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Abstract. The geometric distribution leads to a Lévy process parame-
terized by the probability of success. The resulting negative binomial pro-
cess (NBP) is a purely jump and non-decreasing process with general neg-
ative binomial marginal distributions. We review various stochastic mech-
anisms leading to this process, and study its distributional structure. These
results enable us to establish strong convergence of the NBP in the supre-
mum norm to the gamma process, and lead to a straightforward algorithm
for simulating sample paths. We also include a brief discussion of estimation
of the NPB parameters, and present an example from hydrology illustrating
possible applications of this model.
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1. PRELIMINARIES

The Poisson distribution and the corresponding Lévy process is the most basic
and widely used stochastic model for count data. However, empirical count data of-
ten exhibit overdispersion — the term that is used when the sample variance is larger
than the sample mean. In such a case the standard Poisson model is inappropriate
(see, e.g., [38], [62], [93], [102], [103]) and a common solution to this problem,
which goes back to [54], involves randomization of the Poissonian mean leading
to continuous mixtures of Poisson processes. A frequent and convenient choice of
the mixing measure is the gamma distribution. This leads to an explicit expression
for the resulting probability distribution parameterized by p € [0, 1] and ¢t > 0 with
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the characteristic function (ChF)

¢
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and the probability mass function (PMF)
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The resulting generalized negative binomial (NB) distribution is a popular stochas-
tic model in many areas of research [65]. Applications of NB models include theory
of accidents ([3], [46], [54], [63], [76]), population growth processes and epidemi-
ology ([49], [70], [79], [80], [84], [89], [108]), particle physics ([4], [26], [29],
[34], [49], [90]), geosciences ([67], [71]), cosmology [25], psychology [98], eco-
nomics [101], library science ([17]-[21], [51]), marketing ([27], [28], [39], [52]),
ecology ([40], [41], [77], [78]), entomology ([85], [105]), human geography [31],
environmental science [64], software reliability ([94], [95]), and biology ([9], [30],
[48], [82], [102]). For more extensive reviews of the NB distribution with many
references see [7] and [65].

There are numerous stochastic mechanisms leading to an NB distribu-
tion — over ten of them can be found in [11]. The four most common ones are
the following (see [2]):

o Inverse binomial sampling ([58], [107]). The waiting time till the t*™® success
(measured as the number of failures) in an infinite sequence of Bernoulli trials with
success probability p has the NB distribution (1.1).

o Heterogeneous Poisson sampling [54]. This is the randomization of the
Poissonian mean discussed above. If the mean of a Poisson distribution has a
gamma distribution with shape parameter ¢ > 0 and scale parameter (1 — p)/p,
then the resulting mixed Poisson distribution is the NB distribution (1.1).

o Randomly distributed colonies ([76], [89]). This is a compound Poisson rep-
resentation of the NB distribution. If groups of individuals are distributed randomly
in space (or time), the number of colonies has a Poisson distribution with mean
—tIn p, and if the numbers of individuals in the colonies are distributed indepen-
dently with a logarithmic distribution given by the PMF

(1—p)*

(1.2) P%mOZ—-kmp

, keN,
the total number of the individuals in all colonies has the NB distribution (1.1).

o Stationary distribution arising in Markov population processes ([70], [79]).
The equilibrium distribution of a stationary Markov population process with con-
stant rates of birth (\), death (4 > \), and immigration (v) is NB with p = \/pu
andt = v/p.
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The last three of the above examples lead to stochastic processes with the NB
marginal distributions (and some generalizations). Discrete-time processes with
marginal NB distributions were discussed in [74], [81], [99]. These models are
based on the fact that a Poisson process stopped at a random gamma distributed
time has an NB distribution. Various continuous-time NB processes follow this
idea, including those considered in [6]. Pascal processes in [15] offer tractable
models for the number of opportunities in certain investment problems (see also
[14]). Continuous-time population growth models with marginal NB distributions
go back to [79] and [80], followed by [42], [49], [70] and [108] (see also historical
comments in [43] and more recent [32]). Although these models were originally
motivated by applications in biology and spread of epidemics/contagious diseases,
they have been applied in many areas of science, including particle physics, where
they justify the NB model for the multiplicity distributions of high-energy particle
interactions (see, e.g., [4], [29], [49], [90] in this connection). As noted by several
authors (see, e.g., [23], [24], [46]), this “contagious” interpretation of the NB dis-
tribution leads to the same (non-ergodic) stochastic process as the one obtained by
heterogeneous Poisson sampling. For example, the NB Pdlya process (a pure birth
process with intensity of birth \,,(t) = (k + n)/(1 + t), depending on both ¢ and
n, which is the population size at time ¢) and mixed Poisson process whose inten-
sity has a standard gamma distribution with the shape parameter equal to & have
the same marginal NB distributions. This is referred to as “‘contagion-stratification
duality” in [46], where different interpretations of the NB distributions and pro-
cesses are discussed. A mixed Poisson process with gamma distributed intensity is
a well-known construction (see, e.g., [55], [100]), similar in spirit to random haz-
ard rate models for heterogeneous populations in survival analysis (see, e.g., [1],
[22], [59], [60], [68], [91]). For obvious reason, this model is known as gamma-
Poisson process (see also [12], [13], [20], and [83], where more general shot-noise
Cox processes are considered). However, not many authors have noticed that sam-
ple realizations of such processes look Poisson ones — the variation is not within,
but between processes. Consequently, these models are not appropriate to describe
spatial data with empirical distribution of counts in disjoint sets resembling the
NB distribution. In [62], one of the exceptions, there was offered an alternative:
use a Poisson process with a random time scale, that is, subordinate it to another
(independent) non-decreasing process.

