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Abstract. Nested subclasses, denoted by M, (R%), n = 1,2,..., of
the class M (R?), a subclass of the class of type (@ and selfdecomposable
distributions on R? are studied. An analytic characterization in terms of
Lévy measures and a probabilistic characterization by stochastic integral
representations for M (]Rd) are known. In this paper, analytic characteriza-
tions for Mn(]Rd)7 n =1,2,..., are given in terms of Lévy measures as
well as probabilistic characterizations by stochastic integral representations
are shown. A relationship with stable distributions is given.
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1. INTRODUCTION

Throughout this paper, 1(R?) (resp., Isym(R?)) stands for the class of all
infinitely divisible (resp., all symmetric infinitely divisible) distributions on R,
The characteristic function fi(z), 2 € R%, of an infinitely divisible distribution
v € I(R?) has the so-called Lévy—Khintchine representation in the form:

fi(z) = exp [ - 27(z, Az) +i(y, 2)
+ [ (€ —1—ilz,2)(1 + |2 Yu(de)], 2 €RY,
Rd

where A is a symmetric nonnegative-definite d x d matrix, v € R% and v is a
measure on R? (called the Lévy measure) satisfying

v({0})=0 and [ (|z]* A 1)v(dz) < oo.
Rd
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The triplet (A, v, ) is called the generating triplet of i € I(R?). Consider a polar
decomposition of v given by

(L.1) v(B) = fA<ds>°f:1B<rf>ug<dr>,

S

where S is the unit sphere in R%, ) is a measure on S with 0 < A\(S) < oo and
{ve: & € S} is a family of measures on (0, 0o) such that v¢(B) is measurable in £
for each B € B((0,00)), 0 < v¢((0,00)) < oo for each ¢ € S. Here A and {vg}
are uniquely determined by v up to multiplication of a measurable function ¢(&)
and ¢(£) ™! with 0 < ¢(€) < co. A is called the spherical component of v and vg
the radial component. We will say that v has the polar decomposition (X, v¢). (See,
e.g., [3] and [7].) Let C,(2) = log fi(2), z € R% be the cumulant of y1 € I(RY).

We can characterize five classes of infinitely divisible distributions in terms of
the radical component Vg.

(i) Class U(R?) (Jurek class, see [5]): ve(dr) = l¢(r)dr and l¢(r) is mea-
surable in £ € S and nonincreasing in 7 for A-a.e. £.

(i) Class B(R?) (Goldie-Steutel-Bondesson class, see, e.g., [3]): ve(dr) =
l¢(r)dr and l¢(r) is measurable in £ € .S and completely monotone in r for A-a.e. .

(iii) Class L(R?) (class of selfdecomposable distributions, see, e.g., [8)):
ve(dr) = ke(r)r—'dr and ke(r) is measurable in £ € S and nonincreasing in 7
for M-a.e. &.

(iv) Class T(RY) (Thorin class, see, e.g., [3]): ve(dr) = ke(r)r~tdr and ke ()
is measurable in £ € .S and completely monotone in 7 for A-a.e. &.

(v) Class G(R?) (class of type G distributions, see, e.g., [4]): ju € Isym(]Rd),
ve(dr) = ge(r?)dr and g¢(r) is measurable in £ € S and completely monotone in
r for M\-a.e. £.

We have introduced a class named M (R?) in the previous paper [2], which is
a subclass of type G and selfdecomposable distributions on R?. Its definition is the
following.

DEFINITION 1.1 (Class M(R%)). p € M(R?)if pu € Iym(R?) and
(1.2) ve(dr) = gg(r2)7“71dr,

where g¢(r) is measurable in £ € S and completely monotone in r for A-a.e. {. We
call g¢(r) in (1.2) the g-function of v (or ).

Denote by £(X) the law of a random variable X on R?, and for ;1 € I(R%)

let {X "} stand for a Lévy process with £(X ") = .

