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ON RELATIONS BETWEEN URBANIK AND MEHLER SEMIGROUPS∗
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Abstract. It is shown that operator-selfdecomposable measures or,
more precisely, their Urbanik decomposability semigroups induce general-
ized Mehler semigroups of bounded linear operators. Moreover, those semi-
groups can be represented as random integrals of operator valued functions
with respect to stochastic Lévy processes. Our Banach space setting is in
contrast with the Hilbert spaces on which so far and most often the general-
ized Mehler semigroups were studied. Furthermore, we give new proofs of
the random integral representation.

2000 AMS Mathematics Subject Classification: Primary: 60B12,
60E07; Secondary: 47D06, 46G10, 47D60.

Key words and phrases: Banach space; one-parameter strongly con-
tinuous semigroup; Urbanik decomposability semigroup; measure valued
cocycle; generalized Mehler semigroup; Lévy process; random integral.

The theory of operator limiting distributions in probability theory has its ori-
gin in 70’s of the last century. Its development on the Euclidean spaces was sum-
marized in the monograph by Jurek and Mason [13]. That theory is based on the
principle that normalization of random variables with values in E (or sums of those
random variables) should be consistent with the structure of the state space E. Thus
the linear operators are the proper normalization for the linear spaces or normal-
ization by the group automorphisms for the case of group valued variables.

The most important new tool in that setting is the operator decomposability
semigroup introduced by K. Urbanik in 1972. Namely, with a probability measure
µ one associates a family D(µ) of linear bounded operators A that “divide” µ in a
sense that µ = Aµ ∗ νA for some probability measure νA, i.e.,

D(µ) = {A : µ = Aµ ∗ νA for some νA}.
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Note that operators 0 and I are always in D(µ) and that it is indeed a semigroup.
If the Urbanik semigroup D(µ) contains a one-parameter semigroup Tt, t ­ 0, and
one defines ρt := νTt , then, by iteration, one arrives at the equation

(0.1) ρt+s = ρt ∗ Ttρs for all s, t ­ 0,

provided a cancellation is permitted; cf. Jurek [9], Jurek and Vervaat [14]. Such
convolution equations were also called measure-valued cocycles; cf. Hofmann and
Jurek [7]. [Note that the Grothendick type diagram, on p. 755 there, is still not
completed!]

On the other hand, if operators Tt, given by

(Ttf)(x) =
∫
E

f(Ttx + z)ρt(dz), f ∈ Cb(E), t ­ 0,

define a one-parameter semigroup on Cb(E), then the measures ρt’s must sat-
isfy the cocycle relation (0.1). The above families of operators are called general-
ized Mehler semigroups, for short: Mehler semigroups. Cf. for instance Bogachev
et al. [3] and references therein. However, one should be aware that they worked
on Hilbert spaces and had a more restrictive assumption (differentiability) on the
Fourier transforms of ρt, t ­ 0. On the other hand, cocycle equations (0.1) were
considered on non-linear structures like spaces of measures; cf. Li [15].

The main result here is that on a Banach space under the continuity of the
mapping t→ ρt in many cases Mehler semigroups are of the form

(Tt f)(x) = E
[
f
(
Ttx +

∫
(0,t]

Tt−s dY (s)
)]

, f ∈ Cb(E),

for some stochastic Lévy process Y ; cf. below for details.
In all papers dealing with the operator limit distributions (for instance: Ju-

rek [9]–[11] and Jurek and Vervaat [14]) the primary goal was the random inte-
gral representation (RIR) of measures µ, whose Urbanik semigroups D(µ) contain
a one-parameter semigroup of operators continuous in the operator norm topology.
Consequently, the solutions to the cocycle equations (0.1) were auxiliary steps in
the main proofs and might have been overlooked.

These two subjects, i.e., Urbanik and Mehler semigroups, seem to be devel-
oped independently of each other, although Chojnowska-Michalik [4], [5] men-
tioned the theory of operator limit distributions. See also the acknowledgment at
the end of this paper.

Our aim here is to show how the theory of operator limit distributions and its
techniques (like the random integral method) can produce new results and proofs
in the theory of Mehler semigroups on Banach spaces; cf., in particular, Proposi-
tion 3.2, Theorem 3.1, and Corollaries 3.2 and 3.3 below.

