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Abstract. Recently, regression model for the long-term survival proba-
bilities of patients was proposed, and a semiparametric inference procedure
was developed based on missing information principle. In this paper, we
propose an alternative empirical likelihood method. First, we define an esti-
mated empirical likelihood ratio for the regression parameter. The limiting
distribution of the empirical likelihood ratio is shown to have a weighted
sum of i.i.d. x3’s. We also define an adjusted empirical likelihood ratio for
the regression parameter and the adjusted empirical likelihood ratio is shown
to have a central chi-squared limiting distribution. Confidence regions for
the vector of regression parameter are obtained accordingly. Furthermore, an
extensive simulation study is conducted and it shows the proposed method
has better coverage probability. Finally, we use a real data set to illustrate
our proposed method.
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1. INTRODUCTION

In biomedical settings, it is of particular interest to study the relationship be-
tween the probability of observing an event during a certain pre-specified time in-
terval and covariates. It is well known that the covariates such as tumor size, height,
and sex have a significant effect on the survival rate in clinical trials. The survival
rate at a pre-specified time is an effective measure of a patient’s survival. Due to
its simplicity and ease of interpretation, regression model for the survival rate is
a valuable and attractive model in survival analysis, which is able to incorporate
information from a set of covariates.

In this article, we consider fitting a regression model for a long-term survival
rate on the covariate. Suppose T; (i = 1,...,n) is the failure time to a specific
event for patient i. Let Z; = (Zo;, Z1i, - - -, Zpi)', where Zyp; = 1, be the corre-
sponding (p + 1)-dimensional covariate vector. In addition, the censoring variable
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C; is assumed to be conditionally independent of T; given the covariate Z; for
1 < i < n. We observe (X, d;), where X; = min(7;,C;) and 6; = I(T; < C;).

For a fixed study time 7, we assume that, given the covariate, the survival rate
at 7 of the ith patient, m; = P(T; > 7|Z;), satisfies

(1.1) o(mi) = ' Zs,

where ¢ is a known, monotonic and differentiable function in [0, 1], and 3 is
a (p+ 1) x 1 vector of unknown regression parameter. We can choose a differ-
ent link function ¢ to produce commonly used models in survival analysis. For
instance, a regression model with link function ¢(m) = log (7/(1 — 7)) corre-
sponds to the logistic regression model. And a regression model with link function
¢(m) = —log ( — log(w)) for a certain time period 7 corresponds to the Cox’s [5]
regression model.

Jung [12] applied the idea of inverse probability to study the above regression
model in which the censoring is independent of the covariate. Recently, Subrama-
nian [27] applied the missing information principle (MIP) to the regression model
(1.1) and proposed an alternative estimating function when covariate Z takes only
discrete values. The well-known MIP were developed by Orchard and Woodbury
[19] (cf. Laird [14]). It provides a general way to construct estimating equations in
incomplete data problems. The basic idea is to replace a full-data estimating equa-
tion by its estimated conditional expectation given the observed data. The proposed
approach is applicable to other censoring schemes such as double censoring and
interval censoring; see Chang and Yang [1], and Groeneboom and Wellner [9].
In general, the two estimating functions lead to different estimators of the regres-
sion parameter. In [27] Subramanian derived asymptotic properties of the estima-
tor when the censoring depends on the discrete covariates, i.e., the estimator was
consistent, asymptotically normal. Moreover, the advantage of Subramanian’s es-
timator over Jung’s estimator was discussed in [27].

