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Abstract. We determine the optimal constants Cp and C∗p such that the
following holds: if f is a nonnegative martingale and S(f) and f∗ denote
its square and maximal functions, respectively, then

‖S(f)‖p ¬ Cp‖f‖p, p < 1,

and
‖S(f)‖p ¬ C

∗
p‖f∗‖p, p ¬ 1.
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1. INTRODUCTION

Square-function inequalities play an important role in harmonic analysis, clas-
sical and noncommutative probability theory and other areas of mathematics. The
reader is referred to, for example, the works of Stein [9], [10], Dellacherie and
Meyer [5], Pisier and Xu [7] and Randrianantoanina [8]. The purpose of this paper
is to provide some new sharp bounds for the moments of a square function under
the assumption that the martingale is nonnegative.

Let us start with some definitions. Throughout the paper, (Ω,F ,P) will be a
nonatomic probability space, filtered by a nondecreasing family (Fn)∞n=0 of sub-
σ-fields of F . Let f = (fn) be a real-valued martingale adapted to (Fn) and let
df = (dfn) stand for its difference sequence:

df0 = f0, dfn = fn − fn−1, n = 1, 2, . . .

∗ Partially supported by MEiN Grant 1 PO3A 012 29 and The Foundation for Polish Science.
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A martingale f is called simple if for any n = 0, 1, 2, . . . the random variable
fn takes only a finite number of values and there exists an integer m such that
fn = fm almost surely for n > m.

For any nonnegative integer n, let Sn(f) and f∗n be given by

Sn(f) =
( n∑

k=0

|dfk|2
)1/2 and f∗n = max

0¬k¬n
|fk|.

Then one defines the square function S(f) and the maximal function f∗ by

S(f) = lim
n→∞Sn(f) and f∗ = lim

n→∞ f∗n.

In the paper we are interested in the inequalities between the moments of S(f), f
and f∗. For p ∈ R, let

‖f‖p = sup
n
‖fn‖p = sup

n
(E|fn|p)1/p if p 6= 0,

and
‖f‖0 = sup

n
‖fn‖0 = sup

n
exp(E log |fn|)

with the convention that if p ¬ 0 and P(|X| = 0) > 0, then ‖X‖p = 0.
Let us mention here some related results from the literature. An excellent

source of information is the survey [2] by Burkholder (see also the references
therein). The inequality

(1.1) cp‖f‖p ¬ ‖S(f)‖p ¬ Cp‖f‖p if 1 < p <∞,

valid for all martingales, was proved by Burkholder in [1]. Later, Burkholder re-
fined his proof and showed that (cf. [2]) the inequality holds with c−1

p = Cp =
p∗ − 1, where p∗ = max{p, p/(p − 1)}. Furthermore, the constant cp is optimal
for p ­ 2, Cp is the best for 1 < p ¬ 2 and the proof carries over to the case of
martingales taking values in a separable Hilbert space. The right inequality (1.1)
does not hold for general martingales if p ¬ 1 and nor does the left one if p < 1.
It was shown by the author in [6] that c1 = 1/2 is the best. In the remaining cases
the optimal constants cp and Cp are not known.

Let us now turn to a related maximal inequality. If p > 1, then the estimate
(1.1) and Doob’s maximal inequality imply the existence of some finite c∗p, C∗p
such that, for any martingale f ,

(1.2) c∗p‖f∗‖p ¬ ‖S(f)‖p ¬ C∗p‖f∗‖p.

On the other hand, neither of the inequalities holds for p < 1 without additional
assumptions on f . The limit case p = 1 was studied by Davis [4], who proved the
validity of the estimate using a clever decomposition of the martingale f . Then
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Burkholder proved in [3] that the optimal choice for the constant C∗1 is
√

3. In the
other cases (except for p = 2, when c∗2 = 1/2 and C∗2 = 1) the optimal values of
c∗p and C∗p are not known.

In the paper we study the square-function inequalities for the case p < 1 under
the additional assumption that the martingale f is nonnegative. The main results of
the paper are summarized in the theorem below. For p < 1, let

Cp =
(∞∫

1

(1 + t2)p/2 dt

t2

)1/p

if p 6= 0,

C0 = lim
p→0

Cp = exp
(∞∫

1

1
2

log(1 + t2)
dt

t2

)
.