As to the definition of stochastic integrals of nonrandom functions with respect
to Lévy processes { X; } on R?, we follow the definition in [9] and [10], whose idea
is to define integrals with respect to R%valued independently scattered random
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measure induced by a Lévy process on R?. This idea was used in [11] and [6] for
the case d = 1. See also [3].
Let

Dog(RY) = {1 € I(RY): [ log|z|p(dr) < oo},
|z|>1

o(x) = (277)_1/2 exp(—z2/2), m(x)= ofgé(u)u_ldu, x>0,

and let us denote the inverse of m(x) by m*(t), that is, t = m(x) if and only
if z = m*(t). In [2], we have shown that the stochastic integral fooo m*(t)dXt(“ )
exists and is finite a.s. for any p € Ilog(Rd). Thus we can define the following
mapping.

DEFINITION 1.2 (M-mapping). For any yi € Iiog(R?), we define the map-
ping M by
— £( f m*(t)dx ™).

One of the results in [2] was the followmg
PROPOSITION 1.1. We have
M(R?) = M(Lipg(R?)).

It is trivial by the definition that M (R?) is a subclass of the class of type
G and selfdecomposable distributions. However, we have more. Namely, M (R9)
is a proper subclass. Actually, in [2] we gave an example of p which belongs to
L(R?%) N G(R?) but does not belong to M (RY).

2. NESTED SUBCLASSES OF M (R%) AND THEIR LEVY MEASURES

In this section, we construct nested subclasses of M (RY) as follows. Write
Mo(R?) = M (R?). We start with the following

PROPOSITION 2.1 (Aoyama et al. [2]). Let v and vy be the Lévy measures of
1 € Diog(RY) and pig := M(p) € Mo(R?), respectively. Then

o0
(2.1) w(B) = [v(u 'B)¢p(uw)u 'du, BEe Bo(R%).
0
We define nested subclasses of M (R?) in terms of their Lévy measures.

DEFINITION 2.1 (Class M,,(R%)). For any n € N, define
M, (RY) = {pg € My(R%):
v in (2.1) is the Lévy measure of some distribution in M,,_1(R%)}.

Moo (RY) is defined by (52, M, (RY).
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For nonnegative integer n and = > 0, let 7, (x) be the probability density func-
tions of 2~ (n+1) |ZoZ1 ... Zy|, where Z; are independent standard normal random
variables.

REMARK 2.1. (1) limg_ o7, (x)z?

(2) no(z) = ¢(x) and forn € N

= 00 and limy_, o 1y () = 0.

(2.2) f(;S Tu” nn 1(u)u ~Ldu.

(3) nn(x) can be written as follows:

o [ Plun—1) 1dun_1ofoq§<m( ﬁ ui)ﬂ)gb(un)u;ldun.
0 i=1

Proof. We have (2) and (3) inductively. (1) can be shown as follows. For
O<z<l,

nn(x)x_l >t f(;ﬁ(ul)ufldul
0

.. Of(ﬁ(un_l)u;ildun_l 7 ¢<( I ui)%) b )uy, tduy,
0 0

i=1
— oo (as x — 40),

and for any = > 0,
o0
a:qu ur)uy Lduy
0

..fgi)(un_l)u?ﬁldun_l f2x (H uz) d(un ) uy, tduy,
0 0 i=1
=202r) 2P -0 (asz— o0). m

Then we have the following

THEOREM 2.1 (A characterization of the Lévy measures of p,, € M, (R?)).
Let u, € Isym(Rd), n =1,2,..., and denote its Lévy measure by v,. Then i, €
M, (R?) if and only if

(2.3) vn(B) = ofoyo(u_lB)nn_l(u)u_ldu, B € By(R%),
0

where vy is the Lévy measure of some g € Mo(R?).
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Proof. (i) The “only if” part. Let n = 1 and suppose ju; € M (R%). Then,
by the definition,

o0

n(B) = [v(u"'B)p(u)u " du
0
for some Lévy measure 1) whose distribution is in My(R%). We are going to show
the assertion by induction. Suppose that the assertion is true for some n € N.
Namely, suppose the Lévy measure v,, of j,, € M, (R?) is given by

o0

vn(B) = [ vo(u™  B)np_1 (u)u™ du.
0
Suppose fin 1 € My,41(RY) and denote its Lévy measure by 1/, 1. Then

o0

24) vp1(B) = [va(u'B)¢(u)u~'du (by the definition of M, 1 (R?))

