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ON BESOV REGULARITY OF BROWNIAN MOTIONS
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Abstract. We extend to the vector-valued situation some earlier work
of Ciesielski and Roynette on the Besov regularity of the paths of the classi-
cal Brownian motion. We also consider a Brownian motion as a Besov space
valued random variable. It turns out that a Brownian motion, in this inter-
pretation, is a Gaussian random variable with some pathological properties.
We prove estimates for the first moment of the Besov norm of a Brow-
nian motion. To obtain such results we estimate expressions of the form
E supn­1 ‖ξn‖, where ξn are independent centered Gaussian random vari-
ables with values in a Banach space. Using isoperimetric inequalities we
obtain two-sided inequalities in terms of the first moments and the weak
variances of ξn.
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1. INTRODUCTION

Let (Ω,A,P) be a complete probability space. Let W : [0, 1] × Ω → R be
a standard Brownian motion. Since W has continuous paths, it is easy to check
that W : Ω→ C([0, 1]) is a C([0, 1])-valued Gaussian random variable. Moreover,
since W is α-Hölder continuous for all α ∈ (0, 1/2), one can also show that, for
all 0 < α < 1/2, W : Ω → Cα([0, 1]) is a Gaussian random variable. In this way
one obtains results like

E exp(ε‖W‖2Cα([0,1])) <∞ for some ε > 0.

In [2] and [3] Ciesielski has improved the Hölder continuity results of Brow-
nian motion using Besov spaces. He has proved that almost all paths of W are
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in the Besov space B
1/2
p,∞(0, 1) for all p ∈ [1,∞) or even in the Besov–Orlicz

space B
1/2
Φ2,∞(0, 1), where Φ2(x) = exp(x2) − 1 (for the definition we refer to

Section 2). In [11] Roynette has characterized the set of indices α, p, q for which
the paths of Brownian motion belong to the Besov spaces Bα

p,q(0, 1).
The proofs of the above results are based on certain coordinate expansions of

the Brownian motion and descriptions of the Besov norms in terms of the corre-
sponding expansion coefficients of a function. We will give more direct proofs of
these results which employ the usual modulus-of-continuity definition of the Besov
norms. Our methods also carry over to the vector-valued situation.

Let X be a real Banach space. We will write a . b if there exists a universal
constant C > 0 such that a ¬ Cb, and a h b if a . b . a. If the constant C is
allowed to depend on some parameter t, we write a .t b and a ht b instead. Let
(lΘ, ‖ · ‖Θ) denote the Orlicz sequence space with Θ(x) = x2 exp(−1/x2). Let
(ξn)n­1 be independent centered X-valued Gaussian random variables with weak
variances (σn)n­1 and m = supn­1 E‖ξn‖. In Section 3 we will show that

(1.1) E sup
n­1
‖ξn‖ h m + ‖(σn)n­1‖Θ.

As a consequence of the Kahane–Khinchine inequalities a similar estimate holds
for (E supn­1 ‖ξn‖p)1/p for all p ∈ [1,∞) as well, at the cost of replacing h
by hp. The proof of (1.1) is based on isoperimetric inequalities for Gaussian ran-
dom variables (cf. [9]).

In Section 4 we obtain regularity properties of X-valued Brownian motions W .
In particular, we show that for the paths of an X-valued Brownian motion W we
have W ∈ B

1/2
p,∞(0, 1;X) for all p ∈ [1,∞) or even W ∈ B

1/2
Φ2,∞(0, 1;X). Thus

we can consider the mappings

W : Ω→ B1/2
p,∞(0, 1;X) and W : Ω→ B

1/2
Φ2,∞(0, 1;X).

A natural question is whether W is a Gaussian random variable with values in one
of these spaces. To answer this question some problems have to be solved, because
the Banach spaces B

1/2
p,∞(0, 1) and B

1/2
Φ2,∞(0, 1) are non-separable. It will be shown

in Section 5 that W is indeed a Gaussian random variable, but it has some peculiar
properties. For instance, we find that there exists an ε > 0 such that

P(‖W‖
B

1/2
p,∞(0,1;X)

¬ ε) = P(‖W‖
B

1/2
Φ2,∞(0,1;X)

¬ ε) = 0

which is rather counterintuitive for a centered Gaussian random variable. It implies
in particular that W is not Radon. In the last Section 6 we apply the results from
Section 3 to obtain explicit estimates forE‖W‖

B
1/2
p,∞(0,1;X)

andE‖W‖
B

1/2
Φ2,∞(0,1;X)

.
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2. PRELIMINARIES

2.1. Orlicz spaces. We briefly recall the definition of Orlicz spaces. More de-
tails can be found in [7], [10] and [14].

Let (S, Σ, µ) be a σ-finite measure space and let X be a Banach space. Let
Φ : R→ R+ be an even convex function with Φ(0) = 0 and limx→∞Φ(x) =∞.
The Orlicz space LΦ(S;X) is defined as the set of all strongly measurable func-
tions f : S → X (identifying functions which are equal µ-a.e.) with the property
that there exists a δ > 0 such that

MΦ(f/δ) :=
∫
S

Φ
(‖f(s)‖/δ

)
dµ(s) <∞.

This space is a vector space and we define

ρΦ(f) = inf{δ > 0 : MΦ(f/δ) ¬ 1}.
The mapping ρΦ defines a norm on LΦ(S;X) and it turns LΦ(S;X) into a Banach
space. It is usually referred to as the Luxemburg norm.

For f ∈ LΦ(S; X) we also define the Orlicz norm

‖f‖Φ = inf
δ>0

{
1
δ

(
1 + MΦ(δf)

)}
.

