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ON A TAYLOR FORMULA FOR A CLASS OF ITO PROCESSES
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Abstract. In the paper a stochastic generalization of the Taylor
formula for It6 processes of diffusion type is investigated with respect
to mean square, almost sure and weak convergence.

- 1. Introduction. In this paper we investigate a stochastic generalization of
the: Taylor formula for It processes of diffusion type. This generalization is
based upon the use of multiple stochastic integrals. In [4] we developed similar
ideas for the construction of time discrete approximations of It6 processes.
Further, we propose Taylor approximations and give estimations of the mean
square error. Also almost sure and weak convergence is investigated.

Let (2, %, P) be the basic probability space and let (#), te[t,, T], be
a right continuous non-decreasing family of sub-o-algebras of &%, where %, for
each te[try, T] contains all P-null sets of % We consider the process
(x,, &), te[ty, T], which is given by the It6 differential equation

O - | dx, = a(t, x)dt+b(t, x)dw,

where x, is & -measurable and (w,, %), te[to, T], is an n-dimensional
standard Wlener process, w, = {w?}*_, while x, = {xm and a(t, y)
= {a(t, y)}i~, are m-dimensional vectors, b(t, y) = {p®P(t, y)}~, is an
(mx n)-matrix for m, ne{t, 2,...}, a?(t, y) and b%?(t, y) are real-valued
functions on [t,, T]xR™ F urther we assume that a strong unique solution
of (1) exists. In the following we summarize a result proved in [4] on
‘a representation formula for It processes Let

={(1, .- o) : ke{1,2,...}, j;e{0, ..., n} for te{l kol

denote the set of row vectors a = (jy, ..., j) with finite length la) := k, where
I(v) := 0. We write —a or « — if we delete the first or the last component of
aeM (I(a) > 1), respectively. Further, M,, pe{l, m}, is the set of non-
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anticipative (with respect to (%), t€[tq, T]) functions g|[to, T] — RF with (?)

E | lg&*ds < x.

Ty

For aeM, s,telty, T], s < t, and functions g()eM,, pe(l, m}, we
define recursively multiple stochastic integrals

- g (1) for « = v,
(2) ( (), 8, 1) 1= {jl (g0, s, u)dwu“ for o = (jy, ..., i)

where dw® := du. Obviously, for all « = (j;, ..., j,)e M\{v} we have

Sk Sz

Lg(),s, 1) = jf oo § g(sy)awly dwli- dwle .

In the case g(r) = 1 we write L(s, 1) := IL,(9(), s, 1).
We introduce now the differential operators

i e
ij = _f+ Z (a (;)f) (l)+ Z (ax(l)cx(r] )j;l b{l""] b(r"”

ir=1
and

> (0 .
wf:=Yy (Wj)b“”‘) for ke{l, ..., n}
i=1

which are defined on the corresponding sets of functions f | [ty, T]xR™ - R™
having the necessary partial derivatives.
Further, we use functions f, = {£®}",, ae M, where

0 for « = v,

" a® for a = (0),

pid for & = (j),je{l, ..., n},
FYf®  for o = (jy, ..., ji), k =2

£ .=
AN

Now for A < M we set

B(A4) := {aeM\A: —acA}

and formulate the theorem which is proved in [4].

() II'll denotes the Euclidean norm.
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THEOREM 1. Assume that for A =« M, A # O, ands, te[ty, T),s < t, the
Jollowing conditions are satisfied :

(i) supl(a) < o0}
acAd

(i) —xed for all acA;
(i) f, exists for all xac Aw B(A);
(1) fols, x)eM, for all acA and f,(-, x)eM,, for all acB(A).
Then _
X = xg+ 2-F(fils, x), 8, 0+ Y L(f(,x),s,t). ‘

acA acB(A4)

We can interpret this assertion as a stochastic generalization of the Taylor
formula. For this purpose we write this formula in the deterministic case. That
means, we have to develop the function '

t
x, = X,+ [ a(, x)du, telty, T].
Ty

Obviously, for se[ty, T] we have in that case

d
ﬁO)(S7 xs) = a(s, xs) = (Ext)(s)s

k—1 dk
f;(S, xs) = ISO) (:Tk 1 )(S) ( x,)(s)

for all xe M with l(x) = n(a) = k, ke{2,3,...},

and

fi(s, x) = 0 otherwise,

where n(x) denotes the number of components of x € M which are equal to 0.
Further, for all xe M with [(x) = n(x) = k we obtain from (2) the formula

