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Abstract. Nested subclasses, denoted by Mn(Rd), n = 1, 2, . . ., of
the class M(Rd), a subclass of the class of type G and selfdecomposable
distributions on Rd are studied. An analytic characterization in terms of
Lévy measures and a probabilistic characterization by stochastic integral
representations for M(Rd) are known. In this paper, analytic characteriza-
tions for Mn(Rd), n = 1, 2, . . ., are given in terms of Lévy measures as
well as probabilistic characterizations by stochastic integral representations
are shown. A relationship with stable distributions is given.
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1. INTRODUCTION

Throughout this paper, I(Rd) (resp., Isym(Rd)) stands for the class of all
infinitely divisible (resp., all symmetric infinitely divisible) distributions on Rd.
The characteristic function µ̂(z), z ∈ Rd, of an infinitely divisible distribution
µ ∈ I(Rd) has the so-called Lévy–Khintchine representation in the form:

µ̂(z) = exp
[− 2−1〈z,Az〉+ i〈γ, z〉

+
∫
Rd

(
ei〈z,x〉 − 1− i〈z, x〉(1 + |x|2)−1

)
ν(dx)

]
, z ∈ Rd,

where A is a symmetric nonnegative-definite d × d matrix, γ ∈ Rd and ν is a
measure on Rd (called the Lévy measure) satisfying

ν({0}) = 0 and
∫
Rd

(|x|2 ∧ 1)ν(dx) <∞.
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The triplet (A, ν, γ) is called the generating triplet of µ ∈ I(Rd). Consider a polar
decomposition of ν given by

(1.1) ν(B) =
∫
S

λ(dξ)
∞∫
0

1B(rξ)νξ(dr),

where S is the unit sphere in Rd, λ is a measure on S with 0 < λ(S) ¬ ∞ and
{νξ : ξ ∈ S} is a family of measures on (0,∞) such that νξ(B) is measurable in ξ
for each B ∈ B(

(0,∞)
)
, 0 < νξ

(
(0,∞)

) ¬ ∞ for each ξ ∈ S. Here λ and {νξ}
are uniquely determined by ν up to multiplication of a measurable function c(ξ)
and c(ξ)−1 with 0 < c(ξ) <∞. λ is called the spherical component of ν and νξ

the radial component. We will say that ν has the polar decomposition (λ, νξ). (See,
e.g., [3] and [7].) Let Cµ(z) = log µ̂(z), z ∈ Rd, be the cumulant of µ ∈ I(Rd).

We can characterize five classes of infinitely divisible distributions in terms of
the radical component νξ.

(i) Class U(Rd) (Jurek class, see [5]): νξ(dr) = lξ(r)dr and lξ(r) is mea-
surable in ξ ∈ S and nonincreasing in r for λ-a.e. ξ.

(ii) Class B(Rd) (Goldie–Steutel–Bondesson class, see, e.g., [3]): νξ(dr) =
lξ(r)dr and lξ(r) is measurable in ξ ∈ S and completely monotone in r for λ-a.e. ξ.

(iii) Class L(Rd) (class of selfdecomposable distributions, see, e.g., [8]):
νξ(dr) = kξ(r)r−1dr and kξ(r) is measurable in ξ ∈ S and nonincreasing in r
for λ-a.e. ξ.

(iv) Class T (Rd) (Thorin class, see, e.g., [3]): νξ(dr) = kξ(r)r−1dr and kξ(r)
is measurable in ξ ∈ S and completely monotone in r for λ-a.e. ξ.

(v) Class G(Rd) (class of type G distributions, see, e.g., [4]): µ ∈ Isym(Rd),
νξ(dr) = gξ(r2)dr and gξ(r) is measurable in ξ ∈ S and completely monotone in
r for λ-a.e. ξ.

We have introduced a class named M(Rd) in the previous paper [2], which is
a subclass of type G and selfdecomposable distributions on Rd. Its definition is the
following.

DEFINITION 1.1 (Class M(Rd)). µ ∈M(Rd) if µ ∈ Isym(Rd) and

(1.2) νξ(dr) = gξ(r2)r−1dr,

where gξ(r) is measurable in ξ ∈ S and completely monotone in r for λ-a.e. ξ. We
call gξ(r) in (1.2) the g-function of ν (or µ).

Denote by L(X) the law of a random variable X on Rd, and for µ ∈ I(Rd)
let {X(µ)

t } stand for a Lévy process with L(X(µ)
1 ) = µ.

As to the definition of stochastic integrals of nonrandom functions with respect
to Lévy processes {Xt} on Rd, we follow the definition in [9] and [10], whose idea
is to define integrals with respect to Rd-valued independently scattered random
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measure induced by a Lévy process on Rd. This idea was used in [11] and [6] for
the case d = 1. See also [3].

Let
Ilog(Rd) =

{
µ ∈ I(Rd) :

∫
|x|>1

log |x|µ(dx) <∞}
,

φ(x) = (2π)−1/2 exp(−x2/2), m(x) =
∞∫
x

φ(u)u−1du, x > 0,

and let us denote the inverse of m(x) by m∗(t), that is, t = m(x) if and only
if x = m∗(t). In [2], we have shown that the stochastic integral

∫∞
0

m∗(t)dX
(µ)
t

exists and is finite a.s. for any µ ∈ Ilog(Rd). Thus we can define the following
mapping.