Last but not least, let us stress again that our presentation here is in the gen-
erality of Banach spaces while Hilbert space setting was often the case for the
generalized Mehler semigroups.
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1. BASIC NOTIONS AND NOTATION

Let E denote a real separable Banach space with a norm ‖ · ‖, let End(E) or,
simply, End denote the algebra of all bounded linear operators on E. In End(E)
we take the strong operator topology, i.e., An

s→ A means that for each x ∈ E,
limn→∞ ‖An x−Ax‖ = 0. Of a particular interest are the C0-one-parameter semi-
groups T = (Tt, t ­ 0) in End; that is, we have T0 = I, Tt(Ts x) = Tt+sx for
t, s ­ 0, x ∈ E, and for each x the functions t→ Ttx are continuous.

Let P(E), or just P , denote the family of all Borel probability measures on
E endowed with the convolution operation and the weak convergence topology, in
symbols: ∗ and⇒, respectively. Thus

µn ⇒ µ iff
∫
E

f(x)µn(dx)→
∫
E

f(x)µ(dx) for each f ∈ Cb(E),

where Cb(E) stands for real-valued continuous bounded functions on E (weak*-
topology in Cb(E)). For the probability theory on Banach spaces see Araujo and
Giné [2] or Linde [16].

Let E′ be the topological dual Banach space and let 〈·, ·〉 denote the bilin-
ear form between E′ and E. Recall that for a measure µ or an E-valued random
variable ξ with probability distribution µ, the function

µ̂ : E′ → C defined by µ̂(y) :=
∫
E

ei〈y,x〉 µ(dx) = E[ei〈y,ξ〉]

is called the Fourier transform (or the characteristic function) and that it uniquely
determines the measure µ; E[·] denotes the expectation operator.

Finally, for A ∈ End and µ ∈ P we define Aµ ∈ P , the image of µ through a
mapping A, as follows:

(Aµ)(E) : = µ({x ∈ E : Ax ∈ E}) for all Borel subsets E of E.

Equivalently, in terms of integrals, it means that∫
E

f(x)(Aµ)(dx) =
∫
E

f(Ax)µ(dx) for all f ∈ Cb(E).

In other words, if ξ is an E-valued random variable with probability distribution µ,
then the random variable Aξ has probability distribution Aµ. Having that in mind
we immediately get the equalities

(1.1) A(µ ∗ ν) = Aµ ∗Aν, A(Bµ) = (AB)µ, (̂Aµ)(y) = µ̂(A∗y), y ∈ E′,

for all linear bounded operators A,B ∈ End and all measures µ, ν ∈ P .
Finally, for the future reference let us quote here that

(1.2) if An
s→ A and µn ⇒ µ, then Anµn ⇒ Aµ.

The proof can be found in Jurek [10], Proposition 1.1, or in Jurek and Mason [13],
Proposition 1.7.2 on p. 24.
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2. THE URBANIK DECOMPOSABILITY SEMIGROUPS

With µ ∈ P we associate its Urbanik decomposability semigroup D(µ) de-
fined as follows:

(2.1) D(µ) := {A ∈ End: µ = Aµ ∗ νA for some νA ∈ P}.
Obviously, the linear operators 0 (zero) and I (identity) are in all D(µ) with ν0 = µ
and νI = δ0 in (2.1), and the semigroup property, under composition of operators,
follows from (1.1). It is interesting that some purely probabilistic properties of µ
are equivalent to some algebraic and topological properties of its Urbanik D(µ)
decomposability semigroup; cf. Urbanik [19], [20], Jurek and Mason [13].

In the operator-limit distribution theory the operator topology is used in D(µ).
However, even for the strong operator topology we also have

PROPOSITION 2.1. (i) The Urbanik decomposability semigroups D(µ), in
End, are closed in the strong operator topology.

(ii) If µ̂(y) 6= 0 for all y ∈ E′, An ∈ D(µ) and An
s→ A, then A ∈ D(µ)

and, in (2.1), we have νAn ⇒ νA.
(iii) If µ = Anµ ∗ νAn and An

s→ 0, then νAn ⇒ µ.

P r o o f. (i) For An ∈ D(µ) we have

(2.2) µ = Anµ ∗ νAn for some νAn ∈ P.

