.

(B) υnψ(θ0, ·) = OP(1).

(ASE) For all ε > 0 and for every η > 0 there exists δ > 0 such that

(3.2) lim sup
n→∞

P
(

sup
|θ−θ0|<δ

|υnψ(θ, ·)− υnψ(θ0, ·)| > η
)

< ε.

REMARK 3.1. Condition (B) holds if υnψ(θ0, ·) d→ Nk(0, Σ) as n→∞.

REMARK 3.2. Under the conditions (C), (V), (B), and (ASE) Andrews and
Pollard (1994) proved the Ghosh representation for M -estimators provided the
observations (Xn) satisfy the strong mixing condition, i.e.

(3.3)
√

n(θn − θ0) = −V−1υnψ(θ0, ·) + oP(1).

The condition (ASE) (asymptotic stochastic equicontinuity) plays the key role
in our applications. Let Θδ = {θ ∈ Θ : |θ − θ0| ¬ δ} for some δ > 0.

Assume that the increments of the empirical process satisfy the following con-
dition:

(dQ) For all n ­ n0 and θ1, θ2 ∈ Θδ,

(3.4) ‖υnψ(θ1, ·)− υnψ(θ2, ·)‖Q ¬ C |θ1 − θ2|,
where C is some positive constant.

LEMMA 3.1. The condition (dQ) for Q = k + 1 implies (ASE).

We first prove some auxiliary lemma. Denote by N(C, d, r) the covering
number as the smallest number of closed balls with radius less than or equal to r,
whose union covers the set C, where the metric space (C, d) is totally bounded.

LEMMA 3.2. Let X = (Xt)t∈T be a stochastic process in Rk, indexed by the
totally bounded metric space (T, d). Assume that the process X has continuous
sample paths, its increments are such that
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(i) for all t, s ∈ T the inequality

‖Xt −Xs‖Q ¬ Cd(t, s) for some Q ­ 1

is satisfied, where C is some constant independent of t and s, and
(ii) the following condition holds:

(3.5)
δ∫
0

Q
√

N(T, d, r)dr <∞.

Then

(3.6) E sup
t∈T
|Xt| ¬ E |Xt0 |+ 8C

δ∫
0

Q
√

N(T, d, r)dr,

where t0 is some point of T and δ = supt∈T d(t, t0).

P r o o f o f L e m m a 3.2. By Theorem 11.1 of Ledoux and Talagrand (1991),
putting the Young function ψ(x) := xQ, we have

E sup
s,t∈T

|Xs −Xt| ¬ 8C
δ∫
0

Q
√

N(T, d, r)dr.

We also have, for every t0 in T ,

E sup
t∈T
|Xt| ¬ E |Xt0 |+ E sup

s,t∈T
|Xs −Xt|.

Hence we obtain (3.6). ¥

P r o o f o f L e m m a 3.1. Since the metric space (Θδ, d) is totally bounded,
where d(θ1, θ2) = |θ1 − θ2|, putting

t0 = θ0, t = θ, T = Θδ and Xt := υnψ(t, ·)− υnψ(t0, ·)
we see that if dim(Θδ) = k, then N(T, d, r) = O (

r−k
)
. Consequently, assump-

tion (ii) of Lemma 3.2 holds for Q = k + 1. Condition (dQ) for Q = k + 1 implies
that for all n ­ n0 and every t, s ∈ Θδ

‖Xt −Xs‖k+1 = ‖υnψ(t, ·)− υnψ(s, ·)‖k+1 ¬ C |t− s|
for some constant C. Thus, assumption (i) of Lemma 3.2 is fulfilled for all n ­ n0.
Since Xt0 ≡ 0, by (3.6) we infer that for all n ­ n0

E sup
t∈T
|Xt| = E sup

d(θ,θ0)<δ
|υnψ(θ, ·)− υnψ(θ0, ·)|(3.7)

¬ 8C
δ∫
0

N1/(k+1)(Θδ, d, r)dr.
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Hence

lim sup
n→∞

E sup
d(θ,θ0)<δ

|υnψ(θ, ·)− υnψ(θ0, ·)| ¬ 8C
δ∫
0

N1/(k+1)(Θδ, d, r)dr.