The Orlicz norm is usually defined in a different way using duality, but the above
norm gives exactly the same number (cf. [10], Theorem III.13).

The two norms are equivalent, as shown in the following:

LEMMA 2.1. For all f ∈ LΦ(S;X) we have

ρΦ(f) ¬ ‖f‖Φ ¬ 2ρΦ(f).

P r o o f. Let δ > 0 be such that MΦ(fδ) ¬ 1. Then

1
δ

(
1 + MΦ(δf)

) ¬ 2
δ
.

Taking the infimum over all δ > 0 such that MΦ(fδ) ¬ 1 gives the second in-
equality.

For the first inequality, choose α > ‖f‖Φ. Then there exists a δ > 0 such that

1
δ

(
1 + MΦ(δf)

) ¬ α.

Since Φ(0) = 0 and Φ is convex, we have Φ(x/β) ¬ Φ(x)/β for all x ∈ R and
β ­ 1. Noting that αδ ­ 1 it follows that

MΦ(f/α) = MΦ

(
δf

δα

)
¬ MΦ(δf)

δα
¬ 1.

Since ρΦ(f) is the infimum over all α > 0 for which the previous inequality holds,
and it holds for every α > ‖f‖Φ, we conclude that ρΦ(f) ¬ ‖f‖Φ. ¥
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It is clear from the proof that the lemma holds for all functions Φ : R+ → R
that satisfy Φ(0) = 0 and Φ(x/β) ¬ Φ(x)/β for all x ∈ R+ and β ­ 1. An
interesting example of a non-convex function that satisfies the above properties is
Φ(x) = x exp(−1/x2).

2.2. The Orlicz sequence space lΘ. We next present a particular Orlicz space
which plays an important role in our studies. The underlying measure space is now
Z+ with the counting measure, and we will consider the function Θ: R → R+

defined by

(2.1) Θ(x) = x2 exp
(
− 1

2x2

)
.

This function satisfies the assumptions in Subsection 2.1 and we can associate an
Orlicz sequence space lΘ to it. Thus lΘ consists of all sequences a := (an)n­1 for
which

ρΘ(a) := inf
{

δ > 0:
∑

n­1

a2
n

δ2
exp

(
− δ2

2a2
n

)
¬ 1

}
<∞.

The following example illustrates the behaviour of ρΘ(a), but also plays a role
later on.

EXAMPLE 2.1. If an = αn, where α ∈ [1/2, 1), then

ρΘ(a) h
√

log(1− α)−1.

This may be compared with ‖a‖p h (1− α)−1/p, again for α ∈ [1/2, 1), and
p ∈ [1,∞].

P r o o f. We consider the equivalent Orlicz norm ‖a‖Θ. On the one hand,

∑

n­1

λ2α2n exp
(
− 1

2λ2α2n

)
¬ ∑

n­1

λ2α2n exp
(
− 1

2λ2α2

)

=
λ2α2

1− α2
exp

(
− 1

2λ2α2

)
¬ λ2

1− α
exp

(
− 1

2λ2

)
.

On the other hand, let N ∈ Z+ be such that α2N ¬ 1/2 < α2(N−1). Then

∑

n­1

λ2α2n exp
(
− 1

2λ2α2n

)
­

N∑

n=1

λ2α2n exp
(
− 1

2λ2α2N

)

­ λ2α2 1− α2N

1− α2
exp

(
− 1

λ2α2

)
­ λ2

12(1− α)
exp

(
− 4

λ2

)
.
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Consequently, we obtain

‖a‖Θ = inf
λ>0

1
λ

(
1 + MΘ(λa)

)
h inf

λ>0

1
λ

(
1 +

λ2

1− α
exp(−1/2λ2)

)
=: inf

λ>0
F (λ).

The differentiable function F tends to∞ as λ → 0 or λ → ∞, so its infimum is
attained at a point where F ′(λ) = 0. Since

F ′(λ) = −λ−2 + (1− α)−1 exp(−1/2λ2) + (1− α)−1 exp(−1/2λ2)λ−2,

where the middle-term is always positive, F ′(λ) = 0 can only happen if

(1− α)−1 exp(−1/2λ2) ¬ 1, i.e., λ−1 ­ λ−1
0 :=

√
2 log(1− α)−1.

But 1/λ is the first term in F (λ), so we have proved that F (λ) &
√

log(1− α)−1

whenever 0 < λ ¬ λ0. Moreover, F (λ0) h
√

log(1− α)−1, which completes the
proof. ¥

2.3. Besov spaces. We recall the definition of the vector-valued Besov spaces.
For the real case we refer to [12] and for the vector-valued Besov space we will
give the treatise from [6].

Let X be a real Banach space and let I = (0, 1). For α ∈ (0, 1), p, q ∈ [1,∞]
the vector-valued Besov space Bα

p,q(I; X) is defined as the space of all functions
f ∈ Lp(I; X) for which the seminorm (with the usual modification for q =∞)

( 1∫
0

(
t−αωp(f, t)

)q dt

t

)1/q

is finite. Here

ωp(f, t) = sup
|h|¬t
‖s 7→ f(s + h)− f(s)‖Lp(I(h);X)

with I(h) = {s ∈ I : s + h ∈ I}. The sum of the Lp-norm and this seminorm
turn Bα

p,q(I; X) into a Banach space. By a dyadic approximation argument (see
[6], Corollary 3.b.9) one can show that the above seminorm is equivalent to

‖f‖p,q,α :=
( ∑

n­0

(
2nα‖s 7→ f(s + 2−n)− f(s)‖Lp(I(2−n);X)