The process we discuss in this paper can be defined equivalently through three
different stochastic mechanisms. First, it is clear from (1.1) that the NB distribu-
tions are infinitely divisible and lead to a continuous time process with indepen-
dent and homogeneous increments whose one-dimensional distributions are NB
(see, e.g., [44], pp. 179-182). We refer to it as the Negative Binomial (Lévy) Pro-
cess (NBP) with parameter p, denoted by NB(t) (or by NB,(t) to emphasize the
dependence on p). The NBP is integer-valued, non-decreasing, and consequently a
pure jump process, whose mean and variance are linear in t: ENB(t) =t - ¢/p and
VarNB(t) =t - ¢/p?. Thus, in contrast to the Poisson process, here the variance
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exceeds the mean, which is known as overdispersion. This process appeared in
[16], where its equivalent compound Poisson representation has been established
as well as the limiting Poisson distribution (in a triangular scheme). This represen-
tation of the NBP as a standard Poisson process compounded with integer-valued
logarithmically distributed clusters has been also discussed in [62], [75], [100],
and as such is known as the Compound Software Reliability Model in software
reliability community (see [94], [95]). However, the process hardly ever appears
in the literature in an explicit form, and when it does, its equivalent representa-
tions are rarely noticed or discussed (see, e.g., [37], [100]). The third equivalent
way of obtaining the NBP is through subordination of Poisson process with in-
tensity A = 1/p — 1 to a standard gamma process. This construction is known in
the literature as the gamma-Poisson process (see [12], [13], [83]). Equivalently, it
is a doubly stochastic Poisson process (Cox process; see, €.g., [53], [97]) whose
intensity is an independent gamma process.

All above constructions are standard in defining Lévy processes and these have
been studied extensively in recent years, in connection with financial applications,
as seen in recent monographs [33] and [96]. In fact, this process has appeared
as a subordinator in a compound Cox process in [69] in connection with option
pricing, although it was neither defined nor studied there. Let us also note the class
of Poisson processes subordinated to the Hougaard family studied in [75] of which
the process studied in this paper is an important (limiting) special case (see [5],
[60], [61], [66] for more details on the Hougaard family).

The equivalent representations of the NBP discussed above are scattered in the
literature (see, e.g., [43], pp. 155-157, 271, [44], pp. 348-349, and [37], [106]). For
the sake of future reference, we summarize them below.

PROPOSITION 1.1. The following three stochastic processes are equivalent in
distribution:
(i) Lévy process corresponding to the semigroup of the NB ChF (1.1);
(ii) subordinated Poisson process with intensity A = (1 — p) /p with standard
gamma subordinator;

(iii) compound Poisson process Zivz(tl) X, where N (t) is a Poisson process
with intensity A = — In p and the { X;} are IID logarithmic random variables with

PMF (1.2).

The equivalence follows easily by comparing the relevant ChFs for ¢t = 1,
which is enough as all three processes are Lévy ones. Let us note that the ChF of
the NBP admits the representation

dnp (u) = exp (¢ [ (e — 1)dA(x)),
where the (discrete) Lévy measure A is given by
k

A= o
k=1

and dyzy denotes a point mass at k.
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Our main results are the distributional properties of the NBP. They lead to
interesting representations of this process as well as to convenient simulation al-
gorithms of its sample paths. In Section 2 we analyze distributional structure of
the NBP. Simulation algorithms are presented in Section 3, where we also include
new results on approximating the gamma process by an NBP. Brief remarks on fur-
ther properties and estimation are discussed in Section 4. Finally, in Section 5 we
present an example from hydrology illustrating the modeling potential of the NBP.

2. DISTRIBUTIONAL STRUCTURE OF THE NBP

The NBP is a pure jump process that has positive integer jump sizes. The
following series representation of the NBP, which applies to a general Lévy process
(see, e.g., [45]), is a simple consequence of its compound Poisson representation.
We have

NB(t) = > Jilp, o) (1),
i=1

where I'; = E1 + ... + E;, the {E;} are IID exponential RVs with parameter
A = In(1/p), while the {J;} are IID discrete logarithmic random variables, in-
dependent of the { £; }. This implies that the jumps of the NBP occur at the same
instants, I';, as the jumps of the Poisson process defined through the interarrival
times F;. However, the sizes of the jumps are random, and distributed according
to the logarithmic distribution.

Our next two results provide more insight into the distributional structure of
the NBP.

LEMMA 2.1. For each t,s > 0, define the increment process by A(s) =
NB(t + s) — NB(t). For u > 0, the conditional distribution of A(s), s € [0, u],
given Ay(u), is free of the parameter p. Further, for each v € N, 0 = sp < 51 <
o K8 K Spp1 =U,and 0 =ng <K np < ... < Ny < Ny = N, We have

(21) P(At(sl) =Niy..., At(ST) = nT]At(u) = n)

rl ik — 1\ (utn—1
)

whered; = s; — s;_1, ki =n; —n;_1,t=1,...,r+ L

Proof. By the homogeneity and independence of the increments, the condi-
tional probability in (2.1) is given by
P(ASO(dl) = kl, .. 7Asr(dr+1) = kr+1) - Tﬁl ]P’(ASFI (dl) = kl)
P(ASO (8r41) = nr+1) i=1 ]P(ASO (8r41) = nr+1)
T+l di—i-k'i—l 4k
H ( ki )p q r+1

_ =l :H<di+ki_1>/(u+n_1>' .
<5r+1 + N1 — 1>psr+1an+1 i=1 ki n

Npr41
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Foreach u > 0andn =0,1,2,..., equation (2.1) defines a non-decreasing,
integer-valued stochastic process X, (s), s € [0, u], such that X,,(0) = 0 and X, (u)
= n. From now on we assume that X, denotes such a process for u = 1. The fol-
lowing result is a consequence of the above lemma.

COROLLARY 2.1. For any sequence k = (k1,...,k;) of non-negative inte-
gers that add up to n and a set 1 = {Iy,..., I} of disjoint intervals in [0, 1] of
the respective lengths |I,|, ..., |I,|, let X,,(-) € A(k,I) denote the event that the
process X, (-) jumps by exactly k; over the intervals I;,i = 1,... 1. Then

(2.2) P(X,(-) € A(k,I)) = 1;[1 (‘L“" +kk - 1).