DEFINITION 1.2 (M-mapping). For any µ ∈ Ilog(Rd), we define the map-
pingM by

M(µ) = L(∞∫
0

m∗(t)dX
(µ)
t

)
.

One of the results in [2] was the following

PROPOSITION 1.1. We have

M(Rd) =M(
Ilog(Rd)

)
.

It is trivial by the definition that M(Rd) is a subclass of the class of type
G and selfdecomposable distributions. However, we have more. Namely, M(Rd)
is a proper subclass. Actually, in [2] we gave an example of µ which belongs to
L(Rd) ∩G(Rd) but does not belong to M(Rd).

2. NESTED SUBCLASSES OF M(Rd) AND THEIR LÉVY MEASURES

In this section, we construct nested subclasses of M(Rd) as follows. Write
M0(Rd) = M(Rd). We start with the following

PROPOSITION 2.1 (Aoyama et al. [2]). Let ν and ν0 be the Lévy measures of
µ ∈ Ilog(Rd) and µ0 :=M(µ) ∈M0(Rd), respectively. Then

(2.1) ν0(B) =
∞∫
0

ν(u−1B)φ(u)u−1du, B ∈ B0(Rd).

We define nested subclasses of M(Rd) in terms of their Lévy measures.

DEFINITION 2.1 (Class Mn(Rd)). For any n ∈ N, define

Mn(Rd) = {µ0 ∈M0(Rd) :

ν in (2.1) is the Lévy measure of some distribution in Mn−1(Rd)}.
M∞(Rd) is defined by

⋂∞
n=0 Mn(Rd).
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For nonnegative integer n and x > 0, let ηn(x) be the probability density func-
tions of 2−(n+1)|Z0Z1 . . . Zn|, where Zi are independent standard normal random
variables.

REMARK 2.1. (1) limx→+0 ηn(x)x−1 =∞ and limx→∞ ηn(x)x = 0.
(2) η0(x) = φ(x) and for n ∈ N

ηn(x) =
∞∫
0

φ(xu−1)ηn−1(u)u−1du.(2.2)

(3) ηn(x) can be written as follows:

ηn(x) =
∞∫
0

φ(u1)u−1
1 du1

. . .
∞∫
0

φ(un−1)u−1
n−1dun−1

∞∫
0

φ
(
x
( n∏

i=1

ui

)−1
)
φ(un)u−1

n dun.

P r o o f. We have (2) and (3) inductively. (1) can be shown as follows. For
0 < x ¬ 1,

ηn(x)x−1 ­ x−1
∞∫
0

φ(u1)u−1
1 du1

. . .
∞∫
0

φ(un−1)u−1
n−1dun−1

∞∫
0

φ
(( n∏

i=1

ui

)−1
)
φ(un)u−1

n dun

→∞ (as x→ +0),

and for any x > 0,

ηn(x)x ¬ x
∞∫
0

φ(u1)u−1
1 du1

. . .
∞∫
0

φ(un−1)u−1
n−1dun−1

∞∫
0

2x−2
( n∏

i=1

ui

)2
φ(un)u−1

n dun

= 2(2π)−n/2x−1 → 0 (as x→∞). ¥

Then we have the following

THEOREM 2.1 (A characterization of the Lévy measures of µn ∈ Mn(Rd)).
Let µn ∈ Isym(Rd), n = 1, 2, . . . , and denote its Lévy measure by νn. Then µn ∈
Mn(Rd) if and only if

νn(B) =
∞∫
0

ν0(u−1B)ηn−1(u)u−1du, B ∈ B0(Rd),(2.3)

where ν0 is the Lévy measure of some µ0 ∈M0(Rd).
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P r o o f. (i) The “only if” part. Let n = 1 and suppose µ1 ∈ M1(Rd). Then,
by the definition,

ν1(B) =
∞∫
0

ν0(u−1B)φ(u)u−1du

for some Lévy measure ν0 whose distribution is in M0(Rd). We are going to show
the assertion by induction. Suppose that the assertion is true for some n ∈ N.
Namely, suppose the Lévy measure νn of µn ∈Mn(Rd) is given by

νn(B) =
∞∫
0

ν0(u−1B)ηn−1(u)u−1du.