S

Ia(g('o)s to, 1) = j jg(to)dsl cdsy = g(fo)(t—f'o‘)k/k!s
{

to

Now, for given D,
from Theorem 1

eM: l(x) = n(a) r}, re{0,1,...}, we get

X = xto+ Z Ia(f;(thxlo)at0!t)+ Z Ia(fa'z('sx.),t0=t)

aeD, asB(D,)
r dk (T—T )k t Jrt
= Xt ?kg,l (Ei%)(to)—k!—o—'*' t{ . I (d e X,)(sl)dsl .ods, .y

which is the well-known Taylor formula.
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We propose now a stochastic generalization of the usual Taylor
approximations. For ye{0, 1, ...} we set

A, 1= {axeM: l(@)+n() <y
For ye{0, 1, ...} we define the approximation (x‘” F), telty, T, by
(3) x”) = Xpot+ 2, filto, %) L(to, 1),

aeA
where j; is_assumed to exist for all aeA4,. -
" In the following We investigate the convergence behaviour of the above-
defined approximations.

2. Mean square convergence. For all xe M we introduce the row vector
a*eM ‘which is obtained by deleting all components of a equal to 0, eg.
(1,0,2,1)* =(1, 2, 1). For the estimation of the mean square approxima-
tion error we use also the following notation of multiple stochastic integrals:

For all ae M with a* = o and I(a*) = I, Ie{1,2,...}, ke{0,1, ...},

‘ié{O‘,...,l}, functions g()eM,, pe{l,m}, and te[ty, T] we define

recursively 'the multiple stochastic integrals

(4)  Hplko,.... ki, g (), 1)

g (0 - ' for =0, ko =0,
t

fH,,(ko—l,g(-),u)du for 1=0, ko> 1,

t |

t

— ) .
J'(tk:‘)lH“*_ (ko""’ kl-l: g(), u)dW,(;’l) forl>1
ki ‘ o

to

where a* = (j;,...,j) for I > 1.

In the sequel kq () denotes the number of the first components of ae M
which are equal to 0 until the first non-zero component or until the end of o if
there are only zeros. Furthermore, k;(2), ie{1, ..., I(*)}, counts the number
of components which are equal to 0 between the 1-th non-zero and the (i+ 1)-st

_‘non-zero ‘component or the end of ae M. For example, fora = (0, 1, 2, 0) we
have o* = (1 2), l(a*) = 2 and ko(a) = 1, k(@) = 0, k(@) = 1.

The following proposition shows the relation between the multiple
qtochastlc integrals defined in (2) and (4).

- PROPOSITION 1. For all a € M, functions g()e M, pe{l m}, and telty, T]

" 'we have

| Ia(g(')’ to, t) = iHu"(kO(a)a ey kl(a"')(a)a g()7 t) P-as.

For the proof of this assertion we need two lemmas.
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LemMA 1. For all te[ty, t,1, ty€lte, T1, g(, NeM,, pe{l, m}, and
je{l, ..., n} we have
oy s .
= [ [gGs,ndwidt = | [ g(s, )dtdw? =:n P-as.

L, LY LN fo

Proof. By a well-known property of the Ito integral we obtain *
Ell¢~nl? = ElEI?—-2E(, n)+E|nll* = 0,
which completes the proof. -- '

Lemma 2. For the multiple stochastic integrals defined in (4) we have

t . -
R := j Hu*(kb; ey klml: kls g(), Z)dZ = Ha“'(k0= sy kl—l9 kl+1’ g()9 I).
‘0 .
Proof. We consider two cases.

1.1 =0.
We have a* = v and the assertion follows from (4).

2121
By (4) we have

z—u) i
R = J'J‘X[toz](u)( ) ’ a"‘(kO’ ceey kl—la g()s u)dwfljl)dzﬁ

where _ .
1 for ueft,, z],

Xito,21 (“)‘ o= {0 otherwise .