d(u)utdu Of vo(u o™ B)n,_ 1 (v)v " tdv
0

vldv [ mo(y T B)glyvT )y dy
0

w(y Byt dy [ na—1(v)p(yo v dv
0

I
=
]
L
—
N—

o8 o—8 o —38 o—8 o

(2.5) w(y ' B)na(y)y~'dy  (by (2.2)).
This shows that the assertion is also true for n + 1.

(ii) The “if” part. The assertion is true for n = 1. Namely, by the definition of
M (R?), if

[e.o]

n(B) = [ vo(u™ ' B)p(u)u " du
0
for some 1, the Lévy measure of some p1g € Mo(R?), then j1; whose Lévy mea-
sure is 1 belongs to M (R?). Suppose that the assertion is true for some n € N
and suppose that ;11 € Isym(R?) have the Lévy measure

o0

Unt1(B) = LO[VO(U_IB)nn(u)u_ldu.

Then from the calculation from (2.4) to (2.5) we have
o0

Vnt1(B f p(u)u du [vo(v " B)np—1(v)v " dv = f o(w)u vy (u B)du
0

and j,, with the Lévy measure v, belongs to M,,(R?) by the induction hypothesis.
Thus i, 11 € M, 41 (R?) follows from Definition 2.1. This completes the proof. =
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The following is a characterization of the Lévy measures of distributions in
M,,(R?) in terms of the g-function of the Lévy measure.

THEOREM 2.2. Let n € N. A measure i, € Isym(R?) belongs to M, (R?) if
and only if its Lévy measure vy, is either zero or it can be represented as

vn(B) = [ A(dE) [ 15(r€)gne(r?)r~tdr, B € Bo(RY),
S 0
where gy, ¢(1) is represented as
(2.6) gng(s) = [ 1(s" 2y V) ge(y®)ydy.
0

Here g¢(r) is measurable in § € S and completely monotone in r for A-a.e. &.

Proof. Recall from (1.1) and (1.2) that
o0
vo(B) = [ Ad€) [ 15(r€&)ge(r®)r dr.
S 0
We see by Theorem 2.1 that p,, € M,,(R?) if and only if v, is represented as

vo(u™  B)np_1 (u)utdu

>

—~~

Z
I

o8 o—3

-1 (w)u" du [ A(dE) [ 1,-1p5(yE)ge(v* )y~ dy
S 0
1(r&)r—dr [ mu1(ry " )ge(y*)y ' dy
0
IB(rf)gn,f(TQ)r_ldr.

This completes the proof. m

3. STOCHASTIC INTEGRAL CHARACTERIZATIONS OF M, (R%),n € N

In this section, we characterize distributions in Mn(Rd) by stochastic inte-
gral representations. Let Ij,gn (RY) = {p € I(RY) : f|z|>1(log |z])"pu(dz) < oo}
and my,(z) = f;o Nn(u)u=tdu, z > 0. Since m,(z) is strictly monotone, we can
define its inverse by m (¢), that is, ¢ = m,,(x) if and only if z = m} (¢).
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LEMMA 3.1. For each n € N there exists C; > 0 (i = 1,2, 3) such that for
every 0 <u <1

(3.1) i nn(s)s tds < C’l(log;(u_l)”Jrl +1),
(32) [ a(s)ds < Cou,
0
and
3.3) f snn(s)ds < Cyu 2
0

Proof. We have (3.2) and (3.3) by standard calculations. For n € N and
0 <wu <1, we have

Ofonn(s)s_lds
gb(ul)ufldul .. .quS(un)u;ldun Ofo gb(s( ﬁ ui)_l)ds

i=1
ui)_1>ds

o1

i=1

gﬁ(ul)ul_ duq .. fqb Up ) Uy dun(

Q%’—‘

<C([(logs™) Hs™lds) +C

< C((logu™H)™ +1),

where and in what follows C' will denote an absolute positive constant which may
be different from one to another. Thus we have (3.1). This completes the proof. =

THEOREM 3.1. For each n € N the stochastic integral

[ mz(t)dx ™
0

exists for every p € I, n+1 (R9).

