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BIVARIATE NATURAL EXPONENTIAL FAMILIES
WITH LINEAR DIAGONAL VARIANCE FUNCTIONS∗
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Abstract. It is well known that natural exponential families (NEFs) are
uniquely determined by their variance functions (VFs). However, there exist
examples showing that even an incomplete knowledge of a matrix VF can
be sufficient to determine a multivariate NEF. Following such an idea, in
this paper a complete description of bivariate NEFs with linear diagonal of
the matrix VF is given. As a result we obtain the families of distributions
with marginals that are some combinations of Poisson and normal distribu-
tions. Furthermore, the characterization extends (in two-dimensional case)
the classification of NEFs with linear matrix VF obtained by Letac [11]. The
main result is formulated in terms of regression properties.

2000 AMS Mathematics Subject Classification: Primary: 62E10,
44A10; Secondary: 60E05, 60E10.

Key words and phrases: Natural exponential families, variance func-
tions, Laplace transforms.

1. INTRODUCTION

1.1. Natural exponential families. Let µ be a positive measure on Rn. Its
Laplace transform is defined as

(1.1) Lµ(θ) =
∫
Rn

exp〈θ, x〉µ(dx)

and Θ(µ) = Int{θ ∈ Rn : Lµ(θ) < ∞}. We write kµ for the cumulant function
of µ, that is, kµ(θ) = log Lµ(θ) for θ ∈ Θ(µ). We will denote by M the set of
measures µ such that Θ(µ) 6= ∅ and µ is not concentrated on an affine hyperplane
of Rn. If µ ∈M, the set of probabilities

(1.2) F (µ) = {P (θ, µ)(dx) : θ ∈ Θ(µ)},
where P (θ, µ)(dx) = exp{〈θ, x〉 − kµ(θ)}µ(dx), is called the natural exponential
family (NEF) generated by µ, see [12].

∗ Research supported by MNiSW grant N20104332/3272.
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Since kµ is strictly convex on Θ(µ), its derivative k′µ : Θ(µ)→ MF defines
a diffeomorphism; MF is called the domain of means of µ. Let us denote by
Ψµ : MF → Θ(µ) the inverse function of k′µ. The mapping m→ P

(
Ψµ(m), µ

)
is

bijective; it is a parametrization by the mean of the NEF F . We define the variance
function (VF) of the NEF by

(1.3) VF (m) = k′′µ
(
Ψµ(m)

)
= [Ψ′µ(m)]−1,

and using the matrix notation:

(1.4) VF (m) =
[
∂2kµ(θ)
∂θi∂θj

∣∣∣
θ=Ψµ(m)

]n

i,j=1

, m ∈MF .

It is well known that the mapping m→ VF (m) on MF characterizes NEF uniquely.
It depends only on the family F , not on a particular measure used to generate it.
Using this fact Letac [11] described all NEFs with linear VF: VF (m) = Bm + C,
where B : Rn → Sn is a linear operator, C ∈ Sn, and Sn is the space of n × n
symmetric real matrices. This result was extended by Casalis [3], [4], where a
simple quadratic matrix VF was considered: VF (m) = am ⊗ m + Bm + C,
m ⊗m = [mimj ]

n
i,j=1. Hassairi and Zarai [7] generalized Casalis’ result to cu-

bic NEFs, i.e. NEFs with cubic variance functions. On the other hand, there were
successful attempts to identify the NEFs by incomplete knowledge of the variance
function. Kokonendji and Seshadri [9] gave a characterization of the Gaussian law
in Rn based on the fact that det V (m) = const. Kokonendji and Masmoudi [8]
characterized Poisson-Gaussian families by generalized variance extending the re-
sult given in [9] for the Gaussian families. Letac and Wesołowski [13] classified
NEFs with VF of the type p−1m⊗m− ϕ(m)Mν , where Mν is a symmetric ma-
trix associated with a quadratic form ν, and m 7→ ϕ(m) an unknown real function.
The diagonal family of NEFs in Rn:

(1.5) diag V (m) =
(
f1(m1), . . . , fn(mn)

)
, m = (m1, . . . , mn),

was considered by Bar-Lev et al. [2]. This class was entirely characterized only by
the diagonal of VF and it was shown that fi, i = 1, 2, . . . , n, have to be polynomials
of degree at most two.