Using Lemma 1 and (4) we get

t t

R = Ha*— (ko, (RS} kl—17._g(')7 u) J‘XIIOZ](u)( ) d d Ul)
- :0 . - "o .
R . » . (t_u)kl+1 (j)
= | Ho-lkos -oor bims, 60), )=

-

= ‘Ha*(kO’ veey kl—la kl+19 g()a t)a

which completes the proof.

(® (, *) denotes the usual scalar product.
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Proof of Proposition 1. We prove the proposition by induction
with respect to I(x).

1. I(x) = 0.
We have x = x* = v and the assertion follows from (2) and (4).

2. 1(1):1 L=, .., J).
2.1 jefl,. n}

In this case we have x—* = x*— and k;,» = 0. From (2 the induction
assumptlon and (4) we obtain

L_(g(), to, u)dw??

ey~

I:z(g(): fo, )

-~ o

j Hyo (Ko(®), s kign—1 (), 9(), u)dw”

= H, '(ko(a)’ LR ] kl(!*}"l(a): 0: g()’ r)'
22.j, = 0.

We have ky,+(2) = 1 and a* = a—*. From (2), the induction assumption
and Lemma 2 we get

Ia(g(.)s rO, Ila ( I‘o,'u)du

o

-~

5 Ha"(ko(a)a [RRE kl(a*)(a)—la g(), u)du

)

H (ko(a), ceey k,(am,(ot), g(), f),
which completes the proof.
In the sequel we use the notation

ct 7l
T K=k (r=kp’
where k,re{0,1,...}), k <r.
-.The. following assertions will be useful for the mean square error
estimation:

ProposiTioN 2. If. o, feM, te[ty, T]1 and f(),g()eM,, pe{l, m},
then for

E(L(fO): tor 1), g ), to, 1)) =: P3A

we have

5) Pph =0 for o* # B*
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and _
Ha™) . (t““'t )a‘(a,[f)
(6) P‘" ng( H C::f!;"'k(ﬁ)) O'(CZO, ﬁ)’ fOI‘ a* = ﬂ*a
where
K, i= sup  E|(f(s1), g(52))
sr"ze[t()'n
and
e l{a*)
o(x, By 1= Y (ki(@)+k(B)+1(x*)
i=0

In (6) equality holds if (-} = g(1) = 1.
By partial integration we obtain easily the following

Lemma 3. For k,rel0,1,...} and te[ty, T] we have
’ :
k!
K _ ) k+r+1
J(r—u) (u—to) du = (I\+r+1)'( .

Proof of Proposition 2. By Proposition 1 and (4) the assertion (5) can
easily be shown by the use of well-known properties of the Itd integral.

We prove (6) by induction with respect to [{x*).

1. 1(x*) = I(p*) = 0.

‘Obviously, we have a* = p* = v and from Proposition 1 and (4) in the
case l{a) = 1, [(f) = 1 we get

Py = (J ff(ul)dul. du,(a,,f fj(ul)dul ..du;w'))
f J‘j j (f (uy), g(uy))duy ... duypdu, ... duy,

(l’ _ to)l(fl) +Up) a®) k(@ (t _ to)a(a,ﬂ)

< KmW = K, H Ck(a)+k(ﬂ))m'

Analogously we get this assertion for the case I(x) = 0 or [(f) = 0.
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2. 1) = 1(p*) =1 > 1, oa* = B* = (jy, ..., j).
From Proposition 1, (4) and the induction assumption we obtain

’ : — )@ ,
Pl = E( (t—kl(lgTHa*— (kol@), ..., kimy (@), £, u)dwg’],

Yo

(B .
R (tk—l:;)!—H,r-(ko(ﬁ),--.,kl-l(ﬁ),g('),u)dW.?”)

fo

t

J‘ (r— u)k,(rzl +k(P

R B (o), - ks @, 100, 4),

To

Hye_ (ko(B) ... ki21 (), 9 ), u))du

(@) (f u)k,(ﬂ)+ki(ﬂ) (u —t )ﬁ(ﬂ.ﬂ)
ng H G i) + k() J ki () k, (B)! & («, B! du,
where
—1
5@, B) = Y (ki@+k(B)+1-1.
i=0

Using Lemma 3 we get

Pk, (@) (Kywy + kyg) G (0, P (2 — )" P
Kral 11, o) ik 0, Broa, B
- t —ta)o@H
= Ky, D Cy :a;ﬂ(m)( a(ao’) B

It is easy to see that, in the whole proof equality holds if () = g() = 1.
Thus the proof is completed.