THEOREM 1.1. Assume f is a nonnegative martingale.
(i) We have

(1.3) ‖f‖p ¬ ‖S(f)‖p ¬ Cp‖f‖p if p < 1,

and the inequality is sharp.
(ii) We have

(1.4) ‖S(f)‖p ¬
√

2‖f∗‖p if p ¬ 1,

and the constant
√

2 is the best possible.

The result above can be easily extended to the continuous-time setting, using
standard approximation arguments (see, for example, Section 6 in [3] for details).
Let (Ω,F ,P) be a complete probability space and let (Ft)t­0 be a continuous-
time filtration such that F0 contains all the events of probability 0. For any adapted
right-continuous martingale M = (Mt) which has limits on the left, let [M,M ]
denote its square bracket (consult e.g. [5]). Let M∗ = supt |Mt| and ‖M‖p =
supt ‖Mt‖p.

THEOREM 1.2. Let M ­ 0 be as above.
(i) We have

(1.5) ‖M‖p ¬ ‖[M, M ]1/2‖p ¬ Cp‖M‖p if p < 1,

and the inequality is sharp.
(ii) We have

(1.6) ‖[M, M ]1/2‖p ¬
√

2‖M∗‖p if p ¬ 1,

and the constant
√

2 is the best possible.
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The paper is organized as follows. In the next section we describe the tech-
nique invented by Burkholder to study the inequalities involving a martingale, its
square and maximal function and present its extension, which is needed to establish
(1.6). Section 3 is devoted to the proofs of the inequalities (1.5) and (1.6), while in
Section 4 it is shown that these estimates are sharp. Finally, in the last section we
present a different proof of the inequality (1.6) in the case p = 1.

2. ON BURKHOLDER’S METHOD

The inequalities (1.5) and (1.6) will be established using Burkholder’s tech-
nique, which reduces the problem of proving a given martingale inequality to find-
ing a certain special function. Let us state the following version of Theorem 2.1
from [3].

THEOREM 2.1. Suppose that U and V are functions from (0,∞)2 into R
satisfying

(2.1) V (x, y) ¬ U(x, y)

and the further condition that if d is a simple F-measurable function with Ed = 0
and P(x + d > 0) = 1, then

(2.2) EU(x + d,
√

y2 + d2) ¬ U(x, y).

Under these two conditions, we have

(2.3) EV
(
fn, Sn(f)

) ¬ EU(f0, f0)

for all nonnegative integers n and simple positive martingales f .

The condition (2.2) can be immediately obtained from the following inequal-
ity, which is a bit easier to check: for any positive x and any number d > −x,

(2.2′) U(x + d,
√

y2 + d2) ¬ U(x, y) + Ux(x, y)d.

The inequality (1.6) may be proved using a special function involving three
variables. However, this function seems to be difficult to construct and we have
managed to find it only in the case p = 1 (see Section 5 below). To overcome
this problem, we need an extension of Burkholder’s method allowing to work with
other operators: we will establish a stronger result, that is

(2.4) ‖T (f)‖p ¬
√

2‖f∗‖p if p ¬ 1.

Here, given a martingale f , we define a sequence
(
Tn(f)

)
by

T0(f) = |f0|, Tn+1(f) =
(
T 2

n(f) + df2
n+1

)1/2 ∨ f∗n+1, n = 0, 1, 2, . . . ,

and T (f) = limn→∞ Tn(f). Observe that Tn(f) ­ Sn(f) for all n, which can be
easily proved by induction. Thus (2.4) implies (1.6).
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THEOREM 2.2. Suppose that U and V are functions from {(x, y, z)∈(0,∞)3 :
y ­ x ∨ z} into R satisfying

(2.5) V (x, y, z) ¬ U(x, y, z),

(2.6) U(x, y, z) = U(x, y, x ∨ z)

and the further condition that if 0 < x ¬ z ¬ y and d is a simple F-measurable
function with Ed = 0 and P(x + d > 0) = 1, then

(2.7) EU
(
x + d,

√
y2 + d2 ∨ (x + d), z

) ¬ U(x, y, z).