)q
)1/q

For the purposes below it will be convenient to take

‖f‖Bα
p,q(I;X) = ‖f‖Lp(I;X) + ‖f‖p,q,α

as a Banach space norm on Bα
p,q(I; X).
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For 0 < β < ∞, we also introduce the exponential Orlicz and Orlicz–Besov
(semi)norms:

‖f‖
L

Φβ (I;X)
:= sup

p­1
p−1/β‖f‖Lp(I;X),

‖f‖Φβ ,∞,α := sup
n­1

2αn‖f − f(· − 2−n)‖
L

Φβ (I(2−n);X)
= sup

p­1
p−1/β‖f‖p,∞,α,

and finally the Orlicz–Besov norm:

‖f‖Bα
Φβ,∞(I;X) := sup

p­1
p−1/β‖f‖Bα

p,∞(I;X) h ‖f‖LΦβ (I;X)
+ ‖f‖Φβ ,∞,α.

Because of the inequalities between different Lp-norms, it is immediate that we
have equivalent norms above, whether we understand p ­ 1 as p ∈ [1,∞) or
p ∈ {1, 2, . . .}. For definiteness and later convenience, we choose the latter.

The above-given norm of LΦβ (I; X) is equivalent to the usual norm of the
Orlicz space LΦβ (I; X) from Subsection 2.1 where Φβ(x) = exp(|x|β) − 1 for
β ­ 1. For 0 < β < 1, the function Φβ must be defined in a slightly different way,
but it is still essentially exp(|x|β); see [3].

For β ∈ Z+ \ {0} one can show in the same way as in [3],Theorem 3.4, that

(2.2) ‖f‖
L

Φβ (I;X)
¬ ‖f‖

L
Φβ (I;X)

.

2.4. Gaussian random variables. Let (Ω,A,P) denote a complete probability
space. As in [9] let X be a Banach space with the following property: there exists
a sequence (x∗n)n­1 in X∗ such that ‖x∗n‖ ¬ 1 and ‖x‖ = supn­1 |x∗n(x)|. Such
a Banach space will be said to admit a norming sequence of functionals. Examples
of such Banach spaces are all separable Banach spaces, but also spaces like l∞.
As in [9] a mapping ξ : Ω → X will be called a centered Gaussian if for all
x∗ ∈ span{x∗n : n ­ 1} the random variable 〈ξ, x∗〉 is a centered Gaussian. For
a centered Gaussian random variable we define

(2.3) σ(ξ) = sup
n­1

(E|〈ξ, x∗n〉|2)1/2.

In [9] it is proved that

lim
t→∞

1
t2

logP(‖X‖ > t) = − 1
2σ2

,

so that the value of σ is independent of the norming sequence (x∗n)n­1.
We make some comment on the above definition of a Gaussian random vari-

able. We do not assume that ξ is a Borel measurable mapping. The only obvious
fact we will use is that the mapping ω 7→ ‖ξ(ω)‖ is measurable. If ξ is a Gaussian
random variable that takes values in a separable subspace of X , then ξ is Borel
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measurable, and consequently 〈ξ, x∗〉 is a centered Gaussian random variable for
all x∗ ∈ X∗.

A random variable ξ : Ω → X is called tight if the measure P ◦ ξ−1 is tight,
and it is called Radon if P ◦ ξ−1 is Radon. If X is a separable Banach space, then
every Borel measurable random variable ξ : Ω → E is Radon, and in particular
tight. Conversely, if a Gaussian random variable ξ : Ω→ X is tight, then it almost
surely takes values in a separable subspace of X . The next result is well known;
a short proof can be found in [9], p. 61.

PROPOSITION 2.1. Let X be a Banach space and let ξ : Ω→ X be a centered
Gaussian. If ξ is tight, then P(‖ξ‖ < r) > 0 for all r > 0.

3. MAXIMAL ESTIMATES FOR SEQUENCES OF GAUSSIAN RANDOM VARIABLES

The next proposition together with Theorem 3.1 may be considered as the
vector-valued extension of a result in [4].

PROPOSITION 3.1. Let X be a Banach space which admits a norming se-
quence of functionals (x∗n)n­1. Let Θ be as in (2.1). Let (ξn)n­1 be X-valued
centered Gaussian random variables with first moments and weak variances

mn = E‖ξn‖, σn = sup
m­1

(E|〈ξn, x∗m〉|2)1/2.

Then
E sup

n­1
‖ξn‖ ¬ m + 3ρΘ

(
(σn)n­1

)
, where m = sup

n­1
mn.

Moreover, if any linear combination of the (ξn)n­1 is a Gaussian random vari-
able and if E supn­1 ‖ξn‖<∞, then ξ :=(ξn)n­1 is an l∞(X)-valued Gaussian
random variable.

By the Kahane–Khinchine inequalities (cf. [8], Corollary 3.4.1) one obtains
a similar estimate for the p-th moments of supn­1 ‖ξn‖. However, this also follows
by extending the proof below.

P r o o f. We may write

E sup
n­1
‖ξn‖ ¬ E sup

n­1

∣∣‖ξn‖ −mn

∣∣ + sup
n­1

mn.