Empirical likelihood (EL) method is a powerful nonparametric method which
can be used to construct confidence interval/region for parameter of interest. It
enjoys some unique features, such as range respecting, transformation-preserving,
asymmetric confidence interval, and Bartlett correctability, etc. In the breakthrough
work, Owen [20], [21] introduced seminal empirical likelihood confidence regions
for the mean of a random vector based on i.i.d. complete data. Since then, the EL
has been popularly applied to different statistical fields to make inference for the
parameter of interest. Some recent work includes: simultaneous confidence band
with right censoring (Hollander et al. [11], Einmahl and McKeague [7], Li and Van
Keilegom [15], McKeague and Zhao [16]-[18]); linear model (Owen [22], Chen
[2], [3], Wang and Rao [30], [31]); generalized linear models (Kolaczyk [13], Chen
and Cui [4]); the additive risk model (Zhao and Hsu [34]); weighted empirical
likelihood (Glenn and Zhao [8]); missing response problem with application in ob-
servational studies (Qin and Zhang [23]); nonlinear errors-in-covariables models
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(Stute et al. [26]); censored median regression models (Zhao and Yang [36]); cen-
sored regression models of the mean quality-adjusted lifetime (Zhao and Wang
[35]), among others.

In this paper, we consider the regression model (1.1). Based on the estimating
equation of Subramanian [27], we define an estimated empirical likelihood ratio for
the regression parameter. The corresponding constrained maximization of the em-
pirical likelihood can be done reliably by the modified Newton—Raphson method
with checking the conditions. We apply the profiled EL to obtain the estimator
of regression parameter. In Section 2.2 we see that the MIP and EL based esti-
mators are the same. Thus, our objective is to build proper EL confidence region
for the unknown regression parameter, and compare it with normal approximation
confidence region other than for the purpose of efficiency estimates. One of the
advantages of EL is that the proposed confidence region is adapted to the data set
and not necessarily symmetric. Thus, it reflects the nature of the underlying data,
and hence give a more representative way to make inferences about the parameter
of interest. Moreover, the extensive simulation study demonstrates the EL method
outperforms the normal approximation based method in terms of coverage proba-
bility for small sample size.

The rest of the paper is organized as follows. The proposed estimated EL and
adjusted EL confidence regions and main asymptotic results are presented in Sec-
tion 2. In Section 3, we conduct an extensive simulation study to compare the
proposed method with the normal approximation (NA) based method with MIP. In
Section 4, the proposed method is illustrated with real data in clinical trials. Proofs
are presented in the Appendix.

2. MAIN RESULTS

2.1. Preliminaries. We consider the regression model (1.1). For uncensored
data, Jung [12] proposed the following estimating equation:
n /
7o (8'Zi)
(2.1) U = (T >71)—m(0'Z)) ———o—ar
where 7 is the inverse function of ¢, 7 = 1 — 7, my(p) = On(p)/0.

When the censoring variable depends on the covariate vector Z and Z takes
only discrete values, Subramanian [27] applied MIP to the uncensored estimating
equation (2.1). He replaces the unobservable I(7; > 7) by its conditional expecta-
tion given the data. It can be shown (cf. Efron [6], p. 840, equation (7.4)) that the
conditional expectation FE; is given by

ZZ‘ZO,

(2.2) E; = E(I(T; > 7)|(Xi,6i, Z;))
S(t—, Z;)

=I1(X;>7)+1(X; <T1,0 :O)S(X»— 7
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where S(t,z) = P(T > t|Z = z) is the conditional survival function of 7" given
Z, and S(t—, z) is the left limit of S(¢, z). The estimated conditional expectation
FE; is given by

S(T—, Zl)

23 E=IX;>7)+1(X; <76 =0)~ ,
(2.3) ( )+ 1( )S(Xi—,Zi)

where S(t, z) is an appropriate estimator of S(¢, z). The MIP estimating equation
takes the form

n /
- my(8'Zi)
(2.4) Up) = B —n(f'Z))——2————Z; = 0.
) Z:Z1 (i = (5 2) (8 Zi)w(6'Zi)