Further, if An
s→ A, then, by (1.2), Anµ⇒ Aµ. Consequently, {νAn , n = 1, 2, . . .}

⊂ P is conditionally compact (uniformly tight); cf. Parthasarathy [17], Chapter III,
Theorem 2.1, or Jurek and Mason [13], Theorem 1.7.1. Thus, passing to a subse-
quence in (2.2), we get µ = Aµ ∗ ν for some accumulation point ν of the sequence
(νAn , n = 1, 2, . . .). Consequently, A ∈ D(µ), which proves (i).

(ii) From (i) we get A ∈ D(µ). Since µ̂(A∗ny) 6= 0 (A∗ is the conjugate bound-
ed linear operator), from (2.2) we infer that limn→∞ ν̂An(y) exists. This and the
conditional compactness of (νAn , n = 1, 2, . . .) implies the weak convergence νAn

⇒ νA in (ii).
(iii) Simply note, by (1.2), that Anµ ⇒ δ0, and thus µ̂(A∗ny) → 1 for all

y ∈ E′. Hence, as in the proof of (ii), we conclude νAn ⇒ µ. This completes the
proof of Proposition 2.1. ¥

We will say that ν ∈ P is an operator convolution factor of µ if there exists
A ∈ End such that µ = Aµ ∗ ν. By OF(µ) we denote the totality of the operator
convolution factors of µ.

PROPOSITION 2.2. Let µ ∈ P be such that µ̂(y) 6= 0 for all y ∈ E′. Then
OF(µ) = {νA : A ∈ D(µ)} with binary operation � defined by νA � νB : =
νA ∗ AνB is a non-commutative semigroup. Moreover, νA � νB = νAB, νI ≡ δ0

is the neutral element, and νA � ν0 = ν0 � νA = ν0 ≡ µ.
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P r o o f. For A,B ∈ D(µ) we have

µ = Aµ ∗ νA = A(Bµ ∗ νB) ∗ νA = (AB)µ ∗ (AνB ∗ νA) = (AB)µ ∗ νAB

because of (1.1) and the fact that AB ∈ D(µ) as well. Hence we have νA � νB =
νA ∗AνB = νAB because of µ̂(y) 6= 0. Furthermore,

(νA � νB) � νC = νAB � νC = ν(AB)C = νA � (νB � νC),

which proves the associativity of the operation �. The rest follows from the equal-
ities νI ≡ δ0 and ν0 ≡ µ; see (2.1). ¥

REMARK 2.1. If An ∈ D(µ), µ̂(y) 6= 0 for all y ∈ E′ and νAn ⇒ ρ2 ∈ P,
then Anµ⇒ ρ1 for some ρ1 ∈ P and µ = ρ1 ∗ ρ2, that is, ρ2 is a convolution factor
of µ. But is it an operator convolution factor? Can we write ρ1 = Aµ for some
A ∈ End? In the case of E = Rd (finite-dimensional space) and full measures the
answer is affirmative; see Lemma 2.2.9 and Section 2.5 in Chapter II of Jurek and
Mason [13].

We say that µ is operator-selfdecomposable on E, in symbols: µ ∈ OS, if the
Urbanik semigroup D(µ) contains (at least one) C0-semigroup T = (Tt, t ­ 0).
When a semigroup T is fixed, we write µ ∈ OS(T) and say that µ is T-
decomposable.

REMARK 2.2. It is also important to realize that originally in Urbanik [20]
there were operator continuous one-parameter semigroups Tt = exp(tV), t ­ 0,
such that limt→∞ Tt = 0 (in the operator norm) . Furthermore, Urbanik primarily
dealt with limit distributions of sequences of partial sums of E-valued variables
normalized by arbitrary bounded linear operators. A similar approach was taken
in Jurek [10], however with specified normalizing operators but with strong oper-
ator topology. For the theory of operator-selfdecomposable (and operator-stable)
measures cf. Jurek and Mason [13] and references therein.

Explicitly, we have

(2.3) µ ∈ OS
(
(Tt, t ­ 0)

)
iff ∀ (t ­ 0)∃ (νTt ∈ P) µ = Ttµ ∗ νTt

or equivalently, by Proposition 2.2, in terms of the semigroup OF(µ) of the opera-
tor convolution factors µ, we have

(2.4) µ ∈ OS
(
(Tt, t ­ 0)

)
iff

∃
(
{ρt, t ­ 0} ⊂ (

OF(µ), �)
)
∀(s, t ­ 0) ρt � ρs = ρt+s,

where ρt := νTt , t ­ 0.
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3. THE GENERALIZED MEHLER SEMIGROUPS

For an operator A ∈ End(E) and a probability µ ∈ P(E), let us define the
linear operator A(µ) as follows:

(3.1) A(µ) : Cb(E)→ Cb(E), (A(µ) f)(x) : =
∫
E

f(Ax + z)µ(dz), x ∈ E.