Proof. Note that since k1 + ... + k. = n, there are no jumps inside the set
[0,1]\ U;_, i and

P(X,(-) € A(k, 1)) =P(NB(s1) = nq,...,NB(s;) = ig| NB(1) = n),

where {si, k =0,...,l+ 1} is the set of ordered endpoints of the intervals I; that
also includes sy = 0 and s;+1 = 1. The factors on the right-hand side of (2.1) for
which k; = 0 are equal to one, and thus can be dropped from the formula. The
remaining factors produce the right-hand side of (2.2). =

Independent copies of the processes X,, describe the behavior of the NBP on
intervals between integer values as shown in the following representation.

THEOREM 2.1. Let G}, be a sequence of IID geometric random variables and
let {Zy(s),s € [0, 1]} be a sequence of processes defined by
Zi(s) = XG5, (s),

— M Gryr
where, conditionally on Gy11 = ny, the processes ng)(s) are mutually indepen-
dent versions of the processes X, (s) as defined by (2.1), and independent of all
the variables G; with i # k + 1. Then the NBP can be written as

[t]
(2.3) Y(t)=> Gi+ Zy(t—[t]).

i=1
Proof. First, note that Y (k) = Zle G; coincides with the NBP for each
k € N. Further, it follows from the definition and Lemma 2.1 that the conditional
distribution of the increments Y (k + s) — Y (k), s € [0,1], given Y (k + 1) = n, is
the same as that of the NBP. Finally, by independence of the terms of the sequence

XT(LIZ), k € N, the distribution of arbitrary increments of Y (¢) is the same as that of
the NBP. =
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The above representation of the NBP consists of two different components:
a parametric one, defined at integer time points (this is, the sum of geometric
variables) and a non-parametric portion, represented by the processes Zy(-). The
latter describes the behavior of the NBP between integers. Our next result pro-
vides a more explicit description of the stochastic process X, (-). Here, we use
the following notation and terminology. A random sequence 6 = (%, ... ,5’,;)
of 0-1 vectors such that exactly one coordinate is equal to one is called a uni-
form selector if P(éf =1)=1/k,i=1,2,...,k, k=1,2,... The inner product
Op -x =06y +... + 5’,:,:% can be thought of as a uniformly random selection of
a single coordinate of the vector x.

THEOREM 2.2. Let (Uy)ren be a sequence of IID standard uniform random
variables. Then the process Xy, (s), s € [0, 1], has the same distribution as

n

(24 Ya(s) = >° 1y 1(s),
-1

o

where the sequence of jump positions, (Vi) ken, is defined recursively as follows:
Vi=0r-V1,.... Ve, Uk), k=1,2,....n
and (6y,) is a sequence of independent uniform selectors, independent of the se-

quence (Ug)en-

Proof. Since the processes X,, and Y,, are non-decreasing and integer val-
ued on [0, 1], their distributions are uniquely defined by the probabilities of the
events A(k, I). We show by induction that these probabilities coincide.

For n = 1, it is enough to take A(kq, I;) with k; = 1. We have

P(Xn(-) € A(1, 1)) = || = P(Y,() € A(1, Ih)).

Assume now that X,,(-) has the same distribution as Y;,(-) for each n < [. Let
n = [ + 1. Since the processes X, and Y;, have exactly n jumps, it is enough to
consider A(k, I) with coordinates of k non-zero. Then for n = [ + 1 we have

P(Yn() € Ak, X)) = P(Yoo1() + 1y, 1(-) € A(k, 1))

21 (Yao1() + 1, 1y() € Ak 1), V,, € 1))
iz

ZP(Y EA((kl,...,kj—1,...,kr),1),Vn€Ij)

1=

=Y P(Ya(:) € Ak, 1), Uy, € 1;,V,, = Uy)
J

=1
+ > P(Ya() € Ak, 1), V, € I;,V,, = Vi, 3k < n).
7=1

—_
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Observe that, by definition, V/, is selected as U,, independently of everything else
with probability 1/n, and the probability that U, is in I; is equal to |/;|. On the
other hand, if V;, is one of the {V},}, k = 1,...,n — 1, then it is in I; with proba-
bility (k; — 1)/n (as there is k; — 1 jumps of Y,,_; in I; and the selector §,, selects
any one of them with probability 1/n). Thus, using (2.2), we infer that the above
probability is equal to

‘I j‘ + kj -1

n

i\]|+k—1 || + k1 — 1 |L;| + kj —2 || + kr — 1
:7 kt k-1 .
iilm+h—1 ||+ k; — 1 I + K — 1
j=1 n kl ' kij k‘r
AN ‘[1‘+k1—1 ‘Ir|+k7‘_1
iz 1n k1 k.
o |Il‘—‘rk1—1 ‘L«’—i-k‘r,‘—l
= kt k. ,

which proves the induction step. This concludes the proof. =

Ma

( EA«h“nJg—LHWMLD>

j=1

2.1. An immigration and birth process. Although X, (-) is a conditional pro-
cess arising from the NBP, it has its own merit. It can be viewed as the following
immigration and birth process. Let the interval [0, 1] represent a habitat for a popu-
lation of individuals that can either immigrate from the outside and then locate ran-
domly in [0, 1] according to the uniform distribution, or can give birth to a child that
stays with the parent to build a cluster (family) at some point in [0, 1]. Assuming
that the chances of an individual to give birth are the same as that for immigration
of a newcomer, the process X, (-) represents the spatial distribution of families at
the moment when the total population is n. Similar models related to the negative
binomial distribution and their applications to the theory of avalanches were dis-

cussed in [8]. Notice that the number of clusters, K, their sizes, X fn), X }?n),
and their locations, Wl(n) < Wf(gn) , are random, and

&)
In the next result, we use the compound Poisson representation of the NBP to
obtain the joint distribution of K, X; (") ,X}?g and Wl(") <. < Wl(?n) .

THEOREM 2.3. Let C}! be the set of 0-1 sequences o = (01,...,0,) with
exactly k ones and n — k zeros (combinations of k out of n). The distribution of
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the number of clusters, K,,, is given by

1 T 1-o; —
(2.5) P(ank)zm > 1:[(1—1) , k=1,2...n.
oeCpi=1
The vectors X(") = (an), .. ,X,in)) and W™ = (Wl(n), el W,gn)), condition-
ally on K,, = k, are independent. Further, given K, = k, W) has the same dis-

tribution as that of the order statistics of k IID standard uniform random variables,
while the distribution of X") is given by
(n) () £l
P(X," =i1,...,. X" =ix|Kn=k)=C ][] —,
j=11%
whereiy + ... +iy =nandC=3% , . _ H?:l 1/r;.