Under mild conditions the estimating equation (2.4) has a unique solution ﬁ .In
the discrete case, denote the possible values of Z by 2z, k = 1,..., K, and assume
that each occurs with positive probability. Let nj denote the number of Z;,j =
1,...,n, taking the value z;. Rewrite the sample (Xj;,0;,7;), i = 1,...,n,
as (XgmsOkm), m=1,...,ny, for k =1,..., K, where (X} n,xm) corre-
sponds to (X;, d;) with covariate Z; having the value zj. Let S(t, z;,) be the lo-
cal Kaplan-Meier estimator based on the pairs (X, 0 m), m = 1,...,ny. Let
us put

noT I(X; >t)
I'= lim n! Z)d (Z; : dAg, (1),
Jm S (20 (207 s (0
where
(502)

with Ag, (t) = —log S(t, ), and

y(t,zx) = P(X; 2 t|1Z) = z1) = hm nkl Z I(Xp; > t).
=1

Throughout the paper, we only concern about the case where the censoring
variable is dependent on a covariate which can only take finitely many values.
Thus, the covariate vector Z is bounded, i.e., || Z|| < M for some positive constant
M, where || - || is the Euclidean norm. To derive the asymptotic normality of (3, we
also need the following conditions (cf. Subramanian [27]).

Let D be a bounded convex region. The true value 3y of [ is in its interior.
Furthermore, we assume the following conditions hold:

C.1. The censoring time C and survival time 7" are independent given a co-
variate Z.
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C.2. There exists a constant 7 not dependent on 3 € D such that
P(X>71|Z=2)>0 forzas.

C.3. The function 7 is twice differentiable with respect to ¢, the second deriva-
tive 744(+) is bounded, and 0 < 7(-) < 1 in a bounded domain.

C.4. The matrix A is positive definite, where

A =B[22 (n(8)2))* | {n(B42)7 (54 2)}].

REMARK 2.1. The well-known link functions in the regression model for lo-
gistic and probit satisfy conditions C.1-C4.

Under conditions C.1-C.4, it is shown in Subramanian [27] that
2.5) n'2(6 - By) 2 N(0,A"'TA™Y).
Let

an:ll(zm = Zl')
S I X > X, Z = Z;

r=n" i 5#?(21')@’(21')( >2I(Xi <7),
i=1 )

where ¢(-) is obtained by replacing 3o in ¢(-) by 3.
REMARK 2.2. There is a typo in Subramanian [27]. The term I(X; < 7) of
equation (2.6) is missing on p. 217 of Subramanian [27].
Let us put
oy _(me(AZ))" Z: 2.
i=1 m(B'Zi)7(8' Zi)
I' is consistently estimated by I (cf. Subramanian [27]). That A is consistently

estimated by A. Thus, an asymptotic 100(1 — )% NA confidence region for 3 is
given by

A=n

Ri={B:n(B—B) AL7TA(B - B) < x241(a)},

where X}% +1() is the upper a-quantile of the chi-square distribution with p + 1
degrees of freedom.

2.2. EL confidence region. Now we apply an alternative approach to the re-
gression model (2.1) based on EL. For 1 < ¢ < n, we define

76 (80 Zi)
(BoZi)7(ByZ:)

768y Zi) ,
(B0 Zi)m(ByZi) "

WZ' = (EZ - ﬂ(ﬁ(l)Zl)) T Zz';

Wn,i = (EZ - 7'('(562@)) T
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It is easy to check that EW; = 0 by the definition of W;. Then the empirical
likelihood is given by

LBo)=sup{[[pi: X pi=1> piWi=0,p; >0,i=1,...,n}.
i=1 i=1

However, the W;’s depend on S(¢t—, z) which is unknown; we replace them by the
Wy.’s. Therefore, using the notation L,,, an estimated empirical likelihood at the
true value (3 is given by

n n
Ln(/@O) == SUP{ sz : Zpl == 17 ZpiWn,i = Oapl > 07Z = 17"‘7”}'
i=1 i=1

Let p = (p1,...,pn) be a probability vector, i.e., Z" . pi =1 and p; > 0 for
1 < 7 < n. Note that H ., Di attains its maximum at p; = 1/n. Thus, the empirical
likelihood ratio at the true value [y is defined by

n n
R(ﬁ0> = Sllp{ H np; : sz = 17 ZpiWn,i = Ovpl > 07Z = 17' ,TL}
i=1 i=1

We profile the estimated empirical likelihood ratio and obtain the profile esti-
mator of 3, i.e., Bp = argmaxzR(f3). We note that [T:-, np; attains its maximum

one at p; = 1/n, and then B p satisfies the estimating equation (2.4). Thus B p = B .
By using the Lagrange multiplier, we know that R((3y) is maximized when

1
= {1+ XWo} ™ i=1.m,

where A = (Aq,..., Ap41) satisfies the equation

(2.6) =0.