Note that A(µ) can be viewed as the convolution of a function f with a measure
δAx ∗ µ. Here are some elementary properties of those operators.

PROPOSITION 3.1. (i) The operator A(µ) uniquely determines a measure
µ ∈ P(E) and an operator A ∈ End(E).

(ii) For A,B ∈ End(E) and µ, ν ∈ P(E) we have the equality

B(ν) · A(µ) = C(µ∗Aν),

where C := AB, and · means the composition of operators.
(iii) For one-parameter families of operators At ∈ End(E) and probability

measures ρt ∈ P(E) (t ­ 0),

[A(ρs)
s · A(ρt)

t = A(ρt+s)
t+s ] iff [ At ·As = At+s and ρt+s = ρt ∗Atρs ].

P r o o f. (i) Suppose A(µ) = B(ν). Putting x = 0 in (3.1) we have

(A(µ)f)(0) =
∫
E

f(y)µ(dy) =
∫
E

f(y)ν(dy) for all f ∈ Cb(E),

which, by the Riesz theorem, implies that µ = ν. Furthermore, since

(A(µ)f)(x) =
∫
E

∫
E

f(u + y)δAx(du)µ(dy) =
∫
E

f(z)(δAx ∗ µ)(dz),

we conclude that δAx ∗ µ = δBx ∗ µ for all x ∈ E, that is, A = B.

(ii) For f ∈ Cb(E) and x ∈ E, by (3.1), we have
(
(B(ν) · A(µ))f

)
(x) =

(B(ν)(A(µ)f)
)
(x) =

∫
E

(A(µ)f)(Bx + y)ν(dy)

=
∫
E

( ∫
E

f
(
A(Bx + y) + z

)
µ(dz)

)
ν(dy)

=
∫
E

∫
E

f
(
(AB)x + Ay + z

)
µ(dz)ν(dy) =

∫
E

f
(
(AB)x + u

)
(µ ∗Aν)(du)

= (C(µ∗Aν)f)(x),

which proves (ii).
(iii) Since, by (ii), A(ρs)

s · A(ρt)
t = (AtAs)(ρt∗Atρs), in order to have the equal-

ity in (iii) it is necessary and sufficient that AtAs = At+s and ρt ∗ Atρs = ρt+s,
because of (i). ¥
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For a given C0-semigroup (Tt, t ­ 0) on E and a family of probability mea-
sures ρt, one-parameter semigroups Tt ≡ T (ρt)

t (on Cb(E)) are called one-param-
eter generalized Mehler semigroups. Hence necessarily and sufficiently we have:
ρt+s = ρt ∗ Ttρs = ρs ∗ Tsρt for all t, s ­ 0; see Proposition 3.1 (iii). Such equa-
tions were called cocycles in Hofmann and Jurek [7].

Explicitly we can write

(3.2) (Tt f)(x) =
∫
E

f(Ttx + y)ρt(dy), f ∈ Cb(E).

Firstly, let us note that we have the following relation:

COROLLARY 3.1. Each Urbanik semigroup D(µ), µ̂(y) 6= 0, y ∈ E′, that
contains a one-parameter C0-semigroup (Tt, t ­ 0) induces a generalized Mehler
semigroup (Tt, t ­ 0) by taking in (3.2) ρt = νTt from (2.1).

Secondly, inspired by the technique from the operator-limit distribution theory
we get

PROPOSITION 3.2. If t→ ρt is continuous at zero and ρt+s = ρt ∗ Ttρs for
all t, s ­ 0 (cocycle equation), then there exists a càdlàg process Z(t), t ­ 0, with
independent increments such that L(

Z(t)
)

= ρt and Z(0) = 0 a.s. In particular,
all ρt are infinitely divisible.

P r o o f. By the Kolmogorov’s extension theorem (on a family of consistent
distributions), in order to describe (in distribution) a process Zt, t ­ 0, starting
from zero (i.e. Z0 = 0 with probability 1) and with independent increments it
is necessary and sufficient to give the probability distributions of all increments
(Zt − Zs, t ­ s ­ 0) (in particular, we get distributions of Zt) in such a way that

Zt
d= (Zt − Zs) + Zs with summands independent for all t ­ s ­ 0.
Let us define

(3.3) L(Zt − Zs) := Tsρt−s, t ­ s ­ 0, in particular, Zt
d= ρt.