Proof. The number of clusters K, is equal to the number of times the inde-
pendent selectors dy, kK = 1,...,n, have the value one at the last coordinate. The
probability of such an event is given by

no1 1\
s (i-7)
oeCpi=1

which is equivalent to (2.5). Next, using the representation (iii) of Proposition 1.1,
we have

P(X,(-) € A|K, = k) =P(NB(-) € AINB(1) =n,N(1) = k)

k
=P(> Xilig, () € AIX1+ ...+ X =n,N(1) = k)
i=1

k
=P( Y Xily, () € A[X1 + ...+ Xj, =n),
=1

where the {X; } are IID logarithmic random variables and the {U; } are IID standard
uniform random variables, independent of everything else. This shows that W (")
has the same distribution as the order statistics connected with & IID standard uni-
form variables. The above implies that, conditionally on K,, = k, the vectors X (n)
and W (") are independent, and the distribution of X (™) is equivalent to the distri-
bution of (X1, ..., Xx) given X; + ...+ X = n. Leti; + ...+ ix = n. Then

P(Xl:il,...,Xk:ik|X1+...—|—Xn:n)
k — A k .
B szl In 1(1/19)(1]/23' - Hj:l 1/23'
= PE— T k ,
Znnj:1ln H(1/p)a'i [ > Hj:ll/rj

where the summation runs over n = r1 + ... + r. This concludes the proof. =
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3. APPROXIMATIONS OF GAMMA PROCESS AND SIMULATIONS

3.1. Convergence to the gamma process. The probability distribution of a neg-
ative binomial random variable (1.1) multiplied by p converges weakly to a stan-
dard gamma distribution with shape parameter ¢. Similarly, the finite-dimensional
distributions of pNB,,(-), where NB,(-) is the NBP, converge to those of the stan-
dard gamma process (see [73]). Using general convergence results for Lévy pro-
cesses (see, for example, Theorem V.19 and Example VI.18 in [86]) one can estab-
lish weak convergence of p/NB,,(-) to I'(-) in the Skorokhod J; metric. However,
stronger convergence results can be obtained by using the distributional represen-
tation of the NBP discussed above. Namely, a proper version of the NBP is conver-
gent in the supremum norm with probability one over a compact set to the so-called
shot noise representation of the gamma process (see [10]). We also provide the rate
of convergence and discuss the upper bound for the norm.

We start with the description of a version of the NBP for which the almost sure
convergence holds. Recall that a logarithmic random variable X can be represented
in the form

X< [1- W/l -p "),

where [x] is the integer part of 2, and W and V' are mutually independent variables
with standard exponential and uniform distributions, respectively (see [36]). Thus,
the compound Poisson interpretation of the NBP leads to the following represen-
tation of the NBP on the interval [0, 1]:

Ny W,
(3.1) NB(t;p) = 1- k
= B [1- by

1y, 1)(1)-

Here, N, = N(In1/p), where N(t) is a standard Poisson process, the {IV;} are
IID standard exponential variables, the {I';} are the arrivals of another standard
Poisson process, and the {U}} are IID standard uniform variables, all mutually
independent. We used the fact that the order statistics of uniform variables Vj,
k =1,...,n, have the same distribution as that of I'y /T, 11, k = 1,..., n. Since
the number of jumps in this representation is equal to n,, we describe this repre-
sentation conditional on the number of jumps, as opposed to the one based on the
positions of the jumps described in Theorems 2.2 and 2.3.

Using the same notation, we can write the so-called shot noise representation
of a standard gamma process (see [92]):

(3.2) fje U Wil (),  telo,1].
k=1
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THEOREM 3.1. Let NB(t;p) and G(t) be defined as in (3.1) and (3.2), re-
spectively. Then for p — 0 with probability one we have

1n1nln1/p>
sup |G(t) — pNB(t;p)| = O [ e tP ).
s 160) =Nl = 0y [P

Proof. Consider the process

Np Wk
tip) = pkgl (1 B In(1 _pl—rk/FNerl)>1[Uk’1)(t)'

We obviously have
|G(t) — pNB(t;p)| < |G(t) = N(t;p)| +p-

We examine the asymptotics of the following 4 components of the difference
G(t) — N(t;p)

— Wk [Wk pW ]
= —1 t) + + 1 t
k:%+1 eFk [Ukvl)( ) kgl eFk p 111(1 _ pl_rk/FNp+l) [Ukvl)( )
N, A(pelt(1+op))
= Sl (tvp) +p ; (Wk — ].) Uk, + Z eFk |: 61—%0?:| 1[Uk’1) (t)

Ny 1-— e_FkOP A(pel(ten)y — 1
= Sl(t;p) + Sg(t;p) + Z Wk[ erk _ ( eFk(lJ,-op)) :| l[Ule)(t)

k=1
A(pelx(Fon)) — \(0)
= S1(t;p) + Sa(t;p) + S3(t; p) Z Wi Deli(iTor) 1,1 ()

= S1(t;p) + Sa2(t;p) + S3(t;p) — S4(t;p),

where
Inl/p

Iy, 41
(o ¢]

Sitip) = Y e Wil 1)),
k=N, +1

Np
Sa(t;p) =p > (Wi — 1)1y, 1)(t),
k=1
Np

Wi 1
Ss(tip) = 3 (1= e )1y, (1),
k=1

-1, XMNz)==

Op:

)\(pefk(l—l-op)) . )\(0)

Np
S4(t;p) =P Z Wi perk(l—i-op) 1[Uk’71)(t)'

k=1
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First, we show that, for each € > 0, with probability one we have

e 1
(3.3) S1(p) < sup Si(t;p) =o (p - exp (1111/2"'e )) as p — 0.
te[0,1] p

By Lemma 6.4 in the Appendix, there is a set of probability one on which for
sufficiently large ¢ we have

t— V22 < N(t) < t 4 172,

By Lemma 6.3 in the Appendix with a,, = n/2, on this set and for sufficiently
small p we have