1 n
EZ: )\’Wm

The value of A may be found by Newton—Raphson method with checking the
constraint conditions (cf. Hall and La Scala [10]). Thus, we have

2.7) 1(Bo) = —2log R(Bo) =23 log{1 + N Wi},
=1

where A = (A1,..., Apy1) satisfies the equation (2.6).
Put

I = limn 'y (Ei — 7(8)Z:)) mo(hZ) ",
P e i=1 ’ 0" By Z:) 7 (B Zi) e

Now our main result is the following, and we explain how it can be used to
construct a confidence region for (3.



EL inference for survival rate regression with MIP 79

THEOREM 2.1. Under conditions C1-C4, the EL statistics [((o) converges to
TlX%,l +...4 Tp+1xip+1 in distribution, where X%,p . ,X%’pﬂ are independent
chi-square random variables with one degree of freedom and r1, ... ,rp1 are the
eigenvalues of Fl_lf.

Theorem 2.1 is proved in the Appendix. It is of interest that the limiting distri-
bution of the EL ratio is a weighted sum of i.i.d. x7’s instead of the standard X;Q; 1
distribution. Since the W,,;’s are dependent, —2log R(/3;) is no longer a sum of
standard independent random variables. This phenomenon appears in right censor-
ing and missing data settings; see Wang and Jing [29], Wang and Rao [30], Zhao
and Chen [33], Zhao and Wang [35], etc.

From Lemma A.1 we know that I'; is consistently estimated by

R B T NWNE.1(c 1) )2 7
I'n=n Z:ZI ((Ez W(ﬁ Zz)) F(B,Zi)ﬁ'(,élzi) ZiZ;.

Thus, the r;’s can be estimated by the 7;’s which are the eigenvalues of fl_lf
An asymptotic 100(1 — «)% EL confidence region for f3 is given by

Ro ={f: —2log R(f) < c(a)},

where ¢(v) is the upper a-quantile of the distribution of 71 X7 ; +. .. + Fpr1 X041 1-
Alternatively, the above EL approach can be adjusted to avoid the weighted
sum expression. Let

p(B) = (p+ 1) /{7 (B)L(B)}

with tr(-) denoting the trace vector. Then, as in Rao and Scott [24], the distribution
of p(Bo)(rixi1 + ... + Tpri1Xpi11) May be approximated by X7, . Thus, the
asymptotic distribution of lNad(ﬂo) = ﬁ(ﬂo)f (6p) may be approximated by X?g 1
where the adjustment factor p(f3) is p(3) with I'1 () and T'(3) replaced by I'1(53)

and T'(3), respectively.
Motivated by Wang and Rao [30], [31], we define an adjusted empirical likeli-

hood ratio by modifying p(5y) in l,q4(5o), whose asymptotic distribution is exactly
a X% +1- Note that

_ e B0E)}
w{TTH (BT (8)}

We define 7(3) to be j(/3) with I'(3) replaced by

p(B)

509 = { £ W)} x { X Wit}
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That is, . A
#(3) = tr{lj*(ﬁ)?(ﬂ)}
{71 (8)5(8)}

We define an adjusted empirical likelihood ratio by

A~

laa(B) = #(B)1(B).

THEOREM 2.2. Under conditions C1-C4, the EL statistic [ad(/BO) converges
to X?) 1 in distribution.

Based on Theorem 2.2, an asymptotic 100(1 — )% adjusted empirical likeli-
hood (AEL) confidence region for Sy is given by

Ry = {0 : laa(8) < Xpra (@)},

where Xf, 11(«) is defined as before.