It is of interest to describe other NEFs with fi =fi(m1, . . . , mn), i = 1, . . . , n,
in (1.5). In general it seems to be a rather difficult task. In this paper we solve this
problem for n = 2 and fi(m), i = 1, 2, being affine functions of m = (m1,m2).

Since the above condition on the diagonal of VF can be formulated using re-
gression properties, this identification of NEFs can be considered in the framework
of regression characterizations. Some of the papers relevant to the subject are Laha
and Lukacs [10], Fosam and Shanbhag [5], Gordon [6], Bar-Lev [1].

This condition on the diagonal of the VF leads to a system of linear PDEs for
the cumulant transform. Following a routine technique we conclude that a general
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solution of this system is of the form

k(θ) =
∑

ψ∈Ψ
Qψ(θ)e〈ψ,θ〉,(1.6)

where Qψ are certain polynomials and Ψ ⊂ C2 is a finite set (see Appendix 6.1).
The basic difficulty we deal with in this paper is to identify all probabilistic so-
lutions among functions (1.6), that is to decide whether L = ek for k given by
(1.6) is the Laplace transform of a probability measure. The crucial problem is to
find the admissible forms of polynomials Qψ, ψ ∈ Ψ. This is the basic reason why
we restrict ourselves to the case n = 2. Though in the case n > 2 the cumulant
transform obtained as a solution of the system of PDEs is also of the form (1.6),
the number of elements of the set Ψ does not allow to translate the methods we
developed for n = 2 to this case; see Section 5.

The paper is organized as follows. Section 2 contains the main result (The-
orem 2.1). The third section collects auxiliary propositions useful in the proof of
Theorem 2.1. For the sake of clarity the detailed proof will be divided into two
parts. The main part will be presented in the fourth section and the rest of the proof
will be stated in Appendix 6.3. Section 5 is intended to explain the difficulties of
analogous investigations in higher dimensions.

1.2. Variance functions and regression conditions. The condition that the di-
agonal of the matrix VF is an affine function, that is

diag V (m1,m2) = (am1 + bm2 + e, cm1 + dm2 + f),

in terms of kµ = k takes the form

∂2k

∂θ2
1

= a
∂k

∂θ1
+ b

∂k

∂θ2
+ e,(1.7)

∂2k

∂θ2
2

= c
∂k

∂θ1
+ d

∂k

∂θ2
+ f,(1.8)

where a, b, c, d, e, f ∈ R.
On the basis of the conditions above one can provide examples of NEFs which

do not belong to the diagonal family (see [2]) and with the VFs that are not affine
functions of m1 and m2 (see [7]). We present an example of such a measure by
giving its Laplace transform.

EXAMPLE 1.1. Let ν be the distribution of (X1, X2) with

(1.9) L(θ1, θ2) =

= exp
(

e

2
θ2
1 + D1

(
exp(θ1 + θ2)− 1

)
+ D2

(
exp(−θ1 + θ2)− 1

))
,
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where e/2 > 0. The diagonal of the VF generated by ν has the form

diag V (m1, m2) = (m2 + e,m2),

and hence it is not a matrix VF of the diagonal family. The off-diagonal entry of V :

∂2k

∂θ1∂θ2
=

∂k

∂θ1
− θ1,

is not an affine function of ∂k/∂θ1(= m1) and ∂k/∂θ2(= m2).