By (3.2) in [9], for all t > 0 we have

(3.1) P
(∣∣‖ξn‖ −mn

∣∣ > t
) ¬ 2 exp

(
− t2

2σ2
n

)
.
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For each δ > 0 it follows that

E sup
n­1

∣∣‖ξn‖ −mn

∣∣ =
∞∫
0

P
(
sup
n­1

∣∣‖ξn‖ −mn

∣∣ > t
)
dt

¬ δ +
∞∫
δ

P
(
sup
n­1

∣∣‖ξn‖ −mn

∣∣ > t
)
dt ¬ δ +

∑

n­1

∞∫
δ

P
(∣∣‖ξn‖ −mn

∣∣ > t
)
dt

¬ δ +
∑

n­1

2
∞∫
δ

exp
(
− t2

2σ2
n

)
dt = δ +

∑

n­1

2
∞∫

δ/σn

σn exp
(
− t2

2

)
dt

¬ δ + 2
∑

n­1

σ2
n

δ
exp

(
− δ2

2σ2
n

)
= δ

[
1 + 2

∑

n­1

σ2
n

δ2
exp

(
− δ2

2σ2
n

)]
,

(3.2)

where we used the standard estimate

∞∫
δ

exp(−t2/2) dt ¬ 1
δ

exp(−δ2/2).

If δ > 0 is chosen so that the last series sums up to at most 1, then we have
shown that E supn­1

∣∣‖ξn‖ −mn

∣∣ ¬ 3δ. Taking the infimum over all such δ, we
obtain the result.

The final assertion follows from the definition of a Gaussian random variable
using the norming sequence of functionals (em ⊗ x∗n)m,n­1. ¥

REMARK 3.1. The infimum appearing in Proposition 3.1 is dominated by

[(
p− 1

e

)(p−1)/2 ∑

n­1

σp+1
n

]1/(p+1)

for any p ∈ [1,∞[. (Interpret 00 = 1 for p = 1.) This follows from the elementary
estimate exp(−x2/2) ¬ [(p− 1)/e](p−1)/2x1−p applied to x = δ/σn.

For an X-valued random variable ξ we take a median M such that

P(‖ξ‖ ¬M) ­ 1/2 and P(‖ξ‖ ­M) ­ 1/2.

For convenience we will take M = M(ξ) to be the smallest possible M . Notice
that, for all p ∈ (0,∞), E‖ξ‖p ­Mp/2.

Alternatively, we could have replaced the estimate (3.1) in the above proof by

P
(∣∣‖ξ‖ −M

∣∣ > t
) ¬ exp

(
− t2

2σ2

)

(see [9], Lemma 3.1) to obtain
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PROPOSITION 3.2. Let X be a Banach space which admits a norming se-
quence of functionals (x∗n)n­1. Let Θ be as in (2.1). Let (ξn)n­1 be X-valued
centered Gaussian random variables with medians Mn and weak variances

σn = sup
m­1

(E|〈ξn, x∗m〉|2)1/2.

Then

E sup
n­1
‖ξn‖ ¬M + 2ρΘ

(
(σn)n­1

)
, where M = sup

n­1
Mn.

If the ξn are independent Gaussian random variables, then the converse to
Proposition 3.1 holds.

THEOREM 3.1. Let X be a Banach space which admits a norming sequence
of functionals. Let Θ be as in (2.1). Let (ξn)n­1 be X-valued independent cen-
tered Gaussian random variables with first moments (mn)n­1 and weak variances
(σn)n­1. Let m = supn­1 mn. Then

E sup
n­1
‖ξn‖ h m + ρΘ

(
(σn)n­1

)
h m + ‖(σn)n­1‖Θ.

Moreover, if one of these expressions is finite, then ξ := (ξn)n­1 is an l∞(X)-
valued Gaussian random variable.

Recall from Subsection 2.1 and the definition of Θ that

‖(σn)n­1‖Θ = inf
δ>0

{
1
δ

[
1 +

∑

n­1

δ2σ2
n exp

(
− 1

2δ2σ2
n

)]}
.

P r o o f. The second two-sided estimate follows from Lemma 2.1.
The estimate . in the first comparison has been obtained in Proposition 3.1.

To prove &, let us note that E supn­1 ‖ξn‖­m is clear. As for the estimate for
ρΘ

(
(σn)n­1

)
, by scaling we may assume that E supn­1 ‖ξn‖ = 1. Then we have

P(supn­1 ‖ξn‖ > 3) ¬ 1/3, and therefore

1/3 ¬ P(sup
n­1
‖ξn‖ ¬ 3) =

∏
n­1

P(‖ξn‖ ¬ 3) =
∏
n­1

(
1− P(‖ξn‖ > 3)

)

¬ ∏
n­1

exp
(− P(‖ξn‖ > 3)

)
.

It follows that

log 3 ­ ∑

n­1

P(‖ξn‖ > 3).
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Let ε ∈ (0, 1) be an arbitrary number. If for each n ­ 1 we choose kn such that
(E〈ξn, x∗kn

〉2)1/2 ­ σn(1− ε), then we obtain

log 3 ­ ∑

n­1

P(‖ξn‖ > 3) ­ ∑

n­1

P(|〈ξn, x∗kn
〉| > 3)

­
√

2
π

∑

n­1

3σn(1− ε)
σ2

n(1− ε)2 + 9
exp

(
− 9

2σ2
n(1− ε)2

)
,

where we used ∞∫
a

exp(−t2/2) dt ­ a

1 + a2
exp(−a2/2).

Next, we have

σ2
n = sup

m­1
E〈ξn, x∗m〉2 =

π

2
sup
m­1

E|〈ξn, x∗m〉| ¬
π

2
E‖ξn‖ ¬ π

2
,

and hence σ2
n(1− ε)2 + 9 ¬ π/2 + 9 < 11 and

√
2/π · σn ­ 2/π · σ2

n. Thus

log 3 ­ 6
11π

∑

n­1

σ2
n(1− ε) exp

(
− 9

2σ2
n(1− ε)2

)
.