S1(p)
p-exp(In'/>+<1/p)
_ exp (=N(In1/p) + N'/>*/*(In1/p))
h D - exp(lnl/Q‘*‘E 1/p)
< exp ( —1In 1/p + 1n1/2+6/2 l/p + (hl l/p + 1n1/2+6/2 1/p)1/2+6/2)
) p-exp(In'/>+€1/p)

1/24¢/2
= exp <_ 1n1/2+€ 1 + 1n1/2+5/2 1 + (11’11 + 1n1/2+€/2 1) >

p p p p
< exp <_ 1n1/2+6 1 + 31n1/2+6/2 1)’
p p

where in the last inequality we assumed additionally that e < 1. The convergence
to zero of the last term is obvious.

The asymptotics of S2(¢;p) can be obtained directly from the law of large
numbers. Namely, we show that with probability one

(3.4) Sa(p) £ sup Sa(t;p) = O (plnl/p).
te(0,1]

Indeed,

N,
Sa(p)| _ N{ln1/p) Sp, Wi~ 1]
plnl/p = Inl/p N, ’

with the right-hand side converging with probability one to E|WW; — 1].
Next we turn to the asymptotics of S3(¢; p). We will show that

. Inlnln1/p
(3.5) Ss(p o sup S3(t;p :0< )
3(7) t€[0,1] s(t:7) Inl/p
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From Taylor’s first order approximation, there is a random variable p,;, € [0,1]
such that

k k
1S5(p)| < |0y kz eTkI‘kepp,kabp' < oy kz eTkaeFHOP‘_
=1 =1

Note that by Lemma 6.5 in the Appendix, on a set of probability one we have

02ln1
lim sup pi/p < 232,
pooo | Inlnlnl/p

On this set, for each § > 0 and for sufficiently small p we have

Inl/p = Wil 2/3
. (e - < 7
(3.6) Inlnln1/p 1S5(p)l kzzzl c(1-0)T, (2 + 6)

which concludes the proof of (3.5).
Finally, we turn to the asymptotics of S4(t;p). We shall show that for each
0>0

3.7) Su(p) = 51[1p] Su(t;p) = o(pln'*01/p).
tefo,1

To see this, first note that, by the first order Taylor expansion applied to function A
there exists a random variable p,, 5, € [0, 1] such that

sl 1, Peee Cta)) 220

pln1+5 1/p S plte 1/pizy pexp (Fk(l + op))
1 M

- b S e e ).

Further, the properties of A listed in Lemma 6.1 in the Appendix produce

(3.8)
[Sap)l el Wi (% + X(p exp (T, (1 + op))> D
pln' 0 1/p ' 1/p
_ Y% + /\/(exp (—[(n Up)/FNPH]TNPH)) ’ Zg;sz
_1n61/p 1n51/p Inl/p ’

where I';, = 11 + ... + T, the {7} } are independent standard exponential random
variables and N
_ }Zkilwk Np

U, .
P~2 N, Inl/p




56 T. J. Kozubowski and K. Podgérski

Clearly, U, converges with probability one to 1/2. Moreover, by the zero-one law
for each a,, diverging to infinity and p > 0, we have with probability one

1 ,—pTh
i e”m)

n— 00 [e7%

=0.

Consequently, for a fixed € € (0, 1), there is a set of probability one on which both

I N(exp (=(1—€)Tn,+1)) _ lim N(exp (=(1+€)Tn,+1))
p—0 ANp+1 p—0 ANp+1

=0

and
Inl

1.
p—0 FNp+1

On this set, for sufficiently small p we have

> Inlfp oy

1 + €= =
In,+1

_6,

and by the properties of A\ we get

N (exp (~(1+ Ty 1))
<N (exp <—;n 1113 TNp+1>> <N (exp (=(1 = )T, 41))-

Using the above (take a,, = n%) and applying (3.8) we obtain (3.7).
Comparing the different asymptotics that are obtained in (3.3), (3.4), (3.5), and
(3.7), we conclude that the dominating one is (3.5). This completes the proof. =

REMARK 3.1. Inthe representation (3.1), p enters stochastic components only
through In 1/p. For example, the number of jumps in this representation is equal
to N(In1/p), which asymptotically behaves as In1/p. Thus, from the point of
view of computational intensity, the above rate of convergence of N B(¢; p) to G(t)
should be viewed as the rate with respect to In(1/p) rather than p.

REMARK 3.2. From the proof we can also obtain an asymptotic upper bound
for the convergence. Namely, it follows from (3.6) that for each § > 0 we have

_ Inl/p 3/2 o _Wilk
1 _np t) — pNB(t; p)| < 2%/ :
I;isogp Inlnln1/p ti}(lJI,)l] G0 = pNBE) 121 =0T
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3.2. Simulation. The presented results lead to two general methods of simu-
lating sample paths of an NBP: one based on the representation of the NBP as a
compound Poisson process, and another one based on the representation (2.3) and
Theorem 2.2.

Suppose we are interested in the process on the interval [0, N]. The first method
requires a sample path of a Poisson process with intensity A = — In p over the in-
terval [0, V]. This is equivalent to generating a random sample, E1, ..., E,, Fy1,
from the standard exponential distribution, such that

Ei+...4+E,<—-N/lnp< E1+...+ Ep41,

followed by another random sample, X7, ..., X, from the logarithmic distribu-
tion, which will provide jump sizes at the points Fy + ...+ Ex, k=1,...,n. An
algorithm to generate a logarithmic random variate is available in [36]. It is based
on the representation of a logarithmic random variable X as

x4 [14+InV/In(1 —pU)L

where U and V' are IID standard uniform variables and [z] denotes the integer part
of x.

The second method, based on the representation (2.3), requires first to gener-
ate a random sample from a geometric distribution with parameter p, G1, ..., Gn.

This can be achieved using the probability integral transformation (see, e.g., [36]),

G; 4 In(U;)/In(1 — p)] + 1, where the {U;} are IID standard uniform variables.