Discussion. From the above theorems we know that EL. method works for
the case when censoring depends on discrete covariates. Furthermore, we can use
profiled EL to obtain confidence regions for any component of regression param-
eter. In addition, Zhao [32] developed EL method when censoring is independent
of covariate. When censoring depends on a continuous one-dimensional covariate,
EL works based on the estimating equation in Subramanian [28] accordingly. It
would be of interest to consider the regression model when censoring depends on
high-dimensional continuous covariates. We will investigate this challenging issue
using EL in the future.

3. SIMULATION STUDY

In this section, we conduct an extensive simulation study to compare the per-
formance of the proposed empirical likelihood confidence region and adjusted em-
pirical likelihood confidence region with the normal approximation based confi-
dence region in terms of coverage probability.

The conditional distribution of 7' given Z was taken to be L(0,72/323),
where L(0,0?) denotes a logistic distribution with mean zero and variance o?.
This implies that 7(t) = 1/(1 4 e*'). Note that ¢(m(t)) = —zat, with ¢(m) =
log{m/(1 — m)}, gives a regression model for the long-term survival rate. Thus,
the true values of the intercept and the slope are 0 and —7, respectively. We use
adiscrete random variable Z = (1, Z;)' with Z, taking values 1.1, 1.3, 1.5, 1.7, and
1.9 each with probability 0.2. The conditional censoring distribution of C' given Z
is taken to be log (Uniform(O, CZQ)) , and the value of c is used to reach the desired
censoring rate (CR). Note that, in this case, 7" and C' are independent given Z. We
choose 7 to be 0 and 0.25, respectively.

We take 0.90, 0.95, and 0.99 as the nominal confidence level 1 — «, respec-
tively. The 15%, 30%, and 45% censoring rates are obtained, which represent light
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censoring, medium censoring, and heavy censoring. The sample size n is chosen
to be 60, 100, 140, and 200, respectively. The coverage probabilities of the normal
approximation based method and the empirical likelihood method are estimated
from 1000 simulated data sets. Based on the simulation results in Tables 1 and 2,
we report the findings as follows.

TABLE 1. Coverage probabilities for the regression parameter (7 = 0)

1—a=0.90 1-—a=095 1—a=0.99
CR(%) n NA EL NA EL NA EL

60 | 0.880 | 0919 | 0919 | 0.949 | 0.954 | 0.983
15 100 | 0.873 | 0.905 | 0.917 | 0.954 | 0.968 | 0.983
140 | 0905 | 0916 | 0.934 | 0.950 | 0.969 | 0.988
200 | 0.898 | 0.910 | 0.941 | 0958 | 0.979 | 0.991
60 | 0.874 | 0926 | 0921 | 0.958 | 0.968 | 0.989
30 100 | 0.877 | 0.901 | 0911 | 0.948 | 0.953 | 0.979
140 | 0.878 | 0.906 | 0.922 | 0.953 | 0.967 | 0.988
200 | 0.883 | 0.896 | 0.930 | 0.951 | 0.977 | 0.988
60 | 0.859 | 0.904 | 0.895 | 0.933 | 0.934 | 0.969
45 100 | 0.864 | 0.905 | 0911 | 0.950 | 0.961 | 0.981
140 | 0.873 | 0.895 | 0.906 | 0.940 | 0.955 | 0.984
200 | 0.885 | 0.903 | 0.930 | 0.950 | 0.970 | 0.985

TABLE 2. Coverage probabilities for the regression parameter (7 = 0.25)