Proof. For the proof, we need the following lemma, which is a special case
of Proposition 5.5 of [10].

LEMMA 3.2. Let {X } be a Lévy process on R and f(t) a real valued

measurable function on [0, 00). Let (A, v, ) be the triplet of y. Then fo t)dX, (1)
exists if the following conditions are satisfied:

(3.4) T r(2dt < oo,
0
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and

(3.5) Ofodt [ ([f®)z> Al)v(dz) < oo,
0 Rd

(3.6) ?‘f(t)'y +f) [ x((l )T = 1+ |x12)—1)y(dz)(dt < .

Ra

For the proof, it is enough to show that f(¢) = m (¢) satisfies (3.4)—(3.6) in
Lemma 3.2 for every yt € I gn+1 (R%). Note that m,,(+0) = co and m,(cc0) = 0.
Since

fmfl(t)th = f5277n(s)s_1d5
0 0
=2 DR 202y ... Zy]) = (20) " FD/2 < oo

we have (3.4).
As to (3.5), we have

fdt f (jms(®)z> A1) v(dz) = —fdmn ) [ (Isz|* A L)v(dz)
Rd

m(s)slds( [ |szfPv(de)+ [ wv(dz)) =L + Iy,
lz|<1/s lz|>1/s

o%g

say. Here

_ ) 1/]x|
L= [ |z|*v(dz) [ snn(s)ds

Rd 0
1/|z]

(f + f )\x!Q dx) f snn(8)ds =: I11 + Lo,
0

lz|<1  |z|>1

say, and

[e.e]

i< f ]x\Qu(dx)fsnn(s)ds < 0.
||<1 0

We have the finiteness of I12 by (3.3) in Lemma 3.1. Also,

[e.e] e}

L= [v(dz) [ nu(s )s~tds = ( [+ [ ) [ N (s)s ds

Rd 1/)a| lz]<1  |e|>1 1/|z|
=: Iy + I,
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say. As to I»1, we have

Iy < [ v(dz) Ofoqb(ul)ufldul . .Ofoqﬁ(un)u;ldun( ﬁ ui)2 Of 25 3ds

B! 0 0 i=1 1/]|

<C [ |zlv(dz) < oo

|z|<1

We have the finiteness of 23 by (3.1) in Lemma 3.1.
For (3.6), we have

ﬂm;;(t)fy ) [ oL+ i @©?) 7 = (1 o)) u(da)at
0

R4
- h/’ f Sdmn(s)
- f ‘s f (1+ |sz|?)™t — (1 + |m]2)_1)u(d:v)‘dmn(s) =: I3+ Iy,
say, where

|’Y’f77n dS<OO

I < mes)ds S (Gl = 1)((1+ [sz)(1+ [22) 7 )v(da)
0 Rd
< JI5 = tm(s)ds [ Jaf* (1 + Jsa) 1+ @) v(da)
Rd
=°f:rs2 ~tim(shas( [ el (@4 s+ af) ()
z|<1 x|>1
=: Iy1 + Iyo,
say. Here
In < ;f\ﬁ “ s [ oL+ o) u(de) < o0
z|<1
and
I42<||f l23(1 + |z|?) CZS + 1)1+ |sz|*) " na(s)ds
x|>1
1 00
= J l23(1 + |z*)~ (f+f)s + 1)1+ |sz|*) Ly (s)ds
|x|>1 0 1

=: Iy91 + Iy20,
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say. Furthermore,

1
I421=|f lzP(1 + |z|*)~ {s + 1)1+ [sz|*) " na(s)ds
x|>1
/|| 1
:][ 2 (1+ |=)?) " (d) ( jo’ + /I‘)(52+1)(1+|sx12)—1nn(s)ds
z|>1 1/|x