We now proceed to present (1.7) and (1.8) in terms of regression conditions.
For any NEF F (µ) with a variance function V and θ0 ∈ IntΘ(µ) one can con-
struct a random variable X with P (θ0, µ)(dx) as its distribution. It follows that
0 ∈ IntΘX = Int{θ : Ee〈X,θ〉 < ∞}. Let k(θ) = logE exp〈X, θ〉 = log L(θ).
Then

∂k

∂θi
=

1
L

∂L

∂θi
,(1.10)

∂2k

∂θ2
i

= − 1
L2

(
∂L

∂θi

)2

+
1
L

(
∂2L

∂θ2
i

)
, i = 1, 2.(1.11)

REMARK 1.1. Let X = (X1, X2) and Y = (Y1, Y2) be two identically dis-
tributed independent random vectors such that X ∼ P (θ0, µ), E exp〈X, θ〉 <∞,
θ ∈ ΘX and IntΘX 3 0, where ΘX = Θ(µ)− θ0. Then the following conditions
are equivalent to (1.7) and (1.8), respectively:

E
(
(X1 − Y1)2|X + Y

)
= 2e + a(X1 + Y1) + b(X2 + Y2),(1.12)

E
(
(X2 − Y2)2|X + Y

)
= 2f + c(X1 + Y1) + d(X2 + Y2).(1.13)

Let us write the conditions equivalent to (1.12) and (1.13):

E(X2
1 −X1Y1) exp(〈θ,X + Y〉) =

aE
(
X1 exp(〈θ,X+Y〉)) + bE

(
X2 exp(〈θ,X+Y〉))+ eE exp(〈θ,X+Y〉),

E(X2
2 −X2Y2) exp(〈θ,X + Y〉) =

cE
(
X1 exp(〈θ,X + Y〉)) + dE

(
X2 exp(〈θ,X + Y〉)) + fE exp(〈θ,X + Y〉).

By the argument of independence, an equivalent formulation of the above is:

∂2L

∂θ2
1

· L−
(

∂L

∂θ1

)2

= a
∂L

∂θ1
· L + b

∂L

∂θ2
· L + eL2,

∂2L

∂θ2
2

· L−
(

∂L

∂θ2

)2

= c
∂L

∂θ1
· L + d

∂L

∂θ2
· L + fL2.

Using (1.10) and (1.11) we can see that (1.7) and (1.8) are other equivalent formu-
lations of (1.12) and (1.13).
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REMARK 1.2. The following conditions are equivalent to (1.12) and (1.13),
respectively:

E(X2
1 −X1Y1 − aX1 − bX2 − e|X + Y) = 0,(1.14)

E(X2
2 −X2Y2 − cX1 − dX2 − f |X + Y) = 0.(1.15)

REMARK 1.3. In (1.7) and (1.8) constants e and f can be eliminated only in
the case when ad− bc 6= 0.

In such a case it is sufficient to take an appropriate Dirac measure and consider
its convolution with the distribution of X. The question is whether there exist con-
stants α and β such that k̃(θ1, θ2) = k(θ1, θ2) + αθ1 + βθ2 satisfies homogeneous
PDE. Thus the necessary conditions for α and β are

aα + bβ = e and cα + dβ = f.

These equations have the solution if ad− bc 6= 0.

2. MAIN RESULT

We can now formulate our main result. The following characterization based
on the regression property provides (also through Remark 1.1) a classification of
measures generating NEFs with affine diagonal of a matrix variance function.

THEOREM 2.1. Let X = (X1, X2) and Y = (Y1, Y2) be two identically dis-
tributed independent random vectors such that E exp(〈X, θ〉) < ∞ for θ ∈ Θ,
IntΘ 3 0 and (1.12), (1.13) hold. Then the distribution of X is determined by

X1 =
3∑

i=1

εiZi + ε4Z4 + ξ1G1 + ξ2G2 + s1,(2.1)

X2 =
3∑

i=1

ωiZi + ω4Z5 + ρ1G1 + ρ2G3 + s2,(2.2)

where Zi, i = 1, . . . , 5, Gj , j = 1, 2, 3, are independent random variables such
that Z’s have Poisson and G’s standard normal distributions, s1, s2 ∈ R. Coeffi-
cients εi, ωi, ξj , ρj ∈ R, i = 1, . . . , 4, j = 1, 2, depend on parameters a, . . . , f .

