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Abstract. We show that the coefficients of the Charlier differential se-
ries for distributions and densities are simply Bell polynomials in the cumu-
lants. The same is true for the Edgeworth expansions of distributions and
densities of sample means. We use this to obtain higher order extensions of
these well-known series.
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1. INTRODUCTION AND SUMMARY

One of the great achievements in the theory of statistics have been the expan-
sions for quantiles of the distribution of an approximately normal estimate given
by Cornish and Fisher [4] and later extended by Fisher and Cornish [5]. They built
on the expansions of Edgeworth for the distribution and density of a sample mean.
These are derived from the ‘Type A’ differential series of Charlier [2]. (A more
accessible reference is Stuart and Ord [7].) Later Hill and Davis [6] extended the
results of Cornish and Fisher to estimates with non-normal limits. Other extensions
were given by Withers [8].

None of these authors realised the central role that Bell polynomials play in
these expansions. In Section 2 we show that the coefficients of the Charlier dif-
ferential series are Bell polynomials in the cumulants. We give these explicitly up
to order 14. In Section 3 we show that the coefficients of the Edgeworth expan-
sions for the distribution of a standardised sample mean are also Bell polynomials.
We give these up to order 16. The reformulation of these expansions in terms of
Bell polynomials does not appear to have been noted by others (at least to the best
knowledge of these authors).
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Suppose that

S(t) =
∞∑

r=1

krt
r/r!

converges in a neighbourhood of t = 0 for some sequence of complex numbers
k = (k1, k2, . . .). Then

S(t)k/k! =
∞∑

r=k

Brk(k)tr/r!

for k = 0, 1, . . ., where, by definition, Brk(k) is the partial exponential Bell poly-
nomial. So, Br0(k) = δr0, Br1(k) = kr and Brr(k) = kr

1. Note Brk(k) are tabled
on pages 307–308 of Comtet [3] for 1 6 k 6 r 6 12. Recurrence formulas for
them are given on page 136. Note also that Brk(k) are a linear combination of
terms of the form kn1

1 kn2
1 . . ., where

∑
j nj = k,

∑
j jnj = r. So,

κr ≡ αrδ
a+br ⇒ Brk(k) = Brk(ααα)δak+br.(1.1)

The complete exponential Bell polynomial Br(k) is defined by

Br(k) =
r∑

k=0

Brk(k)(1.2)

for r > 0. Consequently,

exp
(
S(t)

)
=
∞∑

r=0

trBr(k)/r!.(1.3)

The results of this note could be useful technical tools for obtaining expansions
for asymptotically normal estimates; see Withers and Nadarajah [10], [11]. Withers
and Nadarajah [10] consider expansions for the log density of an asymptotically
normal random variable. Withers and Nadarajah [11] consider expansions for the
distribution function of an asymptotically normal random variable.

2. THE CHARLIER DIFFERENTIAL SERIES

Let X be a real absolutely continuous random variable with distribution F ,
density f , and finite moments and cumulants mr = E Xr, κr = κr(X).

Let N be a standard normal random variable with density

φ(x) = (2π)−1/2 exp(−x2/2).

Let Hk = Hk(x) be the kth Hermite polynomial defined by

Hk(x) = φ(x)−1(−d/dx)kφ(x) = E(x + iN)k
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for i =
√−1. See Withers [9]. So, {Hk/

√
k!} form a complete orthonormal set of

real functions on R with respect to φ(x):
∫

HjHkφ = k!δjk,(2.1)

where
∫

g =
∫

g(x)dx and δjk is the Kronecker delta function, equal to 1 or 0 for
j = k or not.

Suppose that
∫

f2/φ <∞.(2.2)

Then f/φ lies in L2(φ) and has the Fourier expansion

f(x)/φ(x) =
∞∑

r=0

BrHr(x)/r!,(2.3)

where

Br =
∫

Hrf = E Hr(X) = E(X + iN)r(2.4)

=
∑

06j6r/2

(
r

2j

)
mr−2jν2j ,

where

ν2j = E N2j = 1 · 3 . . . (2j − 1) = (2j)!/(2j j!),

and N is independent of X .
Note that (2.3) holds in the sense of convergence in L2(φ):

∫ [
f(x)/φ(x)−

K∑

r=0

BrHr(x)/r!
]2

φ(x)dx→ 0

as K →∞. Observe that (2.4) gives the Fourier coefficient Bk in terms of the mo-
ments. For example, since H0 = 1, H1 = x, H2 = x2 − 1, H3 = x3 − 3x, H4 =
x4 − 6x2 + 3, H5 = x5 − 10x3 + 15x, . . ., we have B0 = 1, B1 = m1, B2 =
m2 − 1, B3 = m3 − 3m1, B4 = m4 − 6m2 + 3, B5 = m5 − 10m3 + 15m1,
B6 = m6 − 15m4 + 45m2 − 15, . . . Section 6.31 of Stuart and Ord [7] gives these
up to B8 for the case m1 = 0.