=: L1911 + L4212,

say. We have
1/z|
Ipn < [ |zlv(dz) [ mu(s)ds <C [ v(dz) < oo
|z|>1 0 |z|>1

by (3.2) in Lemma 3.1, and

1
Lo < [ wldz) [ (lsal(s* + 1)) (1 + |saf?) o (s)sds

|z[>1 1/]a|
1 oo
< [ ov(dz) [ nu(s)sTlds < [ wv(dz) [ nu(s)s'ds < oo
|z[>1 1/]a| |z[>1 1/]a|

by (3.1) in Lemma 3.1. Also

Iipe= | lz|2(1 + |z*) " tv(dz) [(s* + 1)1+ |sz*) " In.(s)ds

|z[>1

< [ P+ |2 TP u(de)
|z|>1

(52 + 1) (s)ds < oo.

By

Thus we have (3.6). This completes the proof. =

Let My = M= M.
DEFINITION 3.1. Let n € N. Define the mapping M, 4+1 by

M1 (p) = £( f m(0)dXM), e Logn (R,

and let M™*! be the (n + 1) times iteration of M. That is, M™!(11) can be de-
fined with M™ (1) = M (M" (1)) if and only if M" (1) is defined and belongs

to I]Og(Rd).
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THEOREM 3.2. Forn € N
Mp(RY) = M(My_1(R?) N Tipg(RY)).

Proof. The proof is almost the same as that of Theorem 2.4 (i) in [2]. Let
fin—1 € Mp_1(RY) N Liog(R?) and py, = M(pin—1). Also, let v,_1 and v;, be the
Levy measures of ,u,n 1 and p,,, respectively. Then, by Proposition 2.1, we have

= [ vn-1(s7'B)¢(s)s ™ ds. Thus p, € M, (R?) by Definition 2.1, and
M(Mn,l(R )N Ilog(]Rd)) C M, (R9).

Conversely, suppose that y,, € M, (R?). Then, by the definition of M,,(R?)
and Proposition 2.1 again, we see that p,, = E( f > m*(t )dX, (u )) for some y €
M, —1(R?) N Liog(R?). This means that i, € M (M, —1(R?) N Liog(R?)), and

My (R?) € M(Mp—1(R) N Log (RY)),

completing the proof. m

COROLLARY 3.1. Forn e N
M, (RY) = M (I pns1 (RY)).
We next show

THEOREM 3.3. Forn € N
Mn+1 (Ilog“+1 (Rd)) = MnJrl (Ilog"+1 (Rd)) :

Proof. We note that i € M,,11 (Ilogn+1 (]Rd)) if and only if
T () d
= L( f m;(t)dXt# )’ e Ilog""’1 (R )7
0
and that i € M (a1 (R?)) if and only if
(fm HdxX™M), € My (R N Lo (RY).
We next claim that, for any p € I),n+1 (R,
oo o0
3.7) [ d(wudu [ |Cp(uvz)|np—1(v)v 'dv < 00,  z € R
0 0

If it is proved, we can exchange the order of the integrals in the calculation of
cumulants below.
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The proof of (3.7) is as follows. The idea is from Barndorff-Nielsen et al. [3].
If the generating triplet of pis (A4, v,7), then

Cu(2)] <27 H(trA) 22 + el + [ 1g(z,2)|v(dw),
R4

where .

gz 2) = oD _ 1~ i(z, 2)(1 + Jof?) !
Hence

|Culuoz)| < 27 (trA)u?o? |2 + yllullv]|z] + [ |g(z, uv)|v(dz)
Rd
+ [ lg(uvz, ) — g(z, wz)|v(dz) =: Jy + Jo + J3 + Ju,

Rd

say. The finiteness of fooo d(u)u"tdu fOOO(Jl + J2)1n—1(v)v~tdv is easily to be
shown by the same calculation as in the proof of Theorem 3.1.