Under these three conditions, we have

(2.8) EV
(
fn, Tn(f), f∗n

) ¬ EU(f0, f0, f0)

for all nonnegative integers n and simple positive martingales f .

P r o o f. By (2.5), it suffices to show that

EU
(
fn, Tn(f), f∗n

) ¬ EU(f0, f0, f0)

for all nonnegative integers n and simple positive martingales f . To this end,
we will prove that the process (Xn)∞n=1, given by Xn = U

(
fn, Tn(f), f∗n

)
, is

a supermartingale. Observe that Tn+1(f) =
(
T 2

n(f) + df2
n+1

)1/2 ∨ fn+1 for any
n = 0, 1, 2, . . . Hence we have, by (2.6),

E
[
U

(
fn+1, Tn+1(f), f∗n+1

)|Fn

]

= E
[
U

(
fn + dfn+1,

(
T 2

n(f) + df2
n+1

)1/2 ∨ (fn + dfn+1), f∗n
)
|Fn

]
.

Using the inequality (2.7) conditionally on Fn, this can be bounded from above by
U

(
fn, Tn(f), f∗n

)
. ¥

As previously, we do not work with the property (2.7), but replace it with the
following stronger condition: for any 0 < x ¬ z ¬ y and any d > −x,

(2.7′) U
(
x + d,

√
y2 + d2 ∨ (x + d), z

) ¬ U(x, y, z) + Ad,

where

A = A(x, y, z) =

{
Ux(x, y, z) if x < z,

limt↑z Ux(t, y, z) if x = z.
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3. PROOFS OF (1.5) AND (1.6)

Let us start with some reductions. By standard approximation, it is enough to
establish the inequalities (1.5) and (1.6) for simple and positive martingales only.
The next observation is that, by Jensen’s inequality, we have ‖f‖p = ‖f0‖p. There-
fore, all we need is to show the following “local” versions: for n = 0, 1, 2, . . .,

(3.1) ‖f0‖p ¬ ‖Sn(f)‖p ¬ Cp‖f0‖p if p < 1,

and

(3.2) ‖Tn(f)‖p ¬
√

2‖f∗n‖p if p ¬ 1.

Finally, we will be done if we establish the inequalities (3.1) and (3.2) for p 6= 0;
the case p = 0 follows then by passing to the limit. Hence, till the end of this
section, we assume p 6= 0.

3.1. Proof of (3.1). First note that the left inequality is obvious, since ‖f0‖p =
‖S0(f)‖p ¬ ‖Sn(f)‖p. Furthermore, clearly, it is sharp; hence we may restrict
ourselves to the right inequality in (3.1). It is equivalent to

(3.3) pESp
n(f) ¬ pCp

pEfp
0 .

Let us introduce the functions Vp, Up : (0,∞)2 → R by

Vp(x, y) = pyp

and

Up(x, y) = px
∞∫
x

(y2 + t2)p/2 dt

t2
.

Now (3.3) can be stated as

EVp

(
fn, Sn(f)

) ¬ EUp(f0, f0),

that is, the inequality (2.3). Therefore, by Theorem 2.1, we need to check the con-
ditions (2.1) and (2.2′).

The inequality (2.1) follows from the identity

Up(x, y)− Vp(x, y) = px
∞∫
x

[(y2 + t2)p/2 − yp]
dt

t2
.