Note that integrals like
∫

f2/φ and
∫

f ln φ are only meaningful if X is dimen-
sion-free. Suppose in fact that X is standardised so that E X = 0 and var(X) = 1,
that is, m1 = 0 and m2 = 1. Then B0 = 1, B1 = B2 = 0 and (2.3) can be writ-
ten as

f(x)/φ(x)− 1 =
∞∑

r=3

BrHr(x)/r!.
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Note that (2.3) is known as the Gram–Charlier series. The expressions for the Bk

look simpler if we convert from moments to cumulants: B3 = κ3, B4 = κ4, B5 =
κ5, B6 = κ6 + 10κ2

3, B7 = κ7 + 35κ3κ4, B8 = κ8 + 56κ3κ5 + 35κ2
4, as noted

in (6.41) of Stuart and Ord [7]. However, this conversion becomes laborious. An
alternative derivation that avoids this labour is to use the fact that, for D = d/dx,
the operator exp

(
h(−D)r/r!

)
acting on a density f increases its rth cumulant by

h but does not change the other cumulants. (This result goes back to Edgeworth.
For r = 1 this gives Taylor’s expansion. We assume that derivatives of all orders
exist.) So, if

m1 = 0, m2 = 1, kr = κr − δr2, S(t) =
∞∑

r=1

krt
r/r!,

then f = exp
(
S(−D)

)
φ. Consequently, by (1.3), we have the simple formula

f(x) = φ(x)
∞∑

r=0

BrHr(x)/r!,(2.5)

where Br = Br(k) = Br(κ)κ1=κ2=0, that is, (2.3) with Br = Br(k). Using Com-
tet’s table, (1.2) immediately gives Bk to k = 12:

B9 = κ9 + 84κ3κ6 + 126κ4κ5 + 280κ3
3,

B10 = κ10 + 120κ3κ7 + 210κ4κ6 + 126κ2
5 + 2100κ2

3κ4,

B11 = κ11 + 165κ3κ8 + 330κ4κ7 + 462κ5κ6 + 4620κ2
3κ5 + 5775κ3κ

2
4,

B12 = κ12 + 220κ3κ9 + 495κ4κ8 + 792κ5κ7 + 462κ2
6 + 9240κ2

3κ6

+ 27720κ3κ4κ5 + 5775κ3
4 + 15400κ4

3.

Since k1 = k2 = 0, about two thirds of the terms in (1.2) are zero. An alternative
is to calculate Bk as follows:

Br =
∑

16k6r/3

[r]2kBr−2k,k(ηηη)(2.6)

for r > 1, where ηr−2 = κr/r(r − 1) and [r]2k = r!/(r − 2k)!. Observe that
(2.6) follows by noting that S(t) = t2S1(t), where S1(t) =

∑∞
j=1 ηjt

j/j!. So,
exp

(
S(t)

)
=

∑∞
k=0 t2kS1(t)k/k!. Substitute S1(t)k/k! =

∑∞
r=k Brk(ηηη)tr/r! and

take the coefficient of tr/r! to obtain

Brk(kkk)/r! = Br−2k,k(ηηη)/(r − 2k)!.(2.7)

Note that (2.6) now follows from (1.2). For example, Comtet’s table gives Brk for
r 6 12, and so B13 = κ13 + 13α at

α = 22κ3κ10 + 55κ4κ9 + 99κ5κ8 + 132κ6κ7 + 1320κ2
3κ7 + 4620κ3κ4κ6

+ 44352κ3κ
2
5 + 3465κ2

4κ5 + 15400κ3
3κ4,



Charlier and Edgeworth expansions 275

and B14 = κ14 + 13β at

β = 77κ4κ10 + 154κ5κ9 + 231κ6κ8 + 132κ2
7 + 14(2κ3κ11 + 165κ2

3κ8

+ 660κ3κ4κ7 + 924κ3κ5κ6 + 693κ4κ
2
5 + 3080κ3

3κ5 + 5775κ2
3κ

2
4)

+ 8085κ2
4κ6.

Charlier and Cramer showed that the Gram–Charlier series converges absolutely
and uniformly under stronger conditions than the L2 condition (2.2). For example,
Cramer showed that this holds if

∫
ḟ2/φ <∞, f(x)→∞ as |x| → ∞.

Section 6.22 of Stuart and Ord [7] gives this and another theorem of Cramer on its
convergence. These theorems do not apply, for example, to the double exponential
density as this does not satisfy the L2 condition (2.2).