Therefore, it follows that for any ε > 0 there exists δ > 0 such that

lim sup
n→∞

E sup
d(θ,θ0)<δ

|υnψ(θ, ·)− υnψ(θ0, ·)| < ε,

which yields the desired condition (ASE). ¥

3.1. Asymptotic properties of M -estimators. Let us introduce the following
notation:

ψθ1,θ2(x) := ψ(θ1, x)− ψ(θ2, x),

Ψs(θ, x) := Eψ
(
θ,

s−1∑

r=0

ArZ1−r + x
)
, Ψs(x, θ1, θ2) := Ψs(θ1, x)−Ψs(θ2, x).

In our further considerations we will apply the following conditions:

(LQ) There exists a constant L such that

(3.8) ‖ψθ1,θ2(X1)‖Q ¬ L |θ1 − θ2| for all θ1, θ2 ∈ Θδ.

(Lip1) There exists some constant C such that

sup
s­1
|Ψs(x, θ1, θ2)−Ψs(y, θ1, θ2)| ¬ C |θ1 − θ2| |x− y|

for all θ1, θ2 ∈ Θδ and all x, y ∈ Rm.

THEOREM 3.1. Suppose that E |ψ(θ, X1)|k+1 < ∞ for all θ ∈ Θδ, the con-
ditions (B), (C), (V), (a0), (b2(t)) with t = k + 1 are satisfied. Assume also that
(Lk+1) and (Lip1) are fulfilled. Then we obtain the Ghosh representation (3.3).
Additionally, if Ψs(θ0, ·) is Lipschitz, then

√
n(θn − θ0)

d→ Nk

(
0,V−1Σ(V−1)T

)
,

where the elements of matrix Σ have the form

(3.9) σi,j = E
(
ψi(θ0, X1)ψj(θ0, X1)

)
+ 2

∞∑

t=1

E
(
ψi(θ0, X1)ψj(θ0, X1+t)

)

and ψ = (ψ1, . . . , ψk).
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P r o o f. In order to get the Ghosh representation, by applying our assump-
tions, we only need to show that (dQ) holds for Q = k + 1 (see Remark 3.2 and
Lemma 3.1). It follows from Theorem 2.1 that

‖υnψ(θ1, ·)− υnψ(θ2, ·)‖k+1 ¬ C
′( ‖ψθ1,θ2(X1)‖k+1+sup

s­1
Lip

(
Ψs(·, θ1, θ2)

))
,

where C
′

is some constant independent of ψ, θ1, θ2, n. Using (Lk+1) and (Lip1)
we state that the condition (dQ) for Q = k + 1 holds.

The property of asymptotic normality of θn can be obtained from Furmańczyk
(2007), Theorem 2.1. ¥

REMARK 3.3. Notice that if ‖Ar‖ ∼ r−αL(r) for some α > 1, where L(·)
is some slowly varying function, and if Ψs(θ0, ·) is the Lipschitz function for all
sufficiently large s, then θn is asymptotically normal (see Wu (2002), Corollary 2).

Denote by Dθ and Dx the derivative of some function with respect to θ and x,
respectively. Now we give the conditions which imply (Lip1).

PROPOSITION 3.1. The condition (Lip1) holds if at least one of the following
conditions is satisfied:

(i) supθ∈Θδ
supx,s |DθDxΨs(θ, x)| ¬ C for some constant C;

(ii) supθ∈Θδ
supx |DθDxψ(θ, x)| ¬ C for some constant C;

(iii) there exists a function L ∈ L1(Rm) such that

|ψθ1,θ2(x)| ¬ L(x) |θ1 − θ2| for all θ1, θ2 ∈ Θδ and x ∈ Rm

and (b1) holds.

P r o o f. It is easily seen that from (i) and the theorem about the average value
(Lip1) holds. Similarly, it follows from (ii) that

|ψθ1,θ2(x)− ψθ1,θ2(y)| ¬ C |θ1 − θ2| |x− y|,

which immediately gives (Lip1). Now, let us consider the condition (iii). We have

Ψs(x, θ1, θ2)−Ψs(y, θ1, θ2)

= Eψθ1,θ2

( s−1∑

r=0

ArZ1−r + x
)− Eψθ1,θ2

( s−1∑

r=0

ArZ1−r + y
)