To check (2.2′), note that the integration by parts yields

(3.4) Up(x, y) = p(y2 + x2)p/2 + p2x
∞∫
x

(y2 + t2)p/2−1dt
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and

Upx(x, y) = p
∞∫
x

(y2 + t2)p/2 dt

t
− p

(y2 + x2)p/2

x
= p2

∞∫
x

(y2 + t2)p/2−1dt.

Hence we must prove that

p
(
y2 + d2 + (x + d)2

)p/2 + p2(x + d)
∞∫

x+d

(y2 + d2 + t2)p/2−1dt

− p(y2 + x2)p/2 − p2x
∞∫
x

(y2 + t2)p/2−1dt− p2d
∞∫
x

(y2 + t2)p/2−1 ¬ 0

or, equivalently,

F (x) := p

(
y2 + d2 + (x + d)2

)p/2 − (y2 + x2)p/2

x + d

− p2
[∞∫

x

(y2 + t2)p/2−1dt−
∞∫

x+d

(y2 + d2 + t2)p/2−1dt
] ¬ 0.

We have

F ′(x)(x + d)2 = p2(y2 + x2)p/2−1(x + d)d

− p
[(

y2 + d2 + (x + d)2
)p/2 − (y2 + x2)p/2

]
,

(3.5)

which is nonnegative due to the mean value property of the function t 7→ tp/2.
Hence

F (x) ¬ lim
s→∞F (s) = 0

and the proof is complete.

3.2. Proof of the inequality (3.2). We start with an auxiliary technical result.

LEMMA 3.1. (i) If z ­ d > 0 and y > 0, then
(3.6)

p
[
(y2 + d2 + z2)p/2 − (

y2 + (z − d)2
)p/2]− p2z

z∫
z−d

(y2 + t2)p/2−1dt ¬ 0.

(ii) If −z < d ¬ 0 and Y > 0, then

(3.7) p

(
Y + (z + d)2

)p/2 − (Y 2 − d2 + z2)p/2

z + d
+ p2

z∫
z+d

(Y + t2)p/2−1dt ¬ 0.

(iii) If y ­ z ­ x > 0, then

(3.8) p[(y2 + x2)p/2 − 2p/2zp] + p2 x2 + y2

2x

z∫
x

(y2 + t2)p/2−1dt ­ 0.
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(iv) If D ­ z ­ x > 0 and y ­ z, then

(3.9) p
[(

y2 + (D − x)2 + D2
)p/2 − (y2 + x2)p/2 + 2p/2(zp −Dp)

]

− p2D
z∫
x

(y2 + t2)p/2−1dt ¬ 0.

P r o o f. Denote the left-hand sides of (3.6)–(3.9) by F1(d), F2(d), F3(x) and
F4(x), respectively. The inequalities will follow by simple analysis of the deriva-
tives.

(i) We have

F ′1(d) = p2d
[
(y2 + d2 + z2)p/2−1 − (

y2 + (z − d)2
)p/2−1] ¬ 0,

as (z − d)2 ¬ d2 + z2. Hence F1(d) ¬ F1(0+) = 0.
(ii) The expression F ′2(d)(z + d)2 equals

p

[
(Y − d2 + z2)p/2− (

Y +(z + d)2
)p/2 +

p

2
(Y − d2 + z2)p/2−1 · 2d(z + d)

]

­ 0,

due to the mean value property. This yields F2(d) ¬ F2(0) = 0.
(iii) We have

F ′3(x) =
p2

2

(
1− y2

x2

)[
(y2 + x2)p/2−1x +

z∫
x

(y2 + t2)p/2−1dt
] ¬ 0

and F3(x) ­ F3(z) = p[(y2 + z2)p/2 − 2p/2zp] ­ 0.
(iv) Finally,

F ′4(x) = p2(D − x)
[− (

y2 + (D − x)2 + D2
)p/2−1 + (y2 + x2)p/2−1

] ­ 0,

and hence

F4(x) ¬ F4(z)

= p
[(

y2 + (D − z)2 + D2
)p/2 − (y2 + z2)p/2

]− p2p/2(Dp − zp).