By (2.1), we have a form of Parseval’s identity:

∫
f2/φ =

∞∑

k=0

B2
k/k!.(2.8)

The integrated form of (2.3) is:

P (X ¬ x) = Φ(x)− φ(x)
∞∑

k=1

BkHk−1(x)/k!.(2.9)

3. THE EDGEWORTH EXPANSION

Suppose that X = Xn is a standardised sample mean of sample of size n from
a population with rth cumulant lr, say Xn = (n/l2)1/2(Y − l1). For r > 2, Xn has
rth cumulant κr = αrn

1−r/2 = αrε
r−2, where ε = n−1/2 and αr = lr/l

r/2
2 : κ3 =

α3ε, κ4 = α4ε
2, κ5 = α5ε

3, κ6 = α6ε
4, κ7 = α7ε

5, κ8 = α8ε
6, κ9 = α9ε

7, κ10 =
α10ε

8, . . . By (1.1), Brk(k) = εr−2kBrk, where Brk = Brk(ααα). So, by (1.2), for
r > 3 we have

Br =
r∑

k=1

Brkε
r−2k(3.1)

=
r−2∑

m=Kr

{Brkε
m : k = (r −m)/2, r −m even},

where

K3j = j, K3j+1 = j + 1, K3j+2 = j + 2.(3.2)
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In particular,

B3 = B31ε, B4 = B41ε
2, B5 = B51ε

3,

B6 = B62ε
2 + B61ε

4,

B7 = B72ε
3 + B71ε

5,

B8 = B82ε
4 + B81ε

6,

B9 = B93ε
3 + B92ε

5 + B91ε
7,

B10 = B10,3ε
4 + B10,2ε

6 + B10,18ε
8,

B11 = B11,3ε
5 + B11,2ε

7 + B11,1ε
9,

B12 = B12,4ε
4 + B12,3ε

6 + B12,2ε
8 + B12,1ε

10,

B13 = B13,4ε
5 + B13,3ε

7 + B13,2ε
9 + B13,1ε

11,

B14 = B14,4ε
6 + B14,3ε

8 + B14,2ε
10 + B14,1ε

12.

From Comtet’s table and (2.7) we have immediately

Br1 = αr,

B62 = 10α2
3,

B72 = 35α4α3,

B82 = 56α5α3 + 35α2
4,

B93 = 280α3
3, B92 = 84α6α3 + 126α5α4,

B10,3 = 2100α4α
2
3, B10,2 = 120α7α3 + 210α6α4 + 126α2

5,

B11,3 = 4620α2
3α5 + 5775α3α

2
4,

B11,2 = 165α3α8 + 330α4α7 + 462α5α6,

B12,4 = 15400α4
3, B12,3 = 9240α2

3α6 + 27720α3α4α5 + 5775α3
4,

B12,2 = 220α3α9 + 495α4α8 + 792α5α7 + 462α2
6,

B13,4 = 13 · 15400α3
3α4,

B13,3 = 13(1320α2
3α7 + 4620α3α4α6 + 44352α3α

2
5 + 3465α2

4α5),
B13,2 = 13(22α3α10 + 55α4α9 + 99α5α8 + 132α6α7),

B14,4 = 13 · 14(3080α3
3α5 + 5775α2

3α
2
4),

B14,3 = 13[14(165α2
3α8 + 660α3α4α7 + 924α3α5α6 + 693α4α

2
5)

+ 8085α2
4α6],

B14,2 = 13(77α4α10 + 154α5α9 + 231α6α8 + 132α2
7 + 28α3α11).

Substituting (3.1) into (2.5) and (2.9) gives the Edgeworth expansions

f(x)/φ(x) = 1 +
∞∑

j=1

h1j(x)n−j/2(3.3)
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and

(3.4) F (x) = Φ(x)− φ(x)
∞∑

j=1

h0j(x)n−j/2,

where
h1j(x) =

j∑

k=1

{BrkHr(x)/r! : r = j + 2k}

and

h0j(x) =
j∑

k=1

{BrkHr−1(x)/r! : r = j + 2k}.
In particular,

h11 = B31H3/3!,

h12 = B41H4/4! + B62H6/6!,

h13 = B51H5/5! + B72H7/7! + B93H9/9!,

h14 = B61H6/6! + B82H8/8! + B10,3H10/10! + B12,4H12/12!,

h15 = B71H7/7! + B92H9/9! + B11,3H11/11! + B13,4H13/13!

+ B15,5H15/15!,

and so on. Note that h0j is just h1j with Hr replaced by Hr−1. Differentiating f
p times gives

(−1)pf (p)(x)/φ(x) = Hp(x) +
∞∑

j=1

hp+1,j(x)n−j/2,

where

hp+1,j(x) =
j∑

k=1

{BrkHr+p(x)/r! : r = j + 2k}.