This being true for all ε > 0, it follows in the limit that

∑

n­1

(
σn

3

)2

exp
(
− 9

2σ2
n

)
¬ log 3 · 11π

6 · 9 < 1.

Therefore, ρΘ

(
(σn)n­1

) ¬ 3.
The last assertion follows as in Proposition 3.1. ¥

From the proof of Theorem 3.1 we actually see that

E sup
n­1
‖ξn‖ ­ max

{
1
3
ρΘ

(
(σn)n­1

)
,m

}
.

REMARK 3.2. A similar proof as presented above shows that the function Θ
in Theorem 3.1 can be replaced by the (non-convex) function Φ defined in Subsec-
tion 2.1. Since we prefer to have an Orlicz space, we use the convex function Θ.

In the real-valued case, m is not needed in the estimate of Theorem 3.1. This
is due to the fact that it can be estimated by supn­1 σn. The following simple
example shows that in the infinite-dimensional setting this is not the case. We shall
also encounter the same phenomenon in a more serious example in the proof of
Theorem 6.1.
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EXAMPLE 3.1. Let p ∈ [1,∞] and let X = lp with the standard unit vectors
denoted by en. Let (σn)n­1 be a sequence of positive real numbers with

mp :=
( ∑

n­1

σp
n

)1/p
<∞ if p <∞,

m∞ := ρΘ

(
(σn)n­1

)
<∞ if p =∞.

Let (γn)n­1 be a sequence of independent standard Gaussian random variables.
Then ξ =

∑
n­1 σnγnen defines an X-valued Gaussian random variable with

m(ξ) = E‖ξ‖ hp mp and

σ(ξ) =
{ supn­1 σn, p ∈ [2,∞],( ∑

n­1
σr

n

)1/r
, p ∈ [1, 2),

where r = 2p/(2− p).

4. BESOV REGULARITY OF BROWNIAN PATHS

We say that an X-valued process
(
W (t)

)
t∈[0,1]

is a Brownian motion if it is

strongly measurable and, for all x∗ ∈ E∗,
(〈W (t), x∗〉)

t∈[0,1]
is a real Brownian

motion starting at zero. Let Q be the covariance of W (1). For the process W we
have:

1. W (0) = 0;
2. W has a version with continuous paths;
3. W has independent increments;
4. for all 0 ¬ s < t <∞, W (t)−W (s) has distribution N (

0, (t− s)Q
)
.

In this situation we say that W is a Brownian motion with covariance Q. Notice
that every process W that satisfies 3 and 4 has a pathwise continuous version
(cf. [5], Theorem 3.23).

In the next result we obtain a Besov regularity result for Brownian motions.
The case of real-valued Brownian motions has been considered in [2], [3] and [11].
But even in the real-valued case we believe the proof is new and more direct.

THEOREM 4.1. Let X be a Banach space and let p, q ∈ [1,∞). For an X-
valued non-zero Brownian motion W we have

W ∈ B
1/2
Φ2,∞(0, 1;X) ⊂ B1/2

p,∞(0, 1;X) a.s.,

W /∈ B1/2
p,q (0, 1;X) a.s.

P r o o f. Define

Yn,p := 2n/2‖W (·+ 2−n)−W‖Lp(I(2−n);X).
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We may write

Y p
n,p =

1−2−n∫
0

2np/2‖W (t + 2−n)−W (t)‖p dt

=
2n−1∑

m=1

m2−n∫
(m−1)2−n

2np/2‖W (t + 2−n)−W (t)‖p dt

=
2n−1∑

m=1

2−n
1∫
0

2np/2
∥∥W

(
(s + m)2−n

)−W
(
(s + m− 1)2−n

)∥∥p
ds

=
1∫
0

2−n
2n−1∑

m=1

‖γn,m,s‖p ds.

Here γn,m,s = 2n/2
(
W

(
(s+m)2−n

)−W
(
(s+m−1)2−n

))
. For fixed s ∈ (0, 1)

and n ­ 1, (γn,m,s)m­1 is a sequence of independent random variables distributed

as W (1). Write cp =
(
E‖W (1)‖p)1/p

. If we take second moments, we may use
Jensen’s inequality to obtain

E(Y p
n,p − cp

p)
2 = E

∣∣ 1∫
0

[
2−n

2n−1∑

m=1

‖γn,m,s‖p − cp
p

]
ds

∣∣2

¬
1∫
0

E
∣∣2−n

2n−1∑

m=1

(‖γn,m,s‖p − cp
p)− 2−ncp

p

∣∣2 ds

=
1∫
0

[2−2n(2n − 1)(c2p
2p − c2p

p ) + 2−2nc2p
p ]ds

= 2−n[(1− 2−n)c2p
2p − (1− 21−n)c2p

p ].

It follows that for a fixed ε > 0 we have
∑

n­1

P(|Y p
n,p − cp

p| > ε) ¬ 1
ε2

∑

n­1

E(Y p
n,p − cp

p)
2 <∞,

which implies, by the Borel–Cantelli lemma, that

P(|Y p
n,p − cp

p| > ε infinitely often) = 0.

This in turn gives

(4.1) lim
n→∞ 2n/2‖W (·+ 2−n)−W‖Lp(I(2−n);X) =

(
E‖W (1)‖p)1/p

a.s.