1—a=0.90 1—a=0.95 1—a=0.99
CR(%) n NA EL NA EL NA EL

60 | 0.858 | 0915 | 0902 | 0.952 | 0.947 | 0.976
15 100 | 0.881 | 0916 | 0.916 | 0.951 | 0.968 | 0.989
140 | 0.897 | 0918 | 0.938 | 0.957 | 0.973 | 0.988
200 | 0.888 | 0911 | 0.934 | 0.951 | 0977 | 0.992
60 | 0.871 | 0.920 | 0.903 | 0.947 | 0.948 | 0.980
30 100 | 0.868 | 0.904 | 0.901 | 0.946 | 0.957 | 0.974
140 | 0.896 | 0911 | 0.931 | 0.956 | 0.966 | 0.986
200 | 0.891 | 0.910 | 0.935 | 0.957 | 0.974 | 0.989
60 | 0.824 | 0905 | 0.874 | 0.938 | 0.928 | 0.971
45 100 | 0.855 | 0915 | 0.904 | 0.948 | 0.953 | 0.983
140 | 0.865 | 0.896 | 0.904 | 0.943 | 0.952 | 0.990
200 | 0.897 | 0.903 | 0.934 | 0.952 | 0.972 | 0.987
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1. At each fixed nominal level, the coverage accuracies for empirical likeli-
hood and normal approximation methods tend to decrease as the censoring rates
increase, and tend to increase as the sample size increases.

2. The empirical likelihood outperforms the normal approximation method
for 7 = 0,0.25. In particular, for small sample (n = 60), the empirical likelihood
confidence region has more accurate coverage probabilities than the normal ap-
proximation based confidence region.

3. The coverage probabilities for the normal approximation method are con-
sistently lower than the nominal level for small sample size (n = 60).

The simulation results of adjusted empirical likelihood method are similar as
those of normal approximation method. Thus, they are omitted here. In conclu-
sion, the simulation study suggests that the proposed estimated empirical likeli-
hood confidence region improves the coverage accuracy of normal approximation
based confidence region.

4. APPLICATION

In this section, we use multiple myeloma data to illustrate the proposed em-
pirical likelihood method and compare it with the normal approximation method.
The data set is presented in SAS/STAT User’s guide (1999, pp. 2608-2617). The
data come from a study on multiple myeloma in which researchers treated 65 pa-
tients with alkylating agents. Of those patients, 48 died during the study and 17
survived. The censoring rate is about 26%. For illustration, one covariate Z, the
Platelet (platelets at diagnosis: 0 = abnormal, 1 = normal) is considered for the
regression analysis of 7-month survival rate. It is important to ensure that the cho-
sen value of 7 does not result in an empty at-risk set, i.e., condition C.2 is satisfied.
Here, we choose five different 7 values: 25, 30, 35, 40, 45 months in the data set.

Based on the multiple myeloma data, we wish to construct confidence inter-
vals for the regression parameter. For m; = P(T; > 1), we consider the following
logistic regression model:

log{m;/(1 —m;)} = BZ,

and obtain confidence intervals for 3 with the normal approximation based method
and the empirical likelihood method with 90% and 95% confidence levels.

In Tables 3 and 4 we report the point estimate of 3, confidence interval for
5, and corresponding confidence interval length at different values of 7. From Ta-
bles 3 and 4, we see the empirical likelihood produces slightly wider confidence
intervals than normal approximation confidence intervals. We note that the normal
approximation confidence interval has the symmetry property which is not desir-
able since the distribution of the parameter estimator may be skewed. The empirical
likelihood confidence intervals are asymmetric about the point estimator, and the
empirical likelihood method is able to pick up possible skewness in contrast to the
normal approximation method.
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TABLE 3. Regression analysis for the multiple myeloma data: point estimate of 3, 90% confidence
interval and length of confidence interval

1—a=0.90

T I} NA EL

25 | —0.128 (—0.614,0.358) 0.972 (—0.621, 0.356) 0.977
30 | —0.301 (—0.778, 0.176) 0.954 (—0.787,0.172) 0.959
35 | —0.411 (—0.898, 0.076) 0.974 (—0.909, 0.070) 0.979
40 | —0.523 | (—1.022, —0.024) 0.998 | (—1.034, —0.032) 1.002
45 | —0.759 | (—1.279, —0.239) 1.040 | (—1.295, —0.248) 1.047

TABLE 4. Regression analysis for the multiple myeloma data: point estimate of /3, 95% confidence
interval and length of confidence interval