Given the variables G;, the values of the process at positive integers are given
by NB(k) =G1+ ...+ Gk, k=1,2,..., N.Next, the values between integers
are obtained by generating uniform random variables and selectors as discussed in
Theorem 2.2. Since given the process values at the integers, the process between
integers is parameter free, this method is dependent on p only through the gener-
ation of the geometric variables. This makes it attractive when sample paths are
required for various values of p, and is well suited for parallel computing algo-
rithms. Selected sample paths of the NBP are presented in Figure 1.

4. FURTHER PROPERTIES

Here we provide a brief account of further properties and generalizations of
the NBP, including parameter estimation connected with this model.

4.1. Stochastic self-similarity. The NBP plays an important role in connec-
tion with the property of stochastic self-similarity introduced in [72]. Let 7 =
{T.(t),t > 0}, ¢ > 1, be a family of random time changes with ET..(¢) = ct. Then
aprocess X (1), t > 0, is said to be stochastically self-similar (SSS) with index H

. . d L
with respect to 7 if X (T,(-)) = ¢¥ X(-) for each ¢ > 1. Since it involves stochas-
tic renormalization in time, this notion of stochastic self-similarity is different than



58 T. J. Kozubowski and K. Podgérski

(=

80 [~

60 -

40

20 -

|

i
1 1 1 1 1 1 I I I I I
0 20 40 60 80 100 0 2 4 6 8 10

F1cURE 1. Sample paths of the NBP for various values of p (p = 0.8,0.5,0.1,0.01). The processes

have been normalized, so their mean values are the same. The larger values of p correspond to larger

and scarcer jumps in the trajectories. The sample paths are over the interval [0, 100] (left) and the
interval [0, 10] (right)

that considered in [56] and [104], which is based on stochastic renormalization in
space. The family of negative binomial processes with drift,

(4.1) T = {T.(t) =t + NB,(t), t >0}, c>1,

where NB)(t) is an NBP with parameter p = 1/c, is an example of stochastic
times changes with respect to which large classes of stochastic processes are SSS.
As shown in [72], the standard gamma process is SSS with respect to (4.1), and
so is any self-similar process in the classical sense subordinated to an indepen-
dent gamma process. For example, a process with correlated increments, termed a
fractional Laplace motion in [72], obtained by subordinating a fractional Brown-
ian motion to the gamma process, is an SSS process with respect to (4.1). Further
examples and more information on stochastic self-similarity can be found in [73].

4.2. Inverse process. Let {V,,(z), > 0} be the inverse of an NBP, defined as
Vp(z) = inf{t : NBy(t) >z}, x>0.

Similarly, let {W),(x), = > 0} be the inverse of {NB,(t) + ¢, t > 0} (the NBP
with drift). The one-dimensional distributions of these two inverse processes are
quite different. Indeed, the CDF of V,,(x) is of the form:

Fyy)(t) = B(Vy(x) < 1) = P(NBy(t) > 2) = P(NBy(t) > [+]), x>0,

where [2] denotes the smallest integer that is greater than or equal to z. We see
that this process starts at zero with probability one, and for z > 0 we have

[2]—1 [2]-1 +
Fuo®=1- % POBH =0 =15 ¥ (,)a-n"
k=0 k=0
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In particular, for all z € (n,n + 1] (n = 0,1, 2,...) we have the same distribution

with mean
k
dt.
=g ()a-

In contrast with V,,(x), the distribution of W),(z) is concentrated on the interval
[0, 2] with the CDF

[z—t]—1 1
Fnm®=1-1 5 (7]

(1-p)F, t<uz
k=0 k >

Here, the distribution at each z is different, and no longer continuous. For = €
(n—1,n] (n=1,2,...), the CDF of W,(z) has n discontinuities occurring at the

pointst; =z —(n—1)+ 4,7 =0,1,2,...,n — 1, with respective jump sizes
J— r—n+1 .’E—]. ] 1_ n—l—j :0 1 2 _1
pj=p (x_nJrj)p( p) , J=0,1,2,...,n—-1

Note that the mean of each inverse process is not linear in x, so that V},(-) and W (-)
are not Lévy processes.

4.3. Some generalizations. Our results show that on the unit interval the NBP
has the same distribution as

G
4.2) X(t)=> Iy,yt), telo1],
j=1

where G is a geometric variable given by the PMF (1.1) with ¢ = 1 and the {V}}
are identically distributed but dependent standard uniform variables, defined in
Theorem 2.2. Various generalizations can be obtained by changing the dependence
structure (or distribution) of the {V}}, or by changing the distribution of G, or even
replacing it by an increasing stochastic process {G(t), t € [0,1]}. The resulting
processes will go beyond the negative binomial and may allow for dependent in-
crements. One simple example is the process of the form (4.2) with geometric G
and IID standard uniform variables V. This process has geometric marginal dis-
tributions and dependent, stationary increments. Let us note that by reversing the
time via

G G
43) X(s)=X(e®) =X Ly, (e Zf[ofmw = 2 Jiog,) (s
J=1 J=1
where E/; = —In V; are 1ID standard exponential variables, we obtain a pure-death

process. Here, X (s) represents a number of individuals still alive at time s > 0,
assuming that at time s = 0 there is a random number G of individuals with IID
lifetimes E;.
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4.4. Maximum likelihood estimation. Suppose that X, Xo,..., X,, are the
increments of an NB stochastic process taken at some lag ¢t > 0. Then the { X;} can
be viewed as a random sample from an NB distribution with parameters p € (0, 1)
and ¢ > 0, given by (1.1). Thus, the log-likelihood function is

12 (t+Xj—1

4.4) L(t,p) = n(n]z::l In X, ) +tlnp+ X1In(1l — p)),

where X is the sample mean. Fixing ¢ > 0 and maximizing the function L with
respect to p leads to

t

(4.5) p=p(t) = X

Incidentally, the same expression for p follows from the moment equation
E(NB(t)) = t(1 — p)/p, when the sample mean is used in place of the expecta-
tion. To find the maximum likelihood estimator (MLE) of ¢, substitute (4.5) into
(4.4) and maximize the resulting expression L (¢, p(t)), with respect to ¢ > 0. This
leads to the MLE # as the value that maximizes the function

4.6)  g(t) = % anlln <t+))2 a 1> +tlnt — (t+ X)In(t + X),
iz

which has to be done numerically. In turn, the MLE of p is obtained from (4.5),
p=p(t).