This shows immediately that the paths are a.s. in B
1/2
p,∞(0, 1;X). From the above

calculation it is also clear that W /∈ B
1/2
p,q (0, 1;X) a.s. for q ∈ [1,∞). Next we

show that the paths are in B
1/2
Φ2,∞(0, 1;X) a.s. Note that

(
E‖W (1)‖p)1/p h p1/2
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as p → ∞. The upper estimate . is a consequence of Fernique’s theorem (which
states that ‖W (1)‖2 is exponentially integrable, since W (1) is a non-zero X-
valued Gaussian random variable), whereas & follows from the corresponding esti-
mate for real Gaussians after applying a functional. We proved thatE(Y p

n,p−cp
p)2 ¬

c2p
2p2
−n. Therefore,

E(Y p
n,pc

−p
p − 1)2 ¬ C2−nc2p

2pc
−2p
p ¬ C2−nK2p,

where K ­ 1 is some constant. Hence for all λ > 1

P(Yn,pc
−1
p > λ) ¬ P(|Y p

n,pc
−p
p − 1| > λp − 1) ¬ C2−nK2p(λp − 1)−2,

and thus for λ = 2K
∞∑

n,p=1

P(Yn,pc
−1
p > λ) ¬ Cλ−2

∞∑

n=1

2−n
∞∑

p=1

K2p(λp − 1)−2 <∞,

so that by the Borel–Cantelli lemma

P
(
Yn,pc

−1
p > λ for infitely many pairs (n, p)

)
= 0.

Since cp h p1/2, this means that a.s.

sup
n,p

2n/2‖W (·+ 2−n)−W‖Lp(I(2−n);X)p
−1/2 <∞. ¥

5. BROWNIAN MOTIONS AS RANDOM VARIABLES IN BESOV SPACES

From the pathwise properties of W studied in the previous section we know
that we have a function W : Ω → B

1/2
p,∞. We now go into the measurability issues

in order to promote it to a random variable.

THEOREM 5.1. Let X be a Banach space and let p ∈ [1,∞). Then an X-
valued Brownian motion W is a B

1/2
p,∞(0, 1;X)-valued, and even B

1/2
Φ2,∞(0, 1;X)-

valued, Gaussian random variable. In particular, there exists an ε > 0 such that

E exp(ε‖W‖2
B

1/2
Φ2,∞(0,1;X)

) <∞.

If the Brownian motion W is non-zero, then the random variables

W : Ω→ B1/2
p,∞(0, 1;X) and W : Ω→ B

1/2
Φ2,∞(0, 1;X)

are not tight. In fact,

τ1 := inf{λ ­ 0 : P(‖W‖
B

1/2
p,∞(0,1;X)

¬ λ) > 0} ­ (
E‖W (1)‖p)1/p

,

and, consequently, also

τ2 := inf{λ ­ 0 : P(‖W‖
B

1/2
Φ2,∞(0,1;X)

¬ λ) > 0} > 0.
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There is some interest in the numbers τ1 and τ2. For general theory we refer
the reader to [9], Chapter 3.

For the proof we need the following easy lemma.

LEMMA 5.1. Let X be a Banach space which admits a norming sequence, let
0 < α < 1 and 0 < β <∞. Then for all p ∈ [1,∞) there exist

(Λpjk)j­0,k­1 ⊂ Bα
p,∞(0, 1;X)∗ ⊂ Bα

Φβ ,∞(0, 1;X)∗,

(fpjk)j­0,k­1 ⊂ C∞([0, 1];X∗)

such that: for all φ ∈ Bα
p,∞(0, 1;X) there are the representations

〈φ,Λp0k〉 =
1∫
0

〈φ(t), fp0k(t)〉 dt, k ­ 1,

〈φ,Λpjk〉 =
1−2−j∫

0

2jα〈φ(t + 2−j)− φ(t), fpjk(t)〉 dt, j, k ­ 1;

we have the upper norm bounds

p−1/β‖Λpjk‖Bα
Φβ,∞(0,1;X)∗ ¬ ‖Λpjk‖Bα

p,∞(0,1;X)∗ ¬ 1, k ­ 1;

and finally the sequences are norming in the following sense:

‖φ‖Bα
p,∞(0,1;X) = sup

j­0,k­1
|〈φ,Λpjk〉|,

‖φ‖Bα
Φβ,∞(0,1;X) = sup

p­1,j­0,k­1
p−1/β|〈φ, Λpjk〉|.

P r o o f. Let (x∗n)n­1 be a norming sequence for X . Let I = [a, b]. First ob-
serve that there exists a sequence (Fk)k­1 in Lp′(I; X∗), with norm smaller than or
equal to one, which is norming for Lp(I; X). Such a sequence is easily constructed
using the (x∗n)n­1 and standard duality arguments. By an approximation argument
we can even take the (Fk)k­1 in C∞(I; X∗).

To prove the lemma, let first a = 0 and b = 1, and let (fp0k)k­1 be the above-
constructed sequence (Fk)k­1. Next we fix j ­ 1, let a = 0 and b = 1 − 2−j+1,
and let (fpjk)k­1 be the above-constructed sequence for this interval. Let Λpjk be
the elements in Bα

p,∞(0, 1;X)∗ defined as in the statement of the lemma. It is easily
checked that this sequence satisfies the required properties. ¥

P r o o f o f T h e o r e m 5.1. Since W is strongly measurable as an X-valued
process, we may assume that X is separable and therefore that it admits a norm-
ing sequence. In Theorem 4.1 it has been shown that the paths of W are a.s. in
B

1/2
Φ2,∞(0, 1;X) ⊂ B

1/2
p,∞(0, 1;X) for all p ∈ [1,∞). It follows from Lemma 5.1

that there exists a norming sequence of functionals (Λn)n­1 for B
1/2
Φ2,∞(0, 1;X), as
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well as in each B
1/2
p,∞(0, 1;X), such that 〈W,Λ〉 is a centered Gaussian random

variable for all Λ ∈ span{Λn, n ­ 1}. Therefore, by definition it follows that W is
a centered Gaussian random variable. The exponential integrability follows from
Corollary 3.2 in [9].