Noting that |g(z, )| < C.|z|*(1 + |z|?)~! with a positive constant C,, de-
pending on z, we have

of¢(u)“_ldu Of J3nn—1(v)v ™t dv
0 0

<O, fl/(dx)

g o—3

puw)u~du [ |uvz*(1+ [uvz|*) n,_1 (v)v dv
0

R4
C. [ v( f |sz|?(1 + |sz]?) " 1na(s)s ™ ds
R4 0
=C.( [ v(dx)+ [ v(dx )f|sa:| (1+ |sz|®) " tnu(s)s tds
lz|<1 lz|>1 0
=: J31 + J32,

say, and

Jn<C. [ |z|?v(dx) [ snn(s)ds < oo,

B! 0

1/lz|
Jo=C. [ wv(dz)( bf + f VIsz2(1 + [sz[*) " n(s)sds

|z[>1 1/|=|
=: J321 + J322,
say. We have
1/|=|
Jgo1 < 271 f lz|v(dz) [ nn(s)ds < oo,
|z[>1 0

by the finiteness of 14211 in the proof of Theorem 3.1.
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Also, we have the finiteness of J322 by (3.1) in Lemma 3.1.
As to Jy, note that fora > 0

lg(az,z) — g(z,az)| = [{az, 2)|[x]*[1 — ®|(1 + |2[*) "' (1 + alz*) "
< J2llzPa(l +a®) (1 4 [2*) 7' (1 + alz*) 7
Then

S

gb(u)u‘ldu of Jann—1 (v)v_ldv
0
<2l f vlde) [ du)u
R4 0

oo
x [zPuv(l 4+ u*v?)(1 + |2*) 711+ w?o?|z?)  pa—i (0)v T do
0

= |z| f f P s(L+ %) (1 + [2*) 71 (1 + [sz]*) " na(s)s ™ ds
0
=2 [+ [ )vlde) [P (14?0 2?)HL+ [s2]?) " pa(s)ds
lz|<1  |z|>1 0
=: Jy + Ja2,
say. Here

Ju<l|z| [ |2Pr(de) ZO 2| (1 + %) (1 + |2*)7HL + [sal?) " (s)ds

|z]<1

<27zl [ |zfPv(da)
lzI<1

<27Yz i |z|?v(dx)

2| <1

(1+ 821+ [sz[*) n,(s)ds

o —8 o—8

(1+ 82)11a(s)ds < o,

and
oo
Jio=1z| [ 231 + |z|?)~ dz) [(1+ sH(1 + |sz)?) " tna(s)ds < oo.
|z|>1 0

The finiteness of Jy5 follows from 5 in the proof of Theorem 3.1.
This completes the proof of (3.7).
If we calculate the necessary cumulants, we have

CMyi1 () fC (mZ(t)z)dt
- ZO Cp(uz)dmy(u) = C;fcu(uz)nn(u)u_ldu,
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Cppnriw)(2) = 1l Covn(y (m* (1) z) dt = Zodt:)foC“ (m*(t)ymy_,(s)z)ds

o—8 o—8 o —8 o—8 o

dm(u) [ Cpu(uvz)dmp_1(v)
0

w)utdu f C(uvz)n,—1(v)v dv

IS

Culyz ldnyb Y1 (v)vtdo

Culyz)mn )y dy = Ca, () (2)-

This completes the proof of Theorem 3.3. =

The following is a goal of this section and an M,,-version of Proposition 1.1.
Namely, any i € M,,(R?) has the stochastic integral representation defined in Def-
inition 3.1.

THEOREM 3.4. We have

Proof. The statement is an immediate consequence of Corollary 3.1 and
Theorem 3.3. =

4. THE CLASS M. (R%)

THEOREM 4.1. We have
Moo(R?%) D Sgym(RY),
where Ssym (RY) is the class of all symmetric stable distributions on RY.