Now we obtain the following mean square error estimations:

Tueorem 2. If for given ye {1, 2, ...} and for alla e A y Y B(A,) there exists f,
such that f;(to, x,)) €M, for acA, and f(, x)el,, for a€B(A,), then for
IE[IO, T]

y+1

Ellx~x"1* = Y Y E(L(L(, x), to, 1), L{f(, %), to, 1))

I=0 (a,8)eG}"

- 202 \2 (£ =)+
< max <1,;+t§)( y K}:z(( nn(zz:;r) )(t to)

aeB(4 ) (y+10
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where (°)
G\ .= {(a, B eB(A,)xB(4,): _
y+2-—1
I@*) = I(8*) = I and n(a) = n(f) = [TJ}

and

K; := sup E[f(t, x)I*.
rs[ro,T]
Remark 1. By a straightforward application of Proposition 2-it follows
from the .first part of Theorem 2 that

5 vt L@ » (=t
E|lx,—x}1|* < { Z ( Z Kfpfa' '1:10 C";(a)'*‘ki_(ﬁ))gl } (y+ 1) ’

=0 (peGY
where

2y +2-1/2]- (v +1-D/2)

t—to

o = : :
y+2

Remark 2. If we assume additionally in Theorem 2 that for all xe B(4,)

l()+n(a)
< Ha)+m(a) | N7~ N !,
Kfa C1 C2 l: 2 v
then it follows (similarly as in the proof of Theorem 2) that
+1
™ Elle—*/1I* < C3(Calt=1o) ** / [”7—]‘

Obviously, the mean square convergence of the sequence of approximations
for y — oc follows from (7). Using Proposition 2 it is possible to show also
mean square convergence in many other cases. From (7) we also obtain, by a
well-known assertion (see [3], p. 20), almost sure convergence which will be
considered in the next section.

Proof of Theorem 2.

1. By Theorem 1 and (3) we have

Elx,=x?? = E|| ¥ L%, x). to, )

aeB(Ay)

E(L (4> %) fo 1) 1g(fs ¢, %), to, 1)).

(2.8)eB(4)) X B(4)

It follows from Proposition 2 and the definition of 4, and B(4,) that we
have only to sum up those (x, f)eB(4,)xB(4,) for which 0 < I(a¥)
= I(f*) < y+1. Further, we know that, for all € B(4,), l(a)+n(a) = I(«¥)+

(%) [a] denotes the greatest integer not greater than a.
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+2n(a) = y+1 or y+2. Therefore, we have n(a) = (y+1—1(z*)/2 or
(y+2—1I(a*))/2, respectively. Since n(x) is an integer, we get

n(a) = [(y+2-1(=%)/2].
Thus we have to sum up all (x, B) for which
0<l(@*) =1(f*) <y+1 and n() = n(p) = [(y+2-1(*)/2].

This proves the first part of the theorem.

--2. For k;, r,€{0,1,...},ie{0,1, ..., I}, le{0, 1, ...}, we can show by
induction with respect to ko+ro+k; +#; that
k . k k. +k
. Crgtrg Chibr, < Ckg+r[;+k1+r1-
We have
k.+..+k

. .
k.
(8) 11 Cijvr, S Clptrgt ottty -
i=o

By Theorem 1 and (3) we obtain

e, =%l < X LA, x)s tos )l

aeB(Ar)

and by the Minkowski inequality and Proposition 2 we get

Ellx,—xXM)2 < Y (EL(LC, %), to, 1)

1eB(AY)
Ka® (t — to)@* e 12
< K Cintey) o
@Z(A,,( 1L Cho) i n a)

We noted above that I{x)+n{x) = y+1 or y+2.-Now by (8) we obtain

y+1
Elix,—xf?’[iz < ( Z K}/Z(C;(;L))vl/Z)Z(_t:tL)/_ max {1, ﬂ ,
acB(4,) : y+1! 42

which completes the proof.

3. Almost sure convergence. In the following we give a condition for
uniform almost sure convergence of the approximations.