The last assertion follows from (4.1). This also shows that W is not tight
since, by Proposition 2.1, for centered Gaussian measures which are tight it follows
that τ = 0. ¥

6. MOMENT ESTIMATES FOR BROWNIAN MOTIONS IN BESOV SPACES

Since now we know that

E‖W‖
B

1/2
p,∞(0,1;X)

<∞ and E‖W‖
B

1/2
Φ2,∞(0,1;X)

<∞,

it seems interesting to estimate these quantities. For this we need a convenient
representation of X-valued Brownian motions.

Recall that a family WH =
(
WH(t)

)
t∈R+

of bounded linear operators from

H to L2(Ω) is called an H-cylindrical Brownian motion if
1. WHh =

(
WH(t)h

)
t∈R+

is a real-valued Brownian motion for each h ∈ H ,

2. E
(
WH(s)g ·WH(t)h

)
= (s ∧ t) [g, h]H for all s, t ∈ R+, g, h ∈ H.

We always assume that the H-cylindrical Brownian motion WH is adapted to
a given filtration F , i.e., the Brownian motions WHh are adapted to F for all
h ∈ H . Notice that if (hn)n­1 is an orthonormal basis for H , then (WHhn)n­1

are independent standard real-valued Brownian motions.
Let W : R+×Ω→ E be an E-valued Brownian motion and let Q ∈ L(E∗, E)

be its covariance operator. Let HQ be the reproducing kernel Hilbert space or
Cameron–Martin space (cf. [1], [13]) associated with Q and let iW : HQ ↪→ E
be the inclusion operator. Then the mappings

WHQ
(t) : i∗W x∗ 7→ 〈W (t), x∗〉

uniquely extend to an HQ-cylindrical Brownian motion WHQ
, so that in particular

(6.1) 〈W (t), x∗〉 = WHQ
(t)i∗W x∗.

LEMMA 6.1. For all p ∈ [1,∞) we have

‖iW ‖ = σ
(
W (1)

)
. 1√

p

(
E‖W (1)‖p)1/p

.

P r o o f. Note first that, since 〈W (t), x∗〉 is a real-valued Gaussian random
variable, its moments satisfy

(6.2)
(
E|〈W (t), x∗〉|p)1/p

= γp

(
E|〈W (t), x∗〉|2)1/2

,

where γp are universal constants behaving like γp h
√

p for p ∈ [1,∞).
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On the other hand, by (6.1) and the definition of cylindrical Brownian motion,
(
E|〈W (t), x∗〉|2)1/2

=
√

t‖i∗W x∗‖.
For t = 1, taking the supremum over all x∗ ∈ X∗ of unit norm, and recalling that
‖iW ‖ = ‖i∗W ‖, we prove then the first equality in the assertion. The second one
then follows from (6.2) and the obvious estimate

(
E|〈W (t), x∗〉|p)1/p ¬ (

E‖W (t)‖p)1/p
for ‖x∗‖ ¬ 1. ¥

LEMMA 6.2. Let c > 0, and J ⊂ R+ be an interval of length |J | ­ c.
Consider W (·+ c)−W as an Lp(J,X)-valued Gaussian random variable. Then

σ
(
W (·+ c)−W

)
h c1/2+1/p‖iW ‖.

P r o o f. To prove the claim take f∈Lp′(J ;X∗). We also use the same sym-
bol for its extension to R with zero fill. The representation (6.1), the stochastic
Fubini theorem, and the Itô isometry yield

(
E

∣∣ ∫
J

〈(
W (t + c)−W (t)

)
, f(t)

〉
dt

∣∣2
)1/2

=
(
E

∣∣ ∫
J

(
WH(t + c)−WH(t)

)
i∗W f(t) dt

∣∣2
)1/2

=
(
E

∣∣ ∫
R

∫
R+

1[t,t+c](s)i
∗
W f(t) dWH(s) dt

∣∣2
)1/2

=
(
E

∣∣ ∫
R+

1[0,c] ∗ (i∗W f)(s) dWH(s)
∣∣2

)1/2

=
( ∫
R
‖1[0,c] ∗ (i∗W f)(s)‖2H ds

)1/2
.

Taking the supremum over all f ∈ Lp′(J ;X∗) of unit norm, we find that

σ
(
W (·+ c)−W

)
= ‖(1[0,c]∗)⊗ i∗W ‖Lp′ (J ;X∗)→L2(R;H).

By Young’s inequality with 1+1/2 = 1/p′+1/r it follows that the operator norm
is dominated by

‖1[0,c]‖Lr‖i∗W ‖X∗→H = c1/p+1/2‖iW ‖.
On the other hand, if we test with the functions f = 1I ⊗ x∗ ∈ Lp′(J ; X∗), where
I ⊆ J has length c, we obtain

‖1[0,c] ∗ (i∗W f)‖L2(H) = ‖1[0,c] ∗ 1I‖L2‖i∗W x∗‖H
= (2/3)1/2c3/2‖i∗W x∗‖H h c1/2+1/p ‖i∗W x∗‖H

‖x∗‖X∗
‖f‖Lp′ (X∗).
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Taking the supremum over x∗ ∈X∗ \ {0} we get the other side of the asserted
norm equivalence. ¥

COROLLARY 6.1. Let c ∈ (0, e−1/2], and J ⊂ R+ be an interval of length
|J | ­ c. Consider W (· + c) − W as an LΦ2(J ;X)-valued Gaussian random
variable. Then

σ
(
W (·+ c)−W

)
h (log c−1)−1/2c1/2‖iW ‖.