Proof. Let n > 1. When p4 is Gaussian with zero mean and covariance
matrix A, suppose { X;}isa Gaussmn Lévy process such that the covariance matrix
of X is ¢, 1 A, where ¢,, = fo *(t)2dt. Then we have

A = (fm dXt)eM(Rd)

for any n > 1. Hence ju € My (R?).
When g is non-Gaussian a-stable with the Lévy measure v, we have

fAdg f1Br§ 1+adr—fA (d€) f1Br§cnr (o) gy,
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where

Cn = ofomj;_l(t)adt and A\, (d€) = ¢, ' \(d€).
0

We also have

cnr*(Ha) = —p~(14a) fuadmn—l(u) = f(uril)aﬁn—l(u)uildt
0 0

— 1 f 77n—1(?”y_1)2/_(1+a)dy — 1 f 77n—1(7“y_1)g(y2)y_1dy,
0 0

where
g(s) = s/,

which is completely monotone. Thus, by Theorem 2.2, cnr~ (119 can be regarded
as gn.¢(r)r~1, implying that v is the Lévy measure of a distribution in M,,(R).
This is true for all n, and thus ;1 € My, (R%). =

5. MORE ABOUT THE CLASSES M,,(R?) WHEN d = 1

When d = 1, it is known that y is of type G if and only if u = L(V/22)
for some infinitely divisible nonnegative random variable V' independent of the
standard normal random variable Z. That is, @ is a variance mixture of normal
distributions. And in [2], we showed the following

PROPOSITION 5.1. € M(R) if and only if
p=LV'?7),
where L(V') € 1(Ry) has an absolutely continuous Lévy measure vy of the form
(5.1 vy (dr) = (r)yr~tdr, >0,

and the function { is given by

(5.2) or) = [(x—r)"V2 p(da),

S

where p is a measure on (0, 00) satisfying the integrability condition
1 00

(5.3) f$1/2 p(dz) + [(1+log 2)z~Y? p(dz) < oc.
0 1

We characterize the distribution of the random variance V' in the case of u €
M, (R).
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THEOREM 5.1. Letn = 1,2,... A necessary and sufficient condition for that
w € My(R) belongs to a smaller class M, (R) is the following:

(54)  pldz) =27 (272) /> { Ofoﬁb(ul)ufldul e Ofo G (Un—1)uy, ydtin o
0
Xof¢<un 1 Up,— 1g< (li[ ) 2>dun_1}da:,

0

where g(-) is completely monotone.

The proof is almost the same as that of Theorem 5.2 in [2].

Proof. (i) The “only if” part. Suppose 1 € M,,(R). Since M, (R) C G(R?),
we have = L(V'/2Z) for some V € I(R, ). Thus, we get for z € R

Elexp(izV1Y/2Z)] = Elexp(-V22/2)]

=exp{— 271 A2 —|—Oofo (exp(—sz/Z) — 1) vy(dv)}
+

=exp{— 27 A% + :fo vy (dv) Of (exp(izvl/Qu) —1)¢(u) du}
+ —00

=exp{— 271422 + | (exp(iza) —1)dz [ (v~ 221/ vy (dv)},
—o0o 0+
where A > 0. Therefore, the Lévy measure v of y is of the form
(5.5) = ( f o™ 22 0™V vy (dv)) da.

By Theorem 2.2, u € M,(R) if and only if v(dz) = |z| ‘g, (z?)dz, where g,
is given by (2.6). Since 1 € My(R?), g, is completely monotone. It can be writ-
ten as

r) = [e T2 Q(dy), r>0,
0

for a measure @ on (0, c0) given by

Q) = (2272 2)™ { [ ofunui . [ ol s
T U u ! -1 n_lu' ) du
<[ o) g (™ (I )~ duns ey,

0

where g(-) is completely monotone.
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By (5.5), we get
(5.6) f (v 22)0 2 vy (dv) = |z Lgn(2?).