Suppose µn+1 ∈Mn+1(Rd) and denote its Lévy measure by νn+1. Then

νn+1(B) =
∞∫
0

νn(u−1B)φ(u)u−1du (by the definition of Mn+1(Rd))(2.4)

=
∞∫
0

φ(u)u−1du
∞∫
0

ν0(u−1v−1B)ηn−1(v)v−1dv

=
∞∫
0

ηn−1(v)v−1dv
∞∫
0

ν0(y−1B)φ(yv−1)y−1dy

=
∞∫
0

ν0(y−1B)y−1dy
∞∫
0

ηn−1(v)φ(yv−1)v−1dv

=
∞∫
0

ν0(y−1B)ηn(y)y−1dy (by (2.2)).(2.5)

This shows that the assertion is also true for n + 1.
(ii) The “if” part. The assertion is true for n = 1. Namely, by the definition of

M1(Rd), if

ν1(B) =
∞∫
0

ν0(u−1B)φ(u)u−1du

for some ν0, the Lévy measure of some µ0 ∈M0(Rd), then µ1 whose Lévy mea-
sure is ν1 belongs to M1(Rd). Suppose that the assertion is true for some n ∈ N
and suppose that µn+1 ∈ Isym(Rd) have the Lévy measure

νn+1(B) =
∞∫
0

ν0(u−1B)ηn(u)u−1du.

Then from the calculation from (2.4) to (2.5) we have

νn+1(B) =
∞∫
0

φ(u)u−1du
∞∫
0

ν0(v−1B)ηn−1(v)v−1dv =
∞∫
0

φ(u)u−1νn(u−1B)du

and µn with the Lévy measure νn belongs to Mn(Rd) by the induction hypothesis.
Thus µn+1 ∈Mn+1(Rd) follows from Definition 2.1. This completes the proof. ¥
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The following is a characterization of the Lévy measures of distributions in
Mn(Rd) in terms of the g-function of the Lévy measure.

THEOREM 2.2. Let n ∈ N. A measure µn ∈ Isym(Rd) belongs to Mn(Rd) if
and only if its Lévy measure νn is either zero or it can be represented as

νn(B) =
∫
S

λ(dξ)
∞∫
0

1B(rξ)gn,ξ(r2)r−1dr, B ∈ B0(Rd),

where gn,ξ(r) is represented as

gn,ξ(s) =
∞∫
0

ηn−1(s1/2y−1)gξ(y2)y−1dy.(2.6)

Here gξ(r) is measurable in ξ ∈ S and completely monotone in r for λ-a.e. ξ.

P r o o f. Recall from (1.1) and (1.2) that

ν0(B) =
∫
S

λ(dξ)
∞∫
0

1B(rξ)gξ(r2)r−1dr.

We see by Theorem 2.1 that µn ∈Mn(Rd) if and only if νn is represented as

νn(B) =
∞∫
0

ν0(u−1B)ηn−1(u)u−1du

=
∞∫
0

ηn−1(u)u−1du
∫
S

λ(dξ)
∞∫
0

1u−1B(yξ)gξ(y2)y−1dy

=
∫
S

λ(dξ)
∞∫
0

1B(rξ)r−1dr
∞∫
0

ηn−1(ry−1)gξ(y2)y−1dy

=
∫
S

λ(dξ)
∞∫
0

1B(rξ)gn,ξ(r2)r−1dr.

This completes the proof. ¥

3. STOCHASTIC INTEGRAL CHARACTERIZATIONS OF Mn(Rd), n ∈ N

In this section, we characterize distributions in Mn(Rd) by stochastic inte-
gral representations. Let Ilogn(Rd) =

{
µ ∈ I(Rd) :

∫
|x|>1

(log |x|)nµ(dx) <∞}

and mn(x) =
∫∞

x
ηn(u)u−1du, x > 0. Since mn(x) is strictly monotone, we can

define its inverse by m∗n(t), that is, t = mn(x) if and only if x = m∗n(t).



Subclasses of type G selfdecomposable distributions 141

LEMMA 3.1. For each n ∈ N there exists Ci > 0 (i = 1, 2, 3) such that for
every 0 < u < 1

∞∫
u

ηn(s)s−1ds ¬ C1

(
log(u−1)n+1 + 1

)
,(3.1)

u∫
0

ηn(s)ds ¬ C2u,(3.2)

and

(3.3)
u∫
0

sηn(s)ds ¬ C3u
−2.

P r o o f. We have (3.2) and (3.3) by standard calculations. For n ∈ N and
0 < u < 1, we have

∞∫
u

ηn(s)s−1ds

=
∞∫
0

φ(u1)u−1
1 du1 . . .

∞∫
0

φ(un)u−1
n dun

∞∫
u

φ
(
s
( n∏

i=1

ui

)−1
)
ds

=
∞∫
0

φ(u1)u−1
1 du1 . . .

∞∫
0

φ(un)u−1
n dun

( 1∫
u

+
∞∫
1

)
φ
(
s
( n∏

i=1

ui

)−1
)
ds

¬ C
( 1∫

u

(log s−1)s−1ds
)

+ C

¬ C
(
(log u−1)n+1 + 1

)
,

where and in what follows C will denote an absolute positive constant which may
be different from one to another. Thus we have (3.1). This completes the proof. ¥

THEOREM 3.1. For each n ∈ N the stochastic integral
∞∫
0

m∗n(t)dX
(µ)
t

exists for every µ ∈ Ilogn+1(Rd).

P r o o f. For the proof, we need the following lemma, which is a special case
of Proposition 5.5 of [10].