=
∫

ψθ1,θ2(z)fs(z − x)dz −
∫

ψθ1,θ2(z)fs(z − y)dz

=
∫

ψθ1,θ2(z)
(
gs ∗ f1(z − x)− gs ∗ f1(z − y)

)
dz,

where fs is the density of
∑s−1

r=0 ArZ1−r, gs is the density of
∑s−1

r=1 ArZ1−r, and
f1 is the density of Z1. Since fs is the convolution of gs and f1, by condition (b1)
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the function f1 is Lipschitz, and

|Ψs(x, θ1, θ2)−Ψs(y, θ1, θ2)| ¬ Lip(f1) |x− y|
∫
|ψθ1,θ2(z)| dz

¬ Lip(f1) |x− y| |θ1 − θ2|
∫

L(z)dz,

which implies (Lip1). ¥

We will prove the following result for a one-dimensional case of linear pro-
cesses where m = 1.

PROPOSITION 3.2. Suppose that E |ψ(θ, X1)|2 < ∞ for all θ ∈ Θδ ⊂ R,
conditions (B), (C), (V) hold, and (a0), (b1), (b2(t)) with t = 2 are fulfilled for
m = 1. Assume in addition that (L2) holds and

(i) there exists a constant C such that

‖ψθ1,θ2(·)‖tv ¬ C |θ1 − θ2| for all θ1, θ2 ∈ Θδ,

where ‖·‖tv denotes the total variation, and
(b0) there exists some constant C such that the condition

sup
s∈N

Lip(Fs) ¬ C

holds, where Fs is the distribution function of
∑s−1

r=0 arZ1−r.
Then we obtain the Ghosh representation (3.3). Additionally, if Ψs(θ0, ·) is

Lipschitz, then √
n(θn − θ0)

d→ N (0, γ−2σ2),

where γ = γ(θ0), γ(θ) = DθΨ(θ), and

σ2 = Eψ2(θ0, X1) + 2
∞∑

r=1

E
(
ψ(θ0, X1)ψ(θ0, X1+r)

)
.

P r o o f. First, we will show that conditions (i) and (b0) imply (Lip1). Ob-
serve that for any x, y

ψθ1,θ2(z)Fs(z − x)|z=∞
z=−∞ −ψθ1,θ2(z)Fs(z − y)|z=∞

z=−∞= 0.

By the formula of integration by parts for Stielties integrals, we have

Ψs(x, θ1, θ2)−Ψs(y, θ1, θ2)
=

∫
ψθ1,θ2(z)dFs(z − x)−

∫
ψθ1,θ2(z)dFs(z − y)

= −
∫ (

Fs(z − x)− Fs(z − y)
)
dψθ1,θ2(z),
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where Fs is the distribution function of
∑s−1

r=0 ArZ1−r. Therefore, from (b0) we
get Lip(Fs) ¬ C and

|Ψs(x, θ1, θ2)−Ψs(y, θ1, θ2)|
¬ Lip(Fs) |x− y| ‖ψθ1,θ2(·)‖tv ¬ C |x− y| |θ1 − θ2|.

By Theorem 3.1 we obtain our assertion. ¥

Some remarks on the consistence of M -estimators

LEMMA 3.3. Suppose the conditions (a0), (b1) are satisfied, and (b2(t))
holds with t = k + 1. Assume also that (Lip1) is fulfilled. Then for each δ > 0

sup
θ∈Θδ

|Ψn(θ)−Ψ(θ)| P→ 0.

P r o o f o f L e m m a 3.3. Obviously, we have

sup
θ∈Θδ

|Ψn(θ)−Ψ(θ)| ¬ 1√
n
|υnψ(θ0, ·)|+ 1√

n
sup

d(θ,θ0)<δ
|υnψ(θ, ·)− υnψ(θ0, ·)|.

Hence, reasoning as in the proof of Lemma 3.1 (see (3.7)), we have

E sup
d(θ,θ0)<δ

|υnψ(θ, ·)− υnψ(θ0, ·)| = O (1),

and the proof is completed. ¥

REMARK 3.4. One can be seen that if all the assumptions of Lemma 3.3 are
satisfied and

inf
θ∈Θ\Θδ

|Ψ(θ)| > 0 for every δ > 0,

then condition (C) is fulfilled (see Van der Vaart (1998), Theorem 5.9).
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