Since -
P12 = (27r)_1/2 fe_’"w/Qw_l/2 dw, r>0,
0

we obtain

r=2g(r) = (2m) 72 [ [T dwQ(dy)
00

3

= (2m) V2 [ Q(dy) [ 2 (u— y) "V du
0 Y

= (2m) 2 [ e 2du [(u— )2 Qdy).
0 0

Taking z = /2 > 0 in (5.6), we get

(5.7 (2m)~ Y2 fe_’"/%v_l/Q vy (dv)
0+

= (2m) 2 [ e ™ 2du [(u— )"V Q(dy).
0 0

Let
5 ptae) =0l

oo

= —27" (27x) —1/2 { f¢ (ur)uy Lduy .. f(ﬁ(un_l)u;iQdun_g
0

X fgi) Up—1)U,, "~ 19(3: Z )dun,l}dx.

Then £(r) in (5.2) becomes

r—1

_ _f —1/2 1/2Q( ( )) _ { (y—l —r)_1/2y_1/2Q(dy)

= f(l yr)2Q(dy) = r~1/? f —y)"12Q(dy).

0
Thus, by (5.7),

oo
f efr/QU,Ufl/Z Vv(d’l)) _
0+

efru/Zufl/Qe(ufU du

o3
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or

J e 22 py (do) fefr/%v*?’/%n(v) dv, r>0.
0+ 0

Therefore,
v V2 (dv) = v 20(v) dv, v >0,

which yields (5.1).
The integrability condition (5.3) for () is obtained from the fact that

oo > f(:r2 A v(dz) = [(|z| A || ™Y g (22)dx.
R R

For, this yields that

1 [ee)
{xdm{exp(—ato/Q) Q(dy) < o0

and - -
fx_ldxfexp(—:rQy/Z)Q(dy) < 00,
1 0

and hence

[y~ (1 —exp(—y/2)) +27! Ofu*l exp(—u/2) du] Q(dy) < oo

o3

It is obvious that the above condition is equivalent to

(5.9) z(1+logy‘l)Q(dy) +Ofy‘1Q(dy) <00
On the other hand,

z z'?p(dz) = —z zQ(d(z 7)) = ny-lwy)
and

o0

Ofo (1+logx)x 1/2 pldz) = —f 1+logx)Q(d(x_1))
1 1

(1+1logy " )Q(dy).

O%»—\

Thus, we get (5.3) from (5.9) and (5.4) by (5.8). The “only if” part is thus proved.
(ii) The “if” part. Suppose y = E(Vl/ 27) and the Lévy measure vy of V
satisfies (5.1)—(5.3).
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We first claim that the integrability condition (5.3) implies that vy is really a
Lévy measure on (0, co) of a positive infinitely divisible random variable, namely
it satisfies

(5.10) (r ADvy(dr) < oo

o8

We have

(r A Dvy(dr) frl/v dr) + fVV dr).

Sy

As to the first integral, we have

—_

1 1 00
{ rvv(dr) = [£(r)dr = [ dr [(z —r)""?p(dz)

0 r

=

p(dx)

|
o~—r o
O%H

(x r)_l/zdr—i-fp(dx ) [(z )~V 2dr
1 0

—

=2 fx1/2p(da:) + 2? (x1/2 —(z — 1)1/2),0((13:)

N\
[\
oO~—r o

212 p(dzx) + const x fx_l/zp(dx)
1

_Q{xQ(d(g;*l)) — const X TQ(d(HT*l))

o

f Q(dz) + const x fQ (dx).
1

Next, as to the second integral, we obtain

Oflol/v(dr) = Ofor_lﬁ(r)dr = Ofr_ldrof(x — )" Y2p(da)

r

HH8

p(dz) [r~ )V 2dr = [(log z + const)z "2 p(dx)
1 1

== T(bga? + const)Q (d(z ")) = [(logz™" + const)Q(dz).

O%»—A

Therefore, (5.3) implies (5.10). Furthermore, as we have already seen, v, is ex-
pressed as in (5.5). So, to complete the proof, it is enough to show that when
we put

Iﬂ«“!fcf) T2y Puy (dv),
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then g,,(r) is as (2.6) in Theorem 2.2. However, for that, it is enough to follow the
proof of the “only if” part from bottom to top. This completes the proof. m
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