5. AN ILLUSTRATION

To illustrate the modeling potential of the NBP, we present an example from
hydrology, taken from [71], where this model is successfully applied to borehole
data from fractured granite at the Aspo Hard Rock laboratory in Sweden. Modeling
of groundwater or solute transport in fractured rock [35] requires information on
fractures and their transmissivities (see [57]). Fractures in rock often appear in
clusters (see [50]) with spacings between the clusters following the exponential
law (see [87], [88]). Since these are precisely the features of the NBP, this model
appears to be well suited for such applications.

As in [71], we consider the cored borehole KLLX 01 data, taken between 106
and 691 m depth, discussed in [57]. There are two data sets, consisting of 3 m and
30 m interval measurements, with sample sizes of 195 and 30, respectively. The
variable of interest is discrete and measures the number of fractures in successive
3 m (and 30 m) intervals along the borehole. The summary statistics of the 3 m data
yield the sample mean and variance of 8.5 and 36.3, respectively. The correspond-
ing figures of the 30 m data are 84.2 and 666.9. This over-dispersion suggests the
data might follow the negative binomial distribution.
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FIGURE 2. Frequencies of 3 m (the left panel) and 30 m (the right panel) intervals with different
numbers of fractures (represented by bars) in KLX 01 106-691 borehole, along with estimated NB
probabilities (represented by dots)

When fitting the NB distribution to the fracture count data, X1, Xo, ..., X,
along the borehole KLX 01 (3 m intervals with n = 195 data points), one can think
of the data as the increments of an NB stochastic process, where ¢ = 0 corresponds
to the initial depth of 106 m. The method of maximum likelihood discussed in
Section 4 produces # = 3.1, which rounded to 3 is in almost perfect agreement
with the interval size of 3 m. This value of ¢ coupled with (4.5) leads to p = 0.263.

When fitting the NB distribution to the 30 m intervals along the same borehole,
one can now assume that p = 0.263 (since under this model all increments must
have the same value of p), which in view of (4.5) leads to the MLE ¢ equal to
(84.150)(0.263) /(1 — 0.263) = 30.0291. Rounded to 30, this value is precisely 10
times the value of ¢ corresponding to the 3 m intervals. Figure 2 shows the empirical
distributions of the 3 m and 30 m data along with estimated binomial probabilities.
This model, which postulates that the number of fractures in the interval (0,¢)
(where t is the depth and zero corresponds to the initial level of 106 m) has an NB
distribution with parameters ¢ and p = 0.263, is in a very good agreement with the
data.

6. APPENDIX

We collect here some basic results that were used in the proof of Theorem 3.1.
Most of these are rather standard facts, and they are included here only for com-
pleteness of the presentation.

LEMMA 6.1. The function

is well defined for x < 1 with \(0) = 1, and its first two derivatives are continuous
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and given by
ron —z—(1—z)ln(1 —x) , 1
Yo = e iy 0 0=y
N(z) = (r—2)In(l —x) — 2z ,,(0):_}

(1—2)2mn3(1 —2z)
Moreover, the first derivative of A is a decreasing function in x € (0,1).

Proof. The result is a consequence of standard evaluations of derivatives
and proper limits. =

In the course of establishing convergence results it is convenient to use some
properties of the stationary time series Y, that is defined by

(6.1) Y, = Z Vi Uy ... Uy, n € 7,

k=—o00

where Zj = (Vj,Uy) are independent, identically distributed bivariate random
variables such that EV}, = v, Uy € (0, 1), and EU, = u. We further assume that
the first and the second moments of Wj, = — In Uy, exist, and let

2
o oyo
Cov(Zy) = aVaVUp VU%UP

denote the covariance matrix of Z;. We also assume the existence of the two co-
variances 71 = Cov(U2,V},) and ro = Cov(U2, V;2).

In the following result we list most important properties of this series and then
we specify (V%, Uy) that are considered in this work.

PROPOSITION 6.1. The discrete time series (Yy,) defined by (6.1) is strictly
stationary and satisfies the following relations:
(i) (Yy) is first order autoregressive process with random coefficients, where

Yn+1 = pnYn + €n,

n+1 Vk
Y,r1=U;...U, Y, — .
+1 1 +1<0+,§1Ul.--Uk_1>

Here, p, = Upy1 and €, = pn Vi1 are independent of Y,,. The mean and the
variance of €,, as well as the covariance of p,, and €y, are

Ee, =ovoup+u-v,

Var e, =19+ (1 — p) (0[2]0‘2/(1 +p) + oFv? + 0"2/u2) + ployu+ oyv)?,

Cov(pn, €n) =11 + ou(opv — poyu).
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(ii) The first moment and the covariance structure of (Yy,) are as follows:

oyoyp + uv

EY, = ,
1—u
Var Y, — EQEn + 2Ee,, - Cov(an, €n) + Var en
1—u?—of

Corr(Yn, Yo) = u"™.