The right-hand side decreases as y increases. Therefore

F4(z) ¬ p
[(

z2 + (D − z)2 + D2
)p/2 − 2p/2Dp

] ¬ 0,

as z2 + (D − z)2 + D2 ¬ 2D2. ¥
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Now we reduce the inequality (3.2) to (2.8). Let

Vp(x, y, z) = p
(
yp − 2p/2(x ∨ z)p

)

and

(3.10) Up(x, y, z) = p2x
x∨z∫
x

(y2 + t2)p/2−1dt + p(y2 + x2)p/2 − p2p/2(x ∨ z)p.

Now we see that (3.2) is equivalent to

EVp

(
fn, Tn(f), f∗n

) ¬ EUp(f0, f0, f0),

which is (2.8). Hence we need to check (2.5), (2.6) and (2.7′).
The property (2.5) is a consequence of the identity

Up(x, y, z)− Vp(x, y, z) = p[(y2 + x2)p/2 − yp] + p2x
x∨z∫
x

(y2 + t2)p/2−1dt.

The equation (2.6) follows directly from the definition of Up. All that is left is to
prove the last condition. We consider two cases.

1. The case x + d ¬ z. Then (2.7′) reads

p
(
y2 + d2 + (x + d)2

)p/2 + p2(x + d)
z∫

x+d

(y2 + d2 + t2)p/2−1dt

¬ p(y2 + x2)p/2 + p2(x + d)
z∫
x

(y2 + t2)p/2−1dt

or, in the equivalent form,

p

(
y2 + d2 + (x + d)2

)p/2 − (y2 + x2)p/2

x + d

− p2
[ z∫

x

(y2 + t2)p/2−1dt−
z∫

x+d

(y2 + d2 + t2)p/2−1dt
] ¬ 0.

Denote the left-hand side by F (x) and observe that (3.5) is valid; this implies
F (x) ¬ F

(
(z − d) ∧ z

)
. If z − d < z, then F (z − d) ¬ 0, which follows from

(3.6). If, conversely, z ¬ z − d, then F (z) ¬ 0, which is a consequence of (3.7)
(with Y = y2 + d2).

2. The case x + d > z. If x + d ­
√

y2 + d2, then (2.7′) takes the form

p[(y2 + x2)p/2 − 2p/2zp] + p2(x + d)
z∫
x

(y2 + t2)p/2−1dt ­ 0.
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The left-hand side is an increasing function of d, hence, if we fix all the other
parameters, it suffices to show the inequality for the least d, which is determined by
the condition x + d =

√
y2 + d2, that is, d = (y2 − x2)/(2x); however, then the

estimate is exactly (3.8). Finally, assume x + d <
√

y2 + d2. Then (2.7′) becomes

p
(
y2 + d2 + (x + d)2

)p/2 − p2p/2(x + d)p

¬ p(y2 + x2)p/2 + p2(x + d)
z∫
x

(y2 + t2)p/2−1dt− p2p/2zp,

which is (3.9) with D = x + d.

4. SHARPNESS

Now we will prove that the constants Cp and
√

2 in (1.5) and (1.6) cannot be
replaced by smaller ones. We will construct the appropriate examples on the prob-
ability space

(
[0, 1],B([0, 1]), | · |), a unit interval equipped with its Borel subsets

and the Lebesgue measure. We will identify a set A ∈ B([0, 1]) with its indicator
function.

4.1. Sharpness of (1.5). Fix ε > 0 and define f by

fn = (1 + nε)
(
0, (1 + nε)−1

]
, n = 0, 1, 2, . . .

Then it is easy to check that f is a nonnegative martingale, df0 = (0, 1],

dfn = ε
(
0, (1 + nε)−1

]− (
1 + (n− 1)ε

)(
(1 + nε)−1,

(
1 + (n− 1)ε

)−1
]

for n = 1, 2, . . ., and

S(f) =
∞∑

n=0

(
1 + nε2 + (1 + nε)2

)1/2
((

1 + (n + 1)ε
)−1

, (1 + nε)−1
]
.