LEMMA 3.2. Let {X(µ)
t } be a Lévy process on Rd and f(t) a real-valued

measurable function on [0,∞). Let (A, ν, γ) be the triplet of µ. Then
∫∞

0
f(t)dX

(µ)
t

exists if the following conditions are satisfied:

(3.4)
∞∫
0

f(t)2dt <∞,
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and

(3.5)
∞∫
0

dt
∫
Rd

(|f(t)x|2 ∧ 1
)
ν(dx) <∞,

(3.6)
∞∫
0

∣∣∣f(t)γ + f(t)
∫
Rd

x
((

1 + |f(t)x|2)−1 − (1 + |x|2)−1
)
ν(dx)

∣∣∣dt <∞.

For the proof, it is enough to show that f(t) = m∗n(t) satisfies (3.4)–(3.6) in
Lemma 3.2 for every µ ∈ Ilogn+1(Rd). Note that mn(+0) =∞ and mn(∞) = 0.
Since

∞∫
0

m∗n(t)2dt =
∞∫
0

s2ηn(s)s−1ds

= 2−(n+1)E(|Z0Z1 . . . Zn|) = (2π)−(n+1)/2 <∞,

we have (3.4).
As to (3.5), we have

∞∫
0

dt
∫
Rd

(|m∗n(t)x|2 ∧ 1
)
ν(dx) = −

∞∫
0

dmn(s)
∫
Rd

(|sx|2 ∧ 1)ν(dx)

=
∞∫
0

ηn(s)s−1ds
( ∫
|x|¬1/s

|sx|2ν(dx) +
∫

|x|>1/s

ν(dx)
)

=: I1 + I2,

say. Here

I1 =
∫
Rd

|x|2ν(dx)
1/|x|∫

0

sηn(s)ds

=
( ∫
|x|¬1

+
∫
|x|>1

)|x|2ν(dx)
1/|x|∫

0

sηn(s)ds =: I11 + I12,

say, and

I11 ¬
∫
|x|¬1

|x|2ν(dx)
∞∫
0

sηn(s)ds <∞.

We have the finiteness of I12 by (3.3) in Lemma 3.1. Also,

I2 =
∫
Rd

ν(dx)
∞∫

1/|x|
ηn(s)s−1ds =

( ∫
|x|¬1

+
∫
|x|>1

)
ν(dx)

∞∫
1/|x|

ηn(s)s−1ds

=: I21 + I22,
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say. As to I21, we have

I21 ¬
∫
|x|¬1

ν(dx)
∞∫
0

φ(u1)u−1
1 du1 . . .

∞∫
0

φ(un)u−1
n dun

( n∏
i=1

ui

)2
∞∫

1/|x|
2s−3ds

¬ C
∫
|x|¬1

|x|2ν(dx) <∞.

We have the finiteness of I22 by (3.1) in Lemma 3.1.
For (3.6), we have
∞∫
0

∣∣∣m∗n(t)γ + m∗n(t)
∫
Rd

x
((

1 + |m∗n(t)x|2)−1 − (1 + |x|2)−1
)
ν(dx)

∣∣∣dt

¬− |γ|
∞∫
0

sdmn(s)

−
∞∫
0

∣∣s
∫
Rd

x
(
(1 + |sx|2)−1 − (1 + |x|2)−1

)
ν(dx)

∣∣dmn(s) =: I3 + I4,

say, where

I3 ¬ |γ|
∞∫
0

ηn(s)ds <∞,

I4 ¬
∞∫
0

ηn(s)ds
∣∣∣
∫
Rd

(
(x|x|2|s2 − 1|)((1 + |sx|2)(1 + |x|2))−1

)
ν(dx)

∣∣∣

¬
∞∫
0

|s2 − 1|ηn(s)ds
∫
Rd

|x|3 (
(1 + |sx|2)(1 + |x|2))−1

ν(dx)

=
∞∫
0

|s2 − 1|ηn(s)ds
( ∫
|x|¬1

+
∫
|x|>1

)|x|3 (
(1 + |sx|2)(1 + |x|2))−1

ν(dx)

=: I41 + I42,

say. Here

I41 ¬
∞∫
0

|s2 − 1|ηn(s)ds
∫
|x|¬1

|x|3(1 + |x|2)−1ν(dx) <∞,

and

I42 ¬
∫
|x|>1

|x|3(1 + |x|2)−1ν(dx)
∞∫
0

(s2 + 1)(1 + |sx|2)−1ηn(s)ds

=
∫
|x|>1

|x|3(1 + |x|2)−1ν(dx)
( 1∫

0

+
∞∫
1

)
(s2 + 1)(1 + |sx|2)−1ηn(s)ds

=: I421 + I422,
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say. Furthermore,