Treorem 3. If for all xe M there exists f, such that f, (to, x, ), f (-, x)eM,,
and K; < C; C§?*™® then the approximations x{" converge for y ~ oo P-a.s.
to x,, uniformly with respect to te[ty, T], and

X, = limx{" = x, + 3 fi(to, ) L, (to, 1) P-as.

Yoo asM
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Remark 3. For example, the assumptions of Theorem 3 are fulfilled for
the linear It0 process

((am X, +b(1)) dW(J)

Camm,

n
x+z

=01

<o

tefty, T] with E||x, |I*> < c.
Remark 4. It follows from the proof of Theorem 3 that under the
assumptions of Theorem 3

C[s(v+1)/2]
E sup [Ix,—xP|? < C4m-

tos‘ESS.T

For the proof of Theorem 3 we need
LEmMMA 4. For all ae M\{v}, te[ty, T], and g(V e, pe{l, m},

)l(a) + nia)

r—
J:=E sup I|I ) to, S ”2 < K < Q)= n(a)( l(cx)'

ty £5€t
Proof. We show this assertion by induction with respect to I(a).

1.I{e) =1, a =].
1.Y.j=0.
From (2) we get

J =E sup | fg(u dul|* < E sup (s—to) j llg @ du < K,(t—1t0)?

t0$s$t t <5<t 0

1.2. je{l, ..., n}.
By (2) we have

I(J')(g(.), tO’ ) = Ig dW&’), tO < S < Ts
which is a square integrable martingale, and by the Doob inequality we obtain

J =E sup || g(u)dw‘”“2 4 sup E jg(u dw||?

r0-<.s-<..t O\s\t

< 4sup [Elg@l*du < K, 4(t—10).

<s<t
10\ = 10

2 l(“) l 2: o = (ils 7.]!)



48 : E. Platen and W. Wagner

From (2) and the induction assumption it follows that

J =E sup |[f L—(g0), to, u)du]|® < (t—1t,) f E sup .- (g (), to,s)szu

tos.i\l tO o\s\
! (u—tg)@ )+ nla)
< (t—to) | K, -4m=™) 0 P
( O)t{ g l(a—)l U
x—)+nla— - -
< K, g U (00T
. v,IA(QC,»—)!(l(Ot—)+n(a—)+1) © )

T 22 j,e{l,...,n}.
From (2) the Doob inequality, and the induction assumption we get

E sup [HI g(),to, dw("“2

t0$S<t t

< 4 sup E||jl_ (90), to, u)dwl|? < 4 sup jE”I- 90, to, u |]2du

tySsst 1 Ss<

du

) Ham)— N (u_to)!(a y+n(a—)
< 4IE sup [[I- (g (), to,s)” du < 4ng-4(°‘ )= na=)
to toSsSu t o —)!

(t— to)l(a— ytnz—)+1 (t— ro)l(tx)+ n(a)

< K, -4i@—ne _ _ <K - i@ —nla)
¢ =) (l@=)+n(e—)+1) g (o) ’

which completes the proof.

Proof of Theorem 3. We have already noted that »the number of
elements of B(4,), ye{1, 2, ...}, is not greater than (n+1)"*!. Therefore, for
ye{l, 2, ...} we obtain from Theorem 1 and (3) the following:

C VW i=E _sup I =xP2 =E sup || ¥ L{4(, %), to, 8)|?

o SSST 1,Ss<T xeB(4.)

< (r+1y*t Y E sup ||1 (2, x), to, S)|*-

aeB(d,) t,SSST
"Using Lemma 4 and the assumption of the theorem we have

v < (n+ 1).v+ 1 Z Kfa - 4 @)= n®) (T—— to)"“)*_”‘“’/l(a)!

ateB(Ay) :

S @+ T Cy {4C,H(T—tg) O+ ma1q)

. aeB(Ay)
From the proof of Theorem 2 we know that for aeB(4,)

P+1< ) +n@) < 7+2
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and
1) = I@@*)+n(0) = t(a*)+[(y+2—1(a*))/2]
> 1@®2+[(r+1)/2] > [(y+1)/2].
Therefore we get
VO < G {(n+1)-4Co(T—tg) I+ 1)/2] < C, CEV2[(p+ 1)/2]!.