REMARK 2.1. In Theorem 2.1 only the following ten cases are possible:
I. If ad− bc 6= 0, then ξ1 = ξ2 = ρ1 = ρ2 = 0 (there is no Gaussian part in (2.1)

and (2.2)).
1. If bc 6= 0, then

ε4 = ω4 = 0, s1 =
ed− fb

bc− ad
, s2 =

af − ec

bc− ad
,
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and if there exist j non-zero different real roots (αi, i = 1, . . . , j, j ¬ 3) of the
equation

α3 − 2aα2 + α(a2 − bd) + b(ad− bc) = 0,

then εi = αi, ωi = (α2
i − aαi)/b for i = 1, . . . , j, and εi = ωi = 0 for i =

j + 1, . . . , 3.
2. If b 6= 0, c = 0, then ε4 = a, ε1 =ω1 =ω4 = 0, s2 = −f/d, s1 = (bf − ed)/ad,

and
if a2 + 4bd > 0, then

ε2 =
a−√a2 + 4bd

2
, ε3 =

a +
√

a2 + 4bd

2
, ω2 = ω3 = d,

if a2 + 4bd = 0, then ε2 = a/2, ε3 = 0, ω2 = d, ω3 = 0,
if a2 + 4bd < 0, then ε2 = ε3 = 0, ω2 = ω3 = 0.

3. If b = 0, c 6= 0, then ω4 = d, ε4 =ω1 = ε1 = 0, s1 = −e/a, s2 = (ce− fa)/da,
and
if d2 + 4ac > 0, then

ω2 =
d−√d2 + 4ac

2
, ω3 =

d +
√

d2 + 4ac

2
, ε2 = ε3 = a,

if d2 + 4ac = 0, then ω2 = d/2, ω3 = 0, ε2 = a, ε3 = 0,
if d2 + 4ac < 0, then ω2 = ω3 = 0, ε2 = ε3 = 0.

4. If b = 0, c = 0, then ε1 = ε4 = a, ω1 = ω4 = d, ε2 = ε3 = ω2 = ω3 = 0,
s1 = −e/a, s2 = −f/d.

II. If ad− bc = 0, then at least one of the parameters ξ1, ξ2, ρ1, ρ2 is different from
zero (there exists a Gaussian part in (2.1) and (2.2)).

1. If b = d = 0, ac 6= 0, then (af − ec)/a ­ 0 and ρ2 =
√

(af − ec)/a, ρ1 =
ξ1 = ξ2 = 0, s1 = −e/a, s2 ∈ R, ε3 = ε4 = ω3 = ω4 = 0,
if ac > 0, then ε1 = ε2 = a, ω1 =

√
ca, ω2 = −√ca,

if ac < 0, then ε1 = ε2 = ω1 = ω2 = 0.
2. If bc 6= 0 and db 6= a2, then [b(ed− fb)]/(db− a2) ­ 0 and ε4 = ω4 = ξ2 =

ρ2 = ε3 = ω3 = 0,

ξ1 =

√
b(ed− fb)
bd− a2

, ρ1 = −a

b

√
b(ed− fb)
bd− a2

,

s1 ∈ R, s2 =
1
b

(
b(ed− fb)
bd− a2

− as1 − e

)
,

and if there exist j non-zero different roots (αi, i = 0, . . . , j, j ¬ 2) of the
equation α2 − 2αa + a2 − bd = 0, then εi = αi, ωi = (α2

i − aαi)/b for i =
0, . . . , j, j ¬ 2, and εi = ωi = 0 for i = j + 1, . . . , 2.
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3. If bc 6= 0 and db = a2, then ed − fb = 0 and ε4 =ω4 = ξ2 =ρ2 =ε3 =ω3 =0,

ξ1 ∈ R+, ρ1 = −a

b
ξ1, s1 ∈ R, s2 =

1
b

(
b(ed− fb)
bd− a2

− as1 − e

)
,

and if there exist j non-zero different roots (αi, i = 0, . . . , j, j ¬ 2) of the
equation α2 − 2αa + a2 − bd = 0, then εi = αi, ωi = (α2

i − aαi)/b for i =
0, . . . , j, j ¬ 2, and εi = ωi = 0 for i = j + 1, . . . , 2.