1—a=0.95

T 3 NA EL

25 | —0.128 | (—0.708,0.452) 1.160 | (—0.718,0.449) 1.167

30 | —0.301 | (—0.870,0.268) 1.138 | (—0.883,0.262) 1.145

35 | —0.411 | (—0.992,0.170) 1.162 | (—1.008,0.162) 1.170

40 | —0.523 | (—1.117,0.071) 1.188 | (—1.135,0.062) 1.197

45 | —0.759 | (=1.379, —0.139) 1.240 | (—1.402, —0.152) 1.250

5. APPENDIX — PROOFS OF THEOREMS
LEMMA A.1. Under the conditions of Theorem 2.1, we have
I ;P A P vy & P
(i) = > WyW,, =Ty (i) 't =Ty; (i) =T,
ni '
Proof of Lemma A.l. Let
A 12 12
Pin==Y WoiW,;, Tin=—> W;W,.
M i=1 T i=1
In order to prove (i), we only need to show ip =T + op(1).

For any a € RP*!, the following decomposition holds:

(A (T, —Tin)a
n

12 2
= ﬁ Z (a,(Wn,i - VVz))Z + E Z(G/VVQ)(CL,(Wn’Z’ — WZ)) = Il + 2]2.
=1 =1
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We note that

76(80Zi) Zi

(BoZi)7(ByZi)

_ my(ByZi)d' Z; , o

— W(,BéZi)ﬁ(ﬂéZi)I(XZ < 7,0, =0)
(80— 2)S(Xi—, Z) - S(1—, Z)8(Xi—, 7))

~

S(Xi—, ZZ')S(XZ‘—, Zl)

a'(Wm- — WZ) = a'(Ei — E@)
s

By condition C.3 and || Z]| < M, we have fori =1,...,n

1 (mg(BhZi)a' Z)*
n (n(ByZ:)7(8y2Z:))°

< M.

The condition C.1 implies that, for each k = 1,..., K, S(-, z;) is strongly
uniformly consistent in [0, 7] (Shorack and Wellner [25], p. 304):

(A2) sup |S(t, zx) — S(t, z1,)] 25 0.

0<t<T
It follows from || Z|| < M, condition C.3 and (A.2) that

-~ [(Xi 5 — Zi Xi—, Zi) — —, Z; S Xi—, Z;
A3 bl <3 IE <7 [50= Z)S( ) = S(r—, Zi)5( )|

i=1 n S(Xi—, Z)S(Xi—, Z;)
(mo(BhZ:)d' Z;)?
(m(8yZ:)7(B)Z:))
< swp I(X; < T)’SA(T—,Zi) - S(r ,Z,)|]M1
i=1,..,K S(Xi—, z)
oy TS TS ) - Sl
i=1,....K S(XZ ,Zz)
= op(1)

Similarly, we can show that I; = op(1). Thus, by (A.1), (A.3), we prove (i).

In order to prove (ii), we only need to show that I'; = I'y,, + op(1). Let us put

j%(ﬁA’Zz;)
TI'(ﬁIZZ')ﬁ'(ﬂ,ZZ‘)

7s(B0Zi)
(ByZi)7(ByZs)

Ji = (B — (' Z;)) — (E; — m(ByZ:)) -
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Applying the mean value theorem, we obtain the following equalities:
m =:76(8'Zi) — w(B0Zi) = mos By Zi + &1(B' — BY) Zi) (B — BY) Zi
o = (8 Z;)7 (B Z;) — m(ByZ)7 (5o Zi)

= s (0421 + &a(F — 3)2:) (1 = 2 (B0 2 + &2 - ﬂé)Z')) (3 = )2,
s =: 7(BZ:) — 7By Zi) = 7o (B0 + (B — B0) Z:) (B’ — 5) Zs

where 0 < §&; < 1fore=1,2,3.
Combining the above equalities, || Z]| < M, condition C.3, (A.2), and (2.5)
we have

(A4) sup |J4
1<i<n
~ sup Emy(3'Z:)  Emg(ByZi)  me(BZ) G/
<in | T(B 2073 Z:)  T(BZT(BoZi)  m(BZi)  T(BoZi)
< sup Ez‘(mjf(ﬁézi)f(ﬂézz‘)—7727%(5622‘))‘
1<isn W(ﬂ/ZZ)ﬁ'(,@’ZZ)F(ﬂézz)ﬁ(ﬂéZZ)
+ sup 77177(56?1') — m3mg(60Z;)
1<i<n (0 Zi)7(8yZi)
= Op(1/Vn).