Now for ¢ > 0 we obtain

a0 o0

Y P( sup [lx—xP > <& 2y VO <2C,e 2 Y Ci/ktl
1 y=1 1

1, <SST Py

e
< 2C e %exp{Cs} < 0,

and almost sure convergence holds (see [3], p. 20), which completes the prbof.

4. Weak convergence. For the investigation of bounded continuous
functionals of x,, te[ty, T], it is useful to know whether the sequence of
approximations is weakly convergent on C[t,, T] (see [1]). The following
theorem presents a sufficient condition for weak convergence.

THEOREM 4. If for y — oo the family of finite-dimensional distributions of
x", te[to, T, is convergent to that of x,, te[ty, T, and

Ellfy(to, X JI* < C,C*™  for all aeM,

then for y — oo the sequence of approximations is weakly convergent on
Clty, T] to x,, te[ty, T]). »

Remark 5. For example, the family of finite-dimensional distributions is
convergent in the above-discussed cases of mean square convergence.

In the proof of Theorem 4 we will use ‘

LemMA 5. For all aeM and te[ty,, T] we have

E(L(to, )* | %) < 620 7MD (£ 1o 1@/ (@)t

Proof. We prove this assertion by induction with respect to I(a).

1. I{a}) = 0. .

We have @ = v and by (2) we obtain I, (to, £) = 1 and () = n(z) = 0, so
that the inequality in the lemma is fulfilled.

2 ) =121, a = (i, ... J)-

21.j, = 0. ‘

4! — Prob. Math. Statist. 3(1)
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From (2) and the induction assumption we get
1

E(ut(to’ t)|4 | 'gF‘o) < E((Ij Iﬂ— (to’ u)du|2)2 | '%o)
t0

E((t—to) [ Hae (to, w2 du)? | 7,)

To

t
< E((t~=t0)* | Us- (to, wl*du | 7))

t
< (t—to)® § E(I,- (to, W) | #,)du
Iy )
(r_r )20 =)+ mia =)+ L

Ha—){(2(1a— )+n(a~—-)+1)

(t —_ to)z(l(a) + n())
I(@)!

< (t— t0)3 62(’('1')_"(“*”

< 62(1(!!) = n(a))

22 jie{l, ..., n}.
By (2), a well-known inequality (see [2], p. 458), and the mductmn
assumption we have

! 2
E(Falto, 01| 7)) = E(] La- (to, Wil | 7
tO

< 36(t—1o) j E(I,- (to, w)* | #,)du
(f— tO)Z(I(a—)+n(a—})+1
=) (2(@-)+n@=)+1)

< g2 ay L 10) T
o)

< 62 (t-— to) 62(!(«—)— nla—))

which completes the proof of the lemma.

Proof of Theorem 4. For all t;, t,€[ty, T],t; = 1;,and ye{l, 2,...}
it follows from (3) that

V = E|lx"— x‘”u“ < E| Z Y fulto, %) (I (to, t1)— (16, t)||*

r=1 aed \4

r—1

< L 2E[ T filto, % (ulto, )= Lo, t)|*-

aeAr\A’

-1
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Since the number of elements of 4,\4,_;, re{l, ..., y}, is not greater than
(n+1), by (2) we have

V< T a1 Y E||flter % (Ialtor t1)—Tulto, )¢
r=1

asA A, _

< YO0 T Elo 5IE( § Lo 0 dnf | 7)

aeAr\Ar_ 1 t,

2m+DP Y- Ellfilto, X JI*(t; —13) %
1 dEAr\A’_l
X ((T—t0)* +36) f sup E(|I,- (to, s)I* | &, )du

t2 t Ss<T

TIMQI II

For 2€4,\A4,_,, re{l, ..., 7}, we obtain .

le)+n(a) = l{(a*)+2n(x) =
and

Ha) = r—(r—1@®)2 = r/2+1(%/2 > [r/2].

It follows from Lemma 5 together with the assumptions of the theorem that

V< (-t Ce Y Cilnt 21

< (t;—1)*Cs Y, C4/k! < (t;—15)* Cg exp {C4}.
k=1

From this estimation we infer that the weak convergence of the sequence of
approximations holds (see [1] or [3], p. 485).
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