4. If a = c = 0, bd 6= 0, then (ed− fb)/d ­ 0 and ξ1 =
√

(ed− fb)/d, ρ1 =
ρ2 = ξ2 = 0, s1 ∈ R, s2 = −f/d, ε3 = ε4 = ω3 = ω4 = 0,
if bd > 0, then ε1 =

√
bd, ε2 = −

√
bd, ω1 = ω2 = d,

if bd < 0, then ε1 = ε2 = ω1 = ω2 = 0.

5. If a = b = 0, then e ­ 0 and ε1 =ε2 =ε3 =ε4 =0, ω1 = ω2 = ω3 = 0, ξ2 = 0,
if cd 6= 0, then ξ1 =

√
e, ω4 = d,

ρ1 = − c

d

√
e, ρ2 = 0, s1 ∈ R, s2 =

1
d

(
ec2

d2
− cs1 − f

)
,

if c = 0, d 6= 0, then ξ1 =
√

e, ω4 = d, s1 ∈ R, s2 = −f/d, ρ1 = ρ2 = 0,
if c 6= 0, d=0 and e=0, then ω4 = ρ1 = ξ1 =0, ρ2 =

√
cs1 + f, s1­−f/c,

s2 ∈ R.
6. If c = d = 0, then f ­ 0 and ε1 = ε2 = ε3 =ω1 = ω2 = ω3 = ω4 = 0, ρ2 = 0,

if ab 6= 0, then ρ1 = −√f, ε4 = a,

ξ1 =
b

a

√
f, ξ2 = 0, s1 =

1
a

(
fb2

a2
− bs2 − e

)
, s2 ∈ R,

if a 6= 0, b = 0, then ρ1 =
√

f, ε4 = a, s1 = −e/a, s2 ∈ R, ξ1 = ξ2 = 0,
if a = 0, b 6= 0 and f = 0, then ε4 = ξ1 = ρ1 = 0, s1 ∈ R, ξ2 =

√
bs2 + e,

s2 ­ −e/b.

7. If a = b = c = d = 0, then ξ1 = γ1, ρ1 = γ2, ξ2 =
√

e− γ2
1 , ρ2 =

√
f − γ2

2 ,
0 < γ1 <

√
e, 0 < γ2 <

√
f .

3. AUXILIARY FACTS

PROPOSITION 3.1. If X and Y satisfy the conditions given in Theorem 2.1,
then {θ : E exp(〈X, θ〉) <∞} = R2.

P r o o f. By the theory of differential equations the general solution of (1.7)
and (1.8) has the following form (see Appendix 6.1):

(3.1) k(θ) =
∑

ψ∈Ψ

Qψ(θ) exp(〈ψ, θ〉),
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where Ψ ⊂ C2 is a finite set and Qψ(θ) are polynomials in θ, i.e. (3.1) is the
cumulant transform of X = (X1, X2) at least in a neighborhood of the origin. For
(θ1, θ2) arbitrarily chosen in R2 there exist a, b such that the point (θ1, θ2) belongs
to the line (at, bt), t ∈ R. Let us consider a random variable U(a, b) = aX1 + bX2.
Its Laplace transform Ma,b

U is well defined in the neighborhood of the origin. We
can extend its domain to the real line, since Ma,b

U (θ) = ek(at,bt), k given in (3.1),
is an analytic function on R. Thus E exp(θ1X1 + θ2X2) = Ma,b

U (t0) <∞ for t0
defined by (θ1, θ2) = (at0, bt0). ¥

PROPOSITION 3.2. If the cumulant generating function k satisfies (1.7) and
(1.8) for all (θ1, θ2) ∈ R2, then

(3.2) k(θ1, θ2) = A0 +
∑

1¬i¬j¬2

Aijθiθj +
2∑

i=1

Siθi

+
2∑

i,j=1

Bij exp(λijθi) +
3∑

i=1

Di exp(αiθ1 + βiθ2),

where Aij , Si, Bij , Di, λij , αi, βj are some real constants.