I421 =
∫
|x|>1

|x|3(1 + |x|2)−1ν(dx)
1∫
0

(s2 + 1)(1 + |sx|2)−1ηn(s)ds

=
∫
|x|>1

|x|3(1 + |x|2)−1ν(dx)
( 1/|x|∫

0

+
1∫

1/|x|

)
(s2 + 1)(1 + |sx|2)−1ηn(s)ds

=: I4211 + I4212,

say. We have

I4211 ¬
∫
|x|>1

|x|ν(dx)
1/|x|∫

0

ηn(s)ds ¬ C
∫
|x|>1

ν(dx) <∞

by (3.2) in Lemma 3.1, and

I4212 ¬
∫
|x|>1

ν(dx)
1∫

1/|x|

(|sx|(s2 + 1)
)
(1 + |sx|2)−1ηn(s)s−1ds

¬
∫
|x|>1

ν(dx)
1∫

1/|x|
ηn(s)s−1ds ¬

∫
|x|>1

ν(dx)
∞∫

1/|x|
ηn(s)s−1ds <∞

by (3.1) in Lemma 3.1. Also

I422 =
∫
|x|>1

|x|3(1 + |x|2)−1ν(dx)
∞∫
1

(s2 + 1)(1 + |sx|2)−1ηn(s)ds

¬
∫
|x|>1

|x|3(1 + |x|2)−2ν(dx)
∞∫
1

(s2 + 1)ηn(s)ds <∞.

Thus we have (3.6). This completes the proof. ¥

LetM1 =M1 =M.

DEFINITION 3.1. Let n ∈ N. Define the mappingMn+1 by

Mn+1(µ) = L(∞∫
0

m∗n(t)dX
(µ)
t

)
, µ ∈ Ilogn+1(Rd),

and letMn+1 be the (n + 1) times iteration ofM. That is,Mn+1(µ) can be de-
fined withMn+1(µ) =M(Mn(µ)

)
if and only ifMn(µ) is defined and belongs

to Ilog(Rd).
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THEOREM 3.2. For n ∈ N

Mn(Rd) =M(
Mn−1(Rd) ∩ Ilog(Rd)

)
.

P r o o f. The proof is almost the same as that of Theorem 2.4 (i) in [2]. Let
µn−1 ∈Mn−1(Rd) ∩ Ilog(Rd) and µn =M(µn−1). Also, let νn−1 and νn be the
Lévy measures of µn−1 and µn, respectively. Then, by Proposition 2.1, we have
νn(B) =

∫∞
0

νn−1(s−1B)φ(s)s−1ds. Thus µn ∈Mn(Rd) by Definition 2.1, and
M(

Mn−1(Rd) ∩ Ilog(Rd)
) ⊂Mn(Rd).

Conversely, suppose that µn ∈ Mn(Rd). Then, by the definition of Mn(Rd)
and Proposition 2.1 again, we see that µn = L( ∫∞

0
m∗(t)dX

(µ)
t

)
for some µ ∈

Mn−1(Rd) ∩ Ilog(Rd). This means that µn ∈M
(
Mn−1(Rd) ∩ Ilog(Rd)

)
, and

Mn(Rd) ⊂M(
Mn−1(Rd) ∩ Ilog(Rd)

)
,

completing the proof. ¥

COROLLARY 3.1. For n ∈ N

Mn(Rd) =Mn+1
(
Ilogn+1(Rd)

)
.

We next show

THEOREM 3.3. For n ∈ N

Mn+1

(
Ilogn+1(Rd)

)
=Mn+1

(
Ilogn+1(Rd)

)
.

P r o o f. We note that µ̃ ∈Mn+1

(
Ilogn+1(Rd)

)
if and only if

µ̃ = L(∞∫
0

m∗n(t)dX
(µ)
t

)
, µ ∈ Ilogn+1(Rd),

and that µ̃ ∈Mn+1
(
Ilogn+1(Rd)

)
if and only if

µ̃ = L(∞∫
0

m∗(t)dX
(µ)
t

)
, µ ∈Mn−1(Rd) ∩ Ilog(Rd).

We next claim that, for any µ ∈ Ilogn+1(Rd),

∞∫
0

φ(u)u−1du
∞∫
0

|Cµ(uvz)|ηn−1(v)v−1dv <∞, z ∈ Rd.(3.7)

If it is proved, we can exchange the order of the integrals in the calculation of
cumulants below.
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The proof of (3.7) is as follows. The idea is from Barndorff–Nielsen et al. [3].
If the generating triplet of µ is (A, ν, γ), then

|Cµ(z)| ¬ 2−1(trA)|z|2 + |γ||z|+
∫
Rd

|g(z, x)|ν(dx),

where
g(z, x) = ei〈z,x〉 − 1− i〈z, x〉(1 + |x|2)−1.

Hence
|Cµ(uvz)| ¬ 2−1(trA)u2v2|z|2 + |γ||u||v||z|+

∫
Rd

|g(z, uvx)|ν(dx)

+
∫
Rd

|g(uvz, x)− g(z, uvx)|ν(dx) =: J1 + J2 + J3 + J4,

say. The finiteness of
∫∞

0
φ(u)u−1du

∫∞
0

(J1 + J2)ηn−1(v)v−1dv is easily to be
shown by the same calculation as in the proof of Theorem 3.1.