Then, for any a € RP*!, by condition C.3, || Z|| < M, (A.2), and (A.4) we have

1T - 1& 2 2 /. ’77¢(ﬁ(,)Zl)|
21 = 2 N2 |7T¢(5(l)Zi)‘
< sup : ;; (JZ- +2’JZ’(EZ+1)7T(56Z¢)7T(562¢))

\1gz‘<

< — A i
C(REIJZ +nizzlm>

<C((

sup |Ji])2 4+ sup | Ji|)
1<i<n 1<i<n

— Op(1/v/n).

Hence, (i1) follows. Similarly we can show (iii). =

< M, and (A.2),

N 7o (B Zi)
. . < .
(A5) max Wil < max 1(E; + 1)7r(66Zi)7*r(662i) max [|Zi]

= Op(1).
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Let A = pf, where p > 0 and ||0]| = 1. Recall that I',, = I'; 4 op(1) (see
Lemma A.1). Let o1 > 0 be the smallest eigenvalue of I';. Then

(A.6) 011,60 > % +op(1).

Subramanian [27] applied the martingale representation and the central limit
theorem in the proof of Theorem 1, and derived the asymptotic normality, i.e.,
n~1/2 > Wh A N(0,T'). Let e; be the unit vector in the jth coordinate direc-
tion. We have

p+1 n

/
ej Z Wn,i
=1 i=1

1
- Wni
Lyw,

i=1

(A7) <(p+1)

SHE
<

g

=0Op (n_1/2).
Then, it follows from (2.6), (A.6), (A.7), and the argument used in Owen [21] that
(A.8) A = Op(n=1/2).

Applying Taylor’s expansion to (2.7), we have
7 = / 1 / 2
(A.9) L(Bo) =2 (N Wy, — 5()\ W) | + 1,
i=1

where .
| S C D \)\/Wn,i\g in probability.
i=1
Then we infer from (A.5) and (A.8) that

(A.10) Irn] < C’n||)\||3(1rg%}% [Winsll)? = Op(n=112).
We note that
_ ;; Wi — (; p» Wn,iWé7i>A
n A N2

By (A.5), (A.8), (A.11), and Lemma A.1 (i) it follows that

(A.12) A= (X WuiWo ) 'S Was + op(n1/2).
=1 =1
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By (A.11), we have

L )\/an s )3
A.13) 0= _— NW, i) — /\Wm
(A13) 0= 3y = L El Zl+>\’Wm
Similarly as before, by (A.5) and (A.8), we get

(A.14) znj( XW) = op(n~1/?).

Combining (A.13) and (A.14) we have

(A.15) S VW) =Y MWy +op(1).
=1 =1

By (A.9), (A.10), (A.12), (A.15) and Lemma A.1 (i), we have

= Z )\/Wn,i + Op(l)
=1
= (n_1/2 > Wn,i)/(n_1 Z Wn,iWAi)_l (n_1/2 > Wm) +op(1)
=1 7 i=1
( 1/2 —1/2 Z W ) 1—\1/21—\ 11—‘1/2)(1—‘_1/2?1_1/2 Z Wn,z) + OP(l)
i=1 =1

Recall that T=Y/2(n=1/2 3" W, ;) 2 N(0, I,11). Note that T/2T'7'T'%/2 and
FIII’ have the same eigenvalues. Using Lemma A.2 of Zhao [32], we complete
the proof of Theorem 2.1. =

Proof of Theorem 2.2. Recall the definition of Zad(ﬁo). It follows that,
by (A.9),

lad(Bo) = (n_1/2 i Wn,i)/f_l(n_1/2 i Wh,i) +op(1).

=1 =1
From Lemma A.1 (iii) we know that r LA I". Thus, Theorem 2.2 is proved. =
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