P r o o f. Note that the functionals p−1/2Λp0k from Lemma 5.1 (with β = 2)
provide a norming sequence for LΦ2(0, 1;X), and the same construction can be
adapted to another interval. Hence

σLΦ2 (J ;X)

(
W (·+ c)−W

)

= sup
p­1

p−1/2 sup
k­1

(
E

∣∣ ∫
J

〈(
W (t + c)−W (t)

)
, fp0k(t)

〉
dt

∣∣2
)1/2

= sup
p­1

p−1/2σLp(J ;X)

(
W (·+ c)−W

)

h sup
p­1

p−1/2c1/2+1/p‖iW ‖ h (log c−1)−1/2c1/2‖iW ‖,

where an elementary maximum value problem was solved in the last step. ¥

THEOREM 6.1. Let X be a Banach space. Let p ∈ [1,∞). For an X-valued
Brownian motion W we have

(6.3) E‖W‖
B

1/2
p,∞(0,1;X)

h
(
E‖W (1)‖p)1/p

,

(6.4) E‖W‖
B

1/2
Φ2,∞(0,1;X)

h E‖W (1)‖.

REMARK 6.1. By Corollary 3.2 in [9], the estimate (6.3) implies that

E‖W‖
B

1/2
p,∞(0,1;X)

. √pE‖W (1)‖,

but we do not know if there is a two-sided comparison here. The above estimate is
also an immediate consequence of (6.4) and the definition of the various norms.

P r o o f o f T h e o r e m 6.1. As in Theorem 5.1 we may assume that X ad-
mits a norming sequence.

The estimate & in (6.3) follows from (4.1). Let us then consider the other
direction. Clearly,

E‖W‖Lp(0,1;X) ¬ (E‖W‖2L∞(0,1;X))
1/2 ¬ 2

(
E‖W (1)‖2)1/2 . E‖W (1)‖
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by Doob’s maximal inequality and the equivalence of Gaussian moments. Next we
consider

(6.5) E sup
j­1

2j/2‖W (·+ 2−j)−W‖Lp(0,1−2−j ;X).

This can be estimated using Proposition 3.1 with the Lp(0, 1;X)-valued Gaussian
random variables ξj = 2j/2[W (·+ 2−j)−W ]1[0,1−2−j ]:

E sup
j­1
‖ξj‖ . sup

j­1
E‖ξj‖+ ‖(σj)j­1‖Θ.

The first term is clearly smaller than
(
E‖W (1)‖p)1/p

. By Lemma 6.2 and Exam-
ple 2.1, the Orlicz norm can be computed as

‖(σj)j­1‖Θ h ‖iW ‖ ‖(2−j/p)j­1‖Θ h ‖iW ‖
√

log(1− 2−1/p)−1

h (1 +
√

log p)‖iW ‖.

By Lemma 6.2, this is smaller than
(
E‖W (1)‖p)1/p

; indeed, it is much smaller
when p → ∞. Thus, just like in Example 3.1, we are in a situation where the m
term totally dominates in the estimate (1.1). The proof of (6.3) is complete.

Next, we show (6.4). The lower estimate follows trivially from (6.3). For the
upper estimate we write

E‖W‖
B

1/2
Φ2,∞(0,1;X)

¬ E‖W‖LΦ2 (0,1;X) + E sup
j­1

2j/2‖W (·+ 2−j)−W‖LΦ2 (0,1−2−j ;X).

The first term can again be estimated using Doob’s maximal inequality, since

E‖W‖LΦ2 (0,1;X) ¬ E‖W‖L∞(0,1;X).

The second term can be treated using Proposition 3.1 with the LΦ2(0, 1;X)-
valued Gaussian random variables ξj = 2j/2[W (· + 2−j) −W ]1[0,1−2−j ]. Com-
bining Proposition 3.1 with Remark 3.1, we have

E sup
j­1
‖ξj‖ . sup

j­1
E‖ξj‖+

( ∑

j­1

σ4
j

)1/4
.

From Corollary 6.1 we get

σj . (log 2j)−1/2‖iW ‖ h j−1/2‖iW ‖,

so that the series sums up to
(∑

j­1 σ4
j

)1/4 . ‖iW ‖ . E‖W (1)‖.
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We then estimate E‖ξj‖. By (2.2), we have

‖f‖LΦ2 (0,1−2−j ;X) ¬ ‖f‖LΦ2 (0,1;X)

¬ ‖f‖LΦ2 (0,1;X) = inf
λ>0

1
λ

1∫
0

exp
(
λ2‖f(t)‖2) dt.

Therefore,

E‖ξj‖ ¬ inf
λ>0

1
λ

1∫
0

E exp
(
λ22j‖W (t + 2−j)−W (t)‖2) dt

= inf
λ>0

1
λ
E exp

(
λ2‖W (1)‖2).

This may be estimated by expanding into power series:

1
λ

∑

k­0

λ2k

k!
E‖W (1)‖2k ¬ 1

λ

[
1 +

∑

k­1

λ2k

k!
(
K
√

2kE‖W (1)‖)2k
]

¬ 1
λ

[
1 +

∑

k­1

(
2e[λKE‖W (1)‖]2)k]

,

where K is an absolute constant from the Gaussian norm comparison result (see
[9], Corollary 3.2), and we used kk/k! ¬ ek. Choosing λ =

(
2eKE‖W (1)‖)−1

,
we find that E‖ξj‖ . E‖W (1)‖. ¥
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