Noting that |g(z, x)| ¬ Cz|x|2(1 + |x|2)−1 with a positive constant Cz de-
pending on z, we have

∞∫
0

φ(u)u−1du
∞∫
0

J3ηn−1(v)v−1dv

¬ Cz

∫
Rd

ν(dx)
∞∫
0

φ(u)u−1du
∞∫
0

|uvx|2(1 + |uvx|2)−1ηn−1(v)v−1dv

= Cz

∫
Rd

ν(dx)
∞∫
0

|sx|2(1 + |sx|2)−1ηn(s)s−1ds

= Cz

( ∫
|x|¬1

ν(dx) +
∫
|x|>1

ν(dx)
)∞∫

0

|sx|2(1 + |sx|2)−1ηn(s)s−1ds

=: J31 + J32,

say, and

J31 ¬ Cz

∫
|x|¬1

|x|2ν(dx)
∞∫
0

sηn(s)ds <∞,

J32 = Cz

∫
|x|>1

ν(dx)
( 1/|x|∫

0

+
∞∫

1/|x|

)|sx|2(1 + |sx|2)−1ηn(s)s−1ds

=: J321 + J322,

say. We have

J321 ¬ 2−1
∫
|x|>1

|x|ν(dx)
1/|x|∫

0

ηn(s)ds <∞,

by the finiteness of I4211 in the proof of Theorem 3.1.
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Also, we have the finiteness of J322 by (3.1) in Lemma 3.1.
As to J4, note that for a > 0

|g(az, x)− g(z, ax)| = |〈az, x〉||x|2|1− a2|(1 + |x|2)−1(1 + a|x|2)−1

¬ |z||x|3a(1 + a2)(1 + |x|2)−1(1 + a|x|2)−1.

Then
∞∫
0

φ(u)u−1du
∞∫
0

J4ηn−1(v)v−1dv

¬ |z|
∫
Rd

ν(dx)
∞∫
0

φ(u)u−1du

×
∞∫
0

|x|3uv(1 + u2v2)(1 + |x|2)−1(1 + u2v2|x|2)−1ηn−1(v)v−1dv

= |z|
∫
Rd

ν(dx)
∞∫
0

|x|3s(1 + s2)(1 + |x|2)−1(1 + |sx|2)−1ηn(s)s−1ds

= |z|(
∫
|x|¬1

+
∫
|x|>1

)
ν(dx)

∞∫
0

|x|3(1 + s2)(1 + |x|2)−1(1 + |sx|2)−1ηn(s)ds

=: J41 + J42,

say. Here

J41 ¬ |z|
∫
|x|¬1

|x|2ν(dx)
∞∫
0

|x|(1 + s2)(1 + |x|2)−1(1 + |sx|2)−1ηn(s)ds

¬ 2−1|z|
∫
|x|¬1

|x|2ν(dx)
∞∫
0

(1 + s2)(1 + |sx|2)−1ηn(s)ds

¬ 2−1|z|
∫
|x|¬1

|x|2ν(dx)
∞∫
0

(1 + s2)ηn(s)ds <∞,

and

J42 = |z|
∫
|x|>1

|x|3(1 + |x|2)−1ν(dx)
∞∫
0

(1 + s2)(1 + |sx|2)−1ηn(s)ds <∞.

The finiteness of J42 follows from I42 in the proof of Theorem 3.1.
This completes the proof of (3.7).
If we calculate the necessary cumulants, we have

CMn+1(µ)(z) =
∞∫
0

Cµ

(
m∗n(t)z

)
dt

= −
∞∫
0

Cµ(uz)dmn(u) =
∞∫
0

Cµ(uz)ηn(u)u−1du,
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CMn+1(µ)(z) =
∞∫
0

CMn(µ)

(
m∗(t)z

)
dt =

∞∫
0

dt
∞∫
0

Cµ

(
m∗(t)m∗n−1(s)z

)
ds

=
∞∫
0

dm(u)
∞∫
0

Cµ(uvz)dmn−1(v)

=
∞∫
0

φ(u)u−1du
∞∫
0

Cµ(uvz)ηn−1(v)v−1dv

=
∞∫
0

Cµ(yz)y−1dy
∞∫
0

φ(yv−1)ηn−1(v)v−1dv

=
∞∫
0

Cµ(yz)ηn(y)y−1dy = CMn+1(µ)(z).

This completes the proof of Theorem 3.3. ¥

The following is a goal of this section and an Mn-version of Proposition 1.1.
Namely, any µ ∈Mn(Rd) has the stochastic integral representation defined in Def-
inition 3.1.

THEOREM 3.4. We have

Mn(Rd) =Mn+1

(
Ilogn+1(Rd)

)
.

P r o o f. The statement is an immediate consequence of Corollary 3.1 and
Theorem 3.3. ¥

4. THE CLASS M∞(Rd)

THEOREM 4.1. We have

M∞(Rd) ⊃ Ssym(Rd),

where Ssym(Rd) is the class of all symmetric stable distributions on Rd.