That is, hp+1,j is just h1j with Hr replaced by Hr+p.
For some exact conditions for the expansions (3.3) and (3.4), see Theorem

19.2 and Corollary 20.4 of Bhattacharya and Rao [1]. For adjustments to (3.4) for
lattice random variables see their Theorem 23.1. Similarly, the Parseval identity
(2.8) can be rewritten as

∫
f2/φ =

∞∑

r=0

brn
−r,

where

b0 = 1, b1 = B2
31/3! = α2

3/6,

b2 = B2
41/4! + B2

62/6! = α2
4/24 + 5α4

3/36,

b3 = B2
51/5! + 2B62b64/6! + B2

72/7! + B2
93/9!

= α2
5/120 + α2

3α6/36 + 35α2
3α

2
4/144 + 35α6

3/162,
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and

b4 = B2
61/6! + 2B72B71/7! + B2

82/8! + 2B93B92/9! + B2
10,3/10!

+ B2
12,4/12!,

b5 = B2
71/7! + 2b82B81/8! + (2B93B91 + B2

92)/9! + 2B10,3B10,2/10!

+ B2
11,3/11! + 2B12,4B12,3/12! + B2

13,4/13! + B2
15,5/15!.

Note that hp5, b5 also need B15,5 while hp6, b6 need B16,5 and B18,6. These are
given by

B3j,j = (α3/6)j(3j)!/j!,(3.5)

B3j+1,j = (α3/6)j−1(α4/24)(3j + 1)!/(j − 1)!,

B3j+2,j = [(α3/6)j−1(α5/120) + (j − 1)(α3/6)j−2(α4/12)2/8]
× (3j + 2)!/(j − 1)!.

To prove this, set λr−2 = αr/r(r − 1). By (2.7), we have

B3j+m,j/(3j + m)! = Bj+m,j(λλλ)/(j + m)! for m = 0, 1, 2.

Now use

Bj,j(λλλ) = λj
1,

Bj+1,j(λλλ) = j(j + 1)λj−1
1 λ2/2,

Bj+2,j(λλλ) = j(j + 1)(j + 2)[λj−1
1 λ3/6 + (j − 1)λj−2

1 λ2
2/8].

So, we obtain (3.5). (A modification of this argument gives Br ∼ εKr .)
Consequently, we have explicit formulas for hpj for j ¬ 16. These expressions

appear to be new, as well as our expressions for bj . (But hp,17 needs the equality
B45,14/45! = B17,14(λλλ)/17!.)

EXAMPLE 3.1. Suppose that X0 is a gamma random variable with mean γ.
Its rth cumulant is (r − 1)!γ. Its standardised form X = (X0 − γ)/

√
γ has rth

cumulant (r − 1)!γ1−r/2I(r ­ 2). Set s = t/
√

γ. Then

kr = (r − 1)!γ1−r/2I(r ­ 3),

S(t) = γ
∞∑

r=3

sr/r = −γ[ln(1− s) + s + s2/2],

exp
(
S(t)

)
= exp

(− γ(s + s2/2)
)
(1− s)−γ ,

Br = γ−r/2r!
∑

a+2b+c=r

(−γ)a(−γ/2)b[γ]c/a!b!c!,
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where [γ]c = γ(γ + 1) . . . (γ + c− 1). However, it is simpler just to apply the pre-
vious results of this section with n = γ and lr the rth cumulant of an exponential
distribution with mean 1, that is, lr = αr = (r − 1)!. Substituting this we see that
Br is given by (3.1) with

Br1 = (r − 1)!,
B62 = 40,

B72 = 420,

B82 = 3948,
B93 = 2240, B92 = 38304,

B10,3 = 50400, B10,2 = 2065824,
B11,3 = 859320, B11,2 = 4419360,
B12,4 = 246400, B12,3 = 13665960, B12,2 = 53048160,
B13,4 = 9609600, B13,3 = 839041632, B13,2 = 684478080,
B14,4 = 258978720, B14,3 = 3060393336, B14,2 = 9464307840.

Note that hp5, b5, hp6, b6 also need

B15,5 = 44844800, B16,5 = 2690688000 and B18,6 = 12197785600.

Observe that (3.2) explains the behaviour of Bk noted in Example 6.3,
page 229 of Stuart and Ord [7].

In this section, we have focused on the case of the sample mean. The results
could be extended for: (a) smooth functions of a vector of sample means; and
(b) sample quantiles. The classes of statistics, (a) and (b), have been well studied
in the recent literature on Edgeworth expansions. Bell polynomials might also be
useful in simplifying the explicit computation of higher order Edgeworth expan-
sions for these more general classes of statistics. We hope to address this issue in a
future work.
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