Furthermore, for p < 1 we have ‖f‖p = 1 and, if p 6= 0,

‖S(f)‖pp = ε
∞∑

n=0

(
1 + nε2 + (1 + nε)2

)p/2

(
1 + (n + 1)ε

)
(1 + nε)

,

which is a Riemann sum for Cp
p . Finally, the case p = 0 is dealt with by passing to

the limit; this is straightforward, as the martingale f does not depend on p.

4.2. Sharpness of (1.6). Fix M > 1, an integer N ­ 1 and let f = f (N,M) be
given by

fn = Mn(0,M−n], n = 0, 1, 2, . . . , N, and fN = fN+1 = fN+2 = . . .
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Then f is a nonnegative martingale,

f∗ = MN (0,M−N ] +
N∑

n=1

Mn−1(M−n, N−n+1],

df0 = (0, 1], dfn = (Mn −Mn−1)(0, M−n]−Mn−1(Mn,M−n+1],

for n = 1, 2, . . . , N, and dfn = 0 for n > N . Hence the square function equals
(

1 +
N∑

k=1

(Mk −Mk−1)2
)1/2

=
(

1 +
M − 1
M + 1

(M2N − 1)
)1/2

on the interval (0,M−N ], and is given by
(

1 +
n−1∑

k=1

(Mk −Mk−1)2 + M2n−2

)1/2

=
(

1 +
M − 1
M + 1

(M2n−2 − 1) + M2n−2

)1/2

on the set (M−n,M−n+1] for n = 1, 2, . . . , N .
Now, if M →∞, then ‖S(f)‖1 → 1 +

√
2N and ‖f‖1 → 1 + N ; therefore,

for M and N sufficiently large, the ratio ‖S(f)‖1/‖f‖1 can be made arbitrarily
close to

√
2. Similarly, for p < 1, ‖S(f)‖p/‖f‖p →

√
2 as M →∞ (here we may

keep N fixed). Thus the constant
√

2 is the best possible.

5. ON AN ALTERNATIVE PROOF OF (1.6)

Let us present here (the sketch of) the direct proof of the inequality (1.6) in
the case p = 1, without using the operators

(
Tn(f)

)
. As previously, it is based on

a construction of the special function; here is a modification of Theorem 2.1 from
[3] for the case of positive martingales.

THEOREM 5.1. Suppose that U and V are functions from (0,∞)3 into R
satisfying

(5.1) V (x, y, z) ¬ U(x, y, z),

(5.2) U(x, y, z) = U(x, y, x ∨ z)

and the further condition that if 0 < x ¬ z and d is a simple F-measurable func-
tion with Ed = 0 and P(x + d > 0) = 1, then

(5.3) EU(x + d,
√

y2 + d2, z) ¬ U(x, y, z).

Under these three conditions, we have

(5.4) EV
(
fn, Sn(f), fn

) ¬ EU(f0, f0, f0)

for all nonnegative integers n and simple positive martingales f .
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To show (1.6), take V (x, y, z) = y −√2(x ∨ z) and introduce the function

U(x, y, z) =
1

2
√

2
y2 − x2 − (x ∨ z)2

x ∨ z
.

These functions satisfy (5.1), (5.2) and (5.3). Indeed, the inequality (5.1) is equiv-
alent to (

y −√2(x ∨ z)
)2

2
√

2(x ∨ z)
­ 0,

and the equation (5.2) follows immediately from the definition of U . The condition
(5.3) is a consequence of the stronger estimate

U(x + d,
√

y2 + d2, z) ¬ U(x, y, z) + Ux(x, y, z)d,

valid for x, y, z > 0 and d > −x. The final observation is that U(x, x, x) ¬ 0
for all positive x. By the theorem above and the approximation argument (leading
from simple to general martingales), (1.6) follows. The proof is complete.
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