Then, by the independence and the cocycle equation, we get

(Zs − Z0) + (Zt − Zs)
d= ρs ∗ Tsρt−s = ρt

d= Zt.

Since t → ρt is continuous, a Banach space-valued process Zt is continuous in
probability. Consequently, for Zt, t ­ 0, there exists its càdlàg version (in French,
càdlàg≡ continu à droite avec des limites à gauche, i.e., paths are right continuous
with left-hand limits) Z(t), t ­ 0; cf. Jurek and Vervaat [14], Theorem A.1.1 on
p. 260.
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Finally, using (3.3) for each t ­ 0 and each n ­ 1 we have

ρt
d= Z(t) =

n∑

k=1

(
Z

(
k t

n

)
− Z

(
(k − 1)t

n

))

d= ρt/n ∗ Tt/n ρt/n ∗ T2t/n ρt/n ∗ . . . ∗ T(n−1)t/n ρt/n,

and the triangular array is infinitesimal, i.e., for each ε > 0

lim
n→∞ max

0¬j¬n−1
(Tjt/n ρt/n)(‖x‖ ­ ε) = 0,

because of (1.1) and the fact that ρs ⇒ δ0 as s→ 0. This proves the infinite divis-
ibility of ρt, and thus completes the proof. ¥

REMARK 3.1. Note that in Proposition 3.2 we get the infinite divisibility from
the stochastic independence of increments of the process Z(t), t ­ 0, as well. The
infinite divisibility in the cocycle equations was proved in Schmuland and Sun
[18] by different (analytic) methods and without the continuity condition. In our
approach the continuity t → ρt was used to get càdlàg paths of the constructed
process and, consequently, the infinite divisibility property.

COROLLARY 3.2. Each generalized Mehler semigroup Tt, with t→ ρt con-
tinuous at zero, is of the form

(Tt f)(x) = E
[
f
(
Ttx + Z(t)

)]
, f ∈ Cb(E),

for some C0-semigroup (Tt, t ­ 0) in End(E) and some E-valued càdlàg process(
Z(t), t ­ 0

)
with independent increments, Z(0) = 0 a.s. and Z(t) − Z(s) d=

Ts Z(t− s) for all t ­ s ­ 0.

For an End(E)-valued function g(t) of locally bounded variation and E-valued
càdlàg process with independent increments

(
Y (t), t ­ 0

)
, let us define a random

integral by the following formula of formal integration by parts:

(3.4)
∫

(a,b]

g(t)d Y (t) := g(b)Y (b)− g(a)Y (a)−
∫

(a,b]

dg(t)Y (t),

where the right-hand side is defined as pathwise approximation by partial sums of
the form

∑n
j=1

(
g(tj)− g(tj−1)

)
Y (tj) in a similar way as in Jurek [9] and Jurek

and Vervaat [14] or Jurek and Mason [13].
Recall that by a stochastic Lévy process we mean a càdlàg process with sta-

tionary and independent increments, and starting from zero.

THEOREM 3.1. For each C0-semigroup T = (Tt, t ­ 0) and each E-valued
Lévy process Y =

(
Y (t), t ­ 0

)
a semigroup of operators

(3.5) T T,Yf ≡ (Tt f)(x) := E
[
f
(
Ttx +

∫
(0,t]

Tt−s dY (s)
)]

, f ∈ Cb(E),

is a generalized Mehler semigroup.
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Conversely, if T is a generalized Mehler semigroup with the mapping t→ ρt

continuous at zero and a one-parameter group T = (Tt, t ∈ R) of operators, then
there exists a unique (in distribution) Lévy càdlàg process Y (t), t ­ 0, such that
T = T T,Y.

P r o o f. Let Vt denote the random integral part in (3.5) and let ρt be its prob-
ability distribution. Then, using the standard argument of approximation by partial
sums, we infer that

log ρ̂t(y) := log E[exp(i〈y, Vt〉)] =
∫

(0,t]

log E
[
exp

(
i〈T ∗t−sy, Y (1)〉)]ds(3.6)

=
∫

(0,t]

log E
[
exp

(
i〈T ∗r y, Y (1)〉)]dr.