(iii) For each sequence of measurable functions f,, with probability one we
have

limsup f,,(Y_,) = const.
n—oo

In particular, if im,,_,o fn(y) = 0, then the constant is equal to zero.
(iv) For each monotone, positive sequence a., converging to infinity, we have
with probability one

Y,
limsup — = 0.
n—oo Gn

Proof. Letus note the obvious equality in distribution

d
(Zisn)kez = (Zi)kez.-

For a sequence W = (Y}, Xj)recz define

0

k=—o00
under the assumption that the series is convergent.
First, let us note that g((Zy,)kcz) is well defined with probability one. Indeed,

the series of independent random variables ZZ:—OO Viee ¥/2 is almost surely con-
vergent. Moreover, for w in the set () on which both this convergence holds along

with the strong law of large numbers for Wy, = — In Uy, for sufficiently large n we
have

o0

> Ve(w)lexp (~Wi(w) — ... = Wo(w)) < Z Vi (w)]e 72,

=n

Since the right-hand side is finite, we have the convergence. The strict stationarity
of the series Y}, follows easily when we note that Y,, = g((Zkn)kez)-
Part (i) is obtained after standard calculations based on the following relations:

0 n+1
Yori=U1...Upp1 Y, ViUp...Up+ > Vi Up...Upta
k=—0oc0 k=1
n+1 Vk

=U1.. U1 Yo+ Up.. n+1z U

The computation of the moments and covariances is obvious, and thus is omitted.
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Part (ii) follows easily from (i). In particular, for the covariance structure we
have

Cov(Yi41, o) = Cov(prYy + €, Yo) = Cov(prYs, Yo)
= E(prCov(Ys, Y0)) = u - Cov (Y, Yo).

Parts (iii) and (iv) can be obtained from Kolmogorov’s zero-one law as fol-
lows. First, Y;, and thus f,(Y},) are measurable with respect to F,,, where F,, is
the natural filtration o-field of measurable sets generated by Vi, Wi, k < n. Thus,
X = supg<p, fr(Yy) is measurable with respect to 7, as well. We have

limsup f,(Y,) = lim X,

n——oo n—0oo
and the limit is measurable with respect to F_,, = ﬂne_N F,.. The tail o-field
F_~ is made of the zero-one sets, which concludes the first part of (iii). The second
part follows from stationarity as we have

P(fn(Yn) > €) =P(fn(Y1) > ¢)

and f, (Y1) converges to zero with probability one (and thus in probability), so
fn(Yy) converges in probability to zero.
Notice that for the o-field G,, of measurable sets generated by Wy, k > n, the
limit
limsupY,/a, = lim exp (—(W1 + ...+ Wn))Yg/an
n—oo

n—oo

+ limsup > Vi exp(—(Wk +...+ Wn))/an

n—oo p—i

=limsup Y Viexp(—(Wi + ...+ Wy))/an

n—oo =1
is Go-measurable. Since

limsup Y, /a, = limsup Y, +x/an+

n—oo n—oo
is also Gp-measurable for each k € N, the limit belongs to the tail o-field G, =
(1— 0o In- The rest of the proof is the same as for (iii). =

LEMMA 6.2. Let T'y, be the arrivals of a standard Poisson process and a,, > 0
be such that for some 6 > 0 (and thus for all ' € (0,)) we have

limsup /7 ((1 4 6)V2Inlnn — a,) < oco.

n—oo

Then, with probability one

exp(—T) = o exp(—n + Vnay)).
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Proof. Let () be a set of probability one on which the law of iterated log-
arithm for the {T",} holds. For w € Qg and ¢’ < ¢ there exists an ng such that for
n > ng we have

[p(w)>n—(14+8)V2nlnlnn.

By assumptions, ng could be chosen so that
Vn((1+6)V2Inlnn —a,) < M.
Consequently, for n > ng

exXp (_Fn(w))
exp(—n + /nan)

< exp (\/ﬁ((l +0)V2Inlnn — an)> <eM,

which proves that exp(—I',) = O(exp(—n + y/nay)). The assumption of the
lemma holds also with a,, replaced by a,, = (1 — d¢)a,, (for example take dy =
6/(2(1+ 6)) and replace & by §/2). Thus we also obtain

exp(—T,) = O<exp (—n +/n(1 — 50)an)>,
and since y/na, — oo, we eventually have the assertion. m

LEMMA 6.3. With the notation and assumptions of Lemma 6.2, we have with
probability one

i Wi exp(—T'g) = o(exp(—n + \/ﬁan)).
k=n+1

Proof. We obviously have

o0 o0
> exp(—Tpik)Whar = exp(—=T',) D exp (—(en+1 4+ ..+ en+k))Wn+k.
k=n+1 k=1

Let us define the stationary time series Y;, by
o0
Y,(nJrl) = Z exp (—(en+1 + ...+ en+k))Wn+k‘
k=1

This corresponds to the definition (6.1) with Uy, = —Ine_j and Vj, = W_. Using
the same argument as in the last part of the proof of Lemma 6.2, we obtain

Z;o:n—&-l exp(—Fn) < eXp(_Fn) ( 1+Y 51 >
exp(—n +v/na,)  exp (=n+ (1 = 6o)y/nan) \exp(dov/nan) /)

The result now follows from Lemma 6.2 and Proposition 6.1 (iii). =
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LEMMA 6.4. Let N(t) be a Poisson process. Then, with probability one we

have
lim s N(t)—t
imsup —e——— =
t%oop V2tinlnt

Proof. Let {I';} be the arrival times corresponding to N (¢). Since

IBVO) < t < Uity

N TSNG TS TN

_1’

by the law of iterated logarithm we have

lim su =
v ‘ \/2N lnlnN( )'

with probability one. We also note that for a certain random variable \; € [0, 1] we
have

Inln N (t) _1’: In (Int+In (N (t)/t)) —Inlnt
Inlnt Inlnt
1 n (N(t)/t)
"~ Inlnt Int 4+ A In (N(2)/t)

which demonstrates that \/InIn N (¢)/InIn ¢ converges to one. This completes the
proof, since

'N(t)— _ — N (1) \/2N(t)lnlnN(t)’
V2tinlnt| V2N () Inln N(t) V2tinlnt ‘

LEMMA 6.5. Let {T'} be the arrival times of a Poisson process independent
of N(t). Then, with probability one we have

Ty — 1
limsup ——— < 2
t—»oop V2tinint
Proof. We have
Tro —t_ Ty~ N0 2N@RIRNGD | [N ¢
\/2tlnlnt \/2]\7 (t)Inln N(¢) V2tinlnt V2tInInt

By the same argument as that used in the proof of Lemma 6.4, we have with prob-
ability one

. V2N (t) Inln N (t)
im
t—00 V2tinint

Thus, the result follows from Lemma 6.4 and the law of the iterated logarithm
appliedtoI';,. =

=1.
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