P r o o f. Let n ­ 1. When µA is Gaussian with zero mean and covariance
matrix A, suppose {Xt} is a Gaussian Lévy process such that the covariance matrix
of X1 is c−1

n A, where cn =
∫∞

0
m∗n(t)2dt. Then we have

µA = L(∞∫
0

m∗n(t)dXt

) ∈Mn(Rd)

for any n ­ 1. Hence µ ∈M∞(Rd).
When µ is non-Gaussian α-stable with the Lévy measure ν, we have

ν(B) =
∫
S

λ(dξ)
∞∫
0

1B(rξ)r−(1+α)dr =
∫
S

λn(dξ)
∞∫
0

1B(rξ)cnr−(1+α)dr,
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where

cn =
∞∫
0

m∗n−1(t)
αdt and λn(dξ) = c−1

n λ(dξ).

We also have

cnr−(1+α) = −r−(1+α)
∞∫
0

uαdmn−1(u) = r−1
∞∫
0

(ur−1)αηn−1(u)u−1dt

= r−1
∞∫
0

ηn−1(ry−1)y−(1+α)dy = r−1
∞∫
0

ηn−1(ry−1)g(y2)y−1dy,

where

g(s) = s−α/2,

which is completely monotone. Thus, by Theorem 2.2, cnr−(1+α) can be regarded
as gn,ξ(r)r−1, implying that ν is the Lévy measure of a distribution in Mn(Rd).
This is true for all n, and thus µ ∈M∞(Rd). ¥

5. MORE ABOUT THE CLASSES Mn(Rd) WHEN d = 1

When d = 1, it is known that µ is of type G if and only if µ = L(V 1/2Z)
for some infinitely divisible nonnegative random variable V independent of the
standard normal random variable Z. That is, µ is a variance mixture of normal
distributions. And in [2], we showed the following

PROPOSITION 5.1. µ ∈M(R) if and only if

µ = L(V 1/2Z),

where L(V ) ∈ I(R+) has an absolutely continuous Lévy measure νV of the form

(5.1) νV (dr) = `(r)r−1 dr, r > 0,

and the function ` is given by

(5.2) `(r) =
∞∫
r

(x− r)−1/2 ρ(dx),

where ρ is a measure on (0,∞) satisfying the integrability condition

(5.3)
1∫
0

x1/2 ρ(dx) +
∞∫
1

(1 + log x)x−1/2 ρ(dx) <∞.

We characterize the distribution of the random variance V in the case of µ ∈
Mn(R).
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THEOREM 5.1. Let n = 1, 2, . . . A necessary and sufficient condition for that
µ ∈M0(R) belongs to a smaller class Mn(R) is the following:

ρ(dx) = 2−1 (2πx)−1/2
{∞∫

0

φ(u1)u−1
1 du1 . . .

∞∫
0

φ(un−1)u−1
n−2dun−2

×
∞∫
0

φ(un−1)u−1
n−1g

(
x
( n−1∏

i=1

ui

)−2
)
dun−1

}
dx,

(5.4)

where g(·) is completely monotone.

The proof is almost the same as that of Theorem 5.2 in [2].

P r o o f. (i) The “only if” part. Suppose µ ∈Mn(R). Since Mn(R) ⊂ G(Rd),
we have µ = L(V 1/2Z) for some V ∈ I(R+). Thus, we get for z ∈ R

E[exp(izV 1/2Z)] = E[exp(−V z2/2)]

= exp
{− 2−1Az2 +

∞∫
0+

(
exp(−vz2/2)− 1

)
νV (dv)

}

= exp
{− 2−1Az2 +

∞∫
0+

νV (dv)
∞∫
−∞

(
exp(izv1/2u)− 1

)
φ(u) du

}

= exp
{− 2−1Az2 +

∞∫
−∞

(
exp(izx)− 1

)
dx
∞∫
0+

φ(v−1/2x)v−1/2 νV (dv)
}
,

where A ­ 0. Therefore, the Lévy measure ν of µ is of the form

(5.5) ν(dx) =
( ∞∫

0+

φ(v−1/2x)v−1/2 νV (dv)
)
dx.

By Theorem 2.2, µ ∈ Mn(R) if and only if ν(dx) = |x|−1gn(x2)dx, where gn

is given by (2.6). Since µ ∈ M0(Rd), gn is completely monotone. It can be writ-
ten as

gn(r) =
∞∫
0

e−ry/2 Q(dy), r > 0,

for a measure Q on (0,∞) given by

Q(dy) = (2π)−1/2 (2y)−1
{∞∫

0

φ(u1)u−1
1 du1 . . .

∞∫
0

φ(un−1)u−1
n−2dun−2

×
∞∫
0

φ(un−1)u−1
n−1g

(
y−1

( n−1∏
i=1

ui

)−2
)
dun−1

}
dy,

where g(·) is completely monotone.
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By (5.5), we get

(5.6)
∞∫
0+

φ(v−1/2x)v−1/2 νV (dv) = |x|−1gn(x2).

Since

r−1/2 = (2π)−1/2
∞∫
0

e−rw/2w−1/2 dw, r > 0,

we obtain

r−1/2g(r) = (2π)−1/2
∞∫
0

∞∫
0

e−r(w+y)/2w−1/2 dwQ(dy)

= (2π)−1/2
∞∫
0

Q(dy)
∞∫
y

e−ru/2(u− y)−1/2 du

= (2π)−1/2
∞∫
0

e−ru/2du
u∫
0

(u− y)−1/2 Q(dy).