Hence by simple calculations we get log ρ̂t(y) + log ρ̂s(T ∗t y) = log ρ̂t+s(y),
y ∈ E′. Thus the family ρt, t ­ 0, satisfies the cocycle equation, and so (3.5) de-
fines a Mehler semigroup.

Conversely, let a generalized Mehler semigroup T be given by (3.2). Then,
by Corollary 3.2, there exists a càdlàg process

(
Z(t), t ­ 0

)
with independent

increments. Furthermore, the stochastic process

(3.7) Y (t) :=
∫

(0,t]

T−s dZ(s), t ­ 0,

is the process with independent increments, because so is Z(·). And, more impor-

tantly, for t > s, using the fact that T−s

(
Z(t) − Z(s)

) d= Z(t − s), by (3.3), we
conclude that

Y (t)− Y (s) =
∫

(0,t−s]

T−vT−sdZ(v + s) d=
∫

(0,t−s]

T−vdZ(v) = Y (t− s),

i.e., that Y is a Lévy process (independent and stationary increments). By (3.6) and
(3.7) we have

∫
(0, t]

Tt−sdY (s) d=
∫

(0, t]

TsdY (s) = Z(t) for each t > 0,

and this with Corollary 3.2 gives the formula (3.5). The uniqueness in distribution
is a consequence of the Kolmogorov extension theorem, and therefore the proof is
complete. ¥

REMARK 3.2. Note that for a C0-semigroup Tt on a Banach space E, and
for an E-valued Lévy càdlàg stochastic process Y , the processes given by random
integrals

V (t) :=
∫

(0, t]

Tt−sdY (s), Z(t) :=
∫

(0, t]

TsdY (s), t ­ 0,
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have only identical marginal (one-dimensional) distributions. The process Z has
independent increments while V is a Markov process.

COROLLARY 3.3. (a) On Euclidean spaces (E = Rd) all generalized Mehler
semigroups are of the form (3.5).

(b) On an arbitrary separable Banach space, for any uniformly continuous
semigroups Tt = exp(tQ) (Q is a bounded operator), all generalized Mehler
semigroups are of the form (3.5).

REMARK 3.3. (a) In the above proof of Theorem 3.1, the group property of
(Tt, t ∈ R) was only used to define the Lévy process Y (in (3.7)) via the additive
process Z from Corollary 3.2. However, what we only need is that, for the given
additive process Z (in Corollary 3.2), the stochastic differential equation

(∗) Tt dX(t) = dZ(t), X(0) = 0,

has a solution for X(·) in Lévy processes. But since not all additive processes are
semimartingales, the stochastic equations of the form (∗) may not be solvable; cf.
Jacod and Shiryaev [8], Theorems 4.14 and 4.15, p. 106.

(b) The representation like the above (3.5) can be derived from Lemma 2.6
of Bogachev et al. [3], but only for Hilbert spaces H and, more importantly, under
restrictive assumptions that, for y ∈ H , the functions t→ ρ̂t(y) are differentiable
at zero. The same setting is also in Fuhrman and Roeckner [6].

Let us also recall here that stochastic processes from Theorem 3.1,

Ut := Ttx +
∫

(0,t]

Tt−s dY (s), t ­ 0,

are called Ornstein–Uhlenbeck processes and are well studied on Hilbert spaces.
[These are solutions to so-called Langevin equations.] Furthermore, one can easily
express the Lévy–Khintchine formula of Ut in terms of the corresponding param-
eters of Y (1); cf., for instance, Jurek and Mason [13], Section 3.6 in Chapter 3.

OPEN PROBLEM. It is known that on an arbitrary separable Banach space if

lim
t→∞ exp(tV ) = 0

(in the operator topology; V is a bounded operator), then, for a càdlàg Lévy pro-
cess Y , the limit limt→∞

∫
(0,t]

esV dY (s) exists (almost surely, in probability or in

distribution) if and only if E
[
log

(
1 + ‖Y (1)‖)] <∞; cf. Jurek [9].

Is there an analogous criterion true for C0-semigroups T on E? Or how does
the existence of a limit depend on the infinitesimal generator J of the semigroup T
and the variable Y (1)?

Recall that Applebaum [1] in Theorem 9 showed that log-integrability is suffi-
cient for exponentially stable contraction semigroup (Tt, t ­ 0) on a Hilbert space.
His proof uses the Lévy–Itô decomposition of the process Y.
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