Taking x = r1/2 > 0 in (5.6), we get

(5.7) (2π)−1/2
∞∫
0+

e−r/2vv−1/2 νV (dv)

= (2π)−1/2
∞∫
0

e−ru/2du
u∫
0

(u− y)−1/2 Q(dy).

Let

ρ(dx) = −x1/2Q
(
d(x−1)

)

= −2−1 (2πx)−1/2
{∞∫

0

φ(u1)u−1
1 du1 . . .

∞∫
0

φ(un−1)u−1
n−2dun−2

×
∞∫
0

φ(un−1)u−1
n−1g

(
x
( n−1∏

i=1

ui

)−2
)
dun−1

}
dx.

(5.8)

Then `(r) in (5.2) becomes

`(r) = −
∞∫
r

(x− r)−1/2x1/2Q
(
d(x−1)

)
=

r−1∫
0

(y−1 − r)−1/2y−1/2Q(dy)

=
r−1∫
0

(1− yr)−1/2Q(dy) = r−1/2
r−1∫
0

(r−1 − y)−1/2Q(dy).

Thus, by (5.7),
∞∫
0+

e−r/2vv−1/2 νV (dv) =
∞∫
0

e−ru/2u−1/2`(u−1) du
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or ∞∫
0+

e−r/2vv−1/2 νV (dv) =
∞∫
0

e−r/2vv−3/2`n(v) dv, r > 0.

Therefore,
v−1/2 νV (dv) = v−3/2`(v) dv, v > 0,

which yields (5.1).
The integrability condition (5.3) for Q is obtained from the fact that

∞ >
∫
R
(x2 ∧ 1) ν(dx) =

∫
R
(|x| ∧ |x|−1)gn(x2)dx.

For, this yields that

1∫
0

xdx
∞∫
0

exp(−x2y/2) Q(dy) <∞

and ∞∫
1

x−1dx
∞∫
0

exp(−x2y/2)Q(dy) <∞,

and hence

∞∫
0

[
y−1

(
1− exp(−y/2)

)
+ 2−1

∞∫
y

u−1 exp(−u/2) du
]
Q(dy) <∞.

It is obvious that the above condition is equivalent to

(5.9)
1∫
0

(1 + log y−1)Q(dy) +
∞∫
1

y−1Q(dy) <∞.

On the other hand,

1∫
0

x1/2ρ(dx) = −
1∫
0

xQ
(
d(x−1)

)
=
∞∫
1

y−1Q(dy)

and

∞∫
1

(1 + log x)x1/2ρ(dx) = −
∞∫
1

(1 + log x)Q
(
d(x−1)

)
=

1∫
0

(1 + log y−1)Q(dy).

Thus, we get (5.3) from (5.9) and (5.4) by (5.8). The “only if” part is thus proved.
(ii) The “if” part. Suppose µ = L(V 1/2Z) and the Lévy measure νV of V

satisfies (5.1)–(5.3).
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We first claim that the integrability condition (5.3) implies that νV is really a
Lévy measure on (0,∞) of a positive infinitely divisible random variable, namely
it satisfies

(5.10)
∞∫
0

(r ∧ 1)νV (dr) <∞.

We have

∞∫
0

(r ∧ 1)νV (dr) =
1∫
0

rνV (dr) +
∞∫
1

νV (dr).

As to the first integral, we have

1∫
0

rνV (dr) =
1∫
0

`(r)dr =
1∫
0

dr
∞∫
r

(x− r)−1/2ρ(dx)

=
1∫
0

ρ(dx)
x∫
0

(x− r)−1/2dr +
∞∫
1

ρ(dx)
1∫
0

(x− r)−1/2dr

= 2
1∫
0

x1/2ρ(dx) + 2
∞∫
1

(
x1/2 − (x− 1)1/2

)
ρ(dx)

¬ 2
1∫
0

x1/2ρ(dx) + const×
∞∫
1

x−1/2ρ(dx)

= −2
1∫
0

xQ
(
d(x−1)

)− const×
∞∫
1

Q
(
d(x−1)

)

= 2
∞∫
1

x−1Q(dx) + const×
1∫
0

Q(dx).

Next, as to the second integral, we obtain

∞∫
1

νV (dr) =
∞∫
1

r−1`(r)dr =
∞∫
1

r−1dr
∞∫
r

(x− r)−1/2ρ(dx)

=
∞∫
1

ρ(dx)
x∫
1

r−1(x− r)−1/2dr =
∞∫
1

(log x + const)x−1/2ρ(dx)

= −
∞∫
1

(log x + const)Q
(
d(x−1)

)
=

1∫
0

(log x−1 + const)Q(dx).

Therefore, (5.3) implies (5.10). Furthermore, as we have already seen, νµ is ex-
pressed as in (5.5). So, to complete the proof, it is enough to show that when
we put

gn(x2) = |x|
∞∫
0

φ(v−1/2x)v−1/2νV (dv),
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then gn(r) is as (2.6) in Theorem 2.2. However, for that, it is enough to follow the
proof of the “only if” part from bottom to top. This completes the proof. ¥
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