P r o o f. Suppose first that b 6= 0 (the case of b = 0 will be treated separately).
Then from (1.7) and (1.8) (see Appendix 6.1) we have

(3.3)
∂4k

∂θ4
1

− 2a
∂3k

∂θ3
1

− (bd− a2)
∂2k

∂θ2
1

+ b(ad− bc)
∂k

∂θ1
+ b(ed− fb) = 0.

It leads to the characteristic equation:

(3.4) λ4 − 2aλ3 − (bd− a2)λ2 + b(ad− bc)λ = 0.

Let us discuss possible solutions of (3.4) knowing that k is the cumulant transform
of a probability measure. We consider only the cases that provide non-polynomial
real functions or real polynomials of order greater than 2.

1. C o m p l e x s o l u t i o n s o f (3.4). Suppose that there exists a complex
solution λ1 = λ11 + iλ12. Thus k is of the form

(3.5) k(θ1, θ2) = A0(θ2)+
+exp(λ11θ1)

(
A1(θ2) cos(λ12θ1)+ A2(θ2) sin(λ12θ1)

)
+A3(θ2) exp(λ2θ1),

where Ai(·), i = 0, 1, 2, 3, are complex functions of θ2. Let us fix θ2. Then k(θ) =
k(θ, θ2) is (up to an additive constant) the cumulant transform of a univariate prob-
ability measure. Consider the corresponding characteristic function:

φ(t) = A exp
{
A0(θ2) + A3(θ2) exp(λ2it)

+ exp(λ11it)
(
A1(θ2) cos(λ12it) + A2(θ2) sin(λ12it)

)}
,
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where A > 0 is a normalizing constant. We can rewrite the formula as follows:

φ(t) = A exp
{

A0(θ2) + A3(θ2) exp(λ2it) + exp(λ11it)

×
(
A1(θ2)

exp(−λ12t)+exp(λ12t)
2

+A2(θ2)
exp(−λ12t)−exp(λ12t)

2
(−i)

)}
.

The absolute value of φ(t) is

|φ(t)| = α

∣∣∣∣exp
{

A1(θ2) cos(λ11t)
(

exp(−λ12t) + exp(λ12t)
2

)

+ A2(θ2) sin(λ11t)
(

exp(−λ12t)− exp(λ12t)
2

)}∣∣∣∣,

where α > 0. Note that |φ(t)| is unbounded if A1(θ2) or A2(θ2) are different from
zero. By Proposition 3.2, θ2 can be chosen arbitrarily in R, so A1 ≡ A2 ≡ 0.

2. M u l t i p l e r o o t s o f (3.4) d i f f e r e n t f r o m z e r o. Suppose that
there exists double root (necessarily real) at λ1 6= 0. The case of triple root can be
treated analogously. Here we have

k(θ1, θ2) = A0(θ2) + A1(θ2)θ1 exp(λ1θ1) + A2(θ2) exp(λ1θ1)
+ A3(θ2) exp(λ2θ1),

where Ai(·), i = 0, 1, 2, 3, are complex functions of θ2. Our aim is to show that
A1 ≡ 0. As in the previous case, we fix θ2 and consider the univariate characteristic
function

φ(t) = A exp
[
A0(θ2) + A1(θ2)

(
it cos(λ1t)− t sin(λ1t)

)

+ A2(θ2) exp(λ1it) + A3(θ2) exp(λ2it)
]
.

We examine whether |φ(·)| is bounded. There is a positive constant M such that

|φ(t)| = M exp
[
A1(θ2)

(− t sin(λ1t)
)]

.

Thus A1 ≡ 0, otherwise |φ(·)| is unbounded.

3. T r i p l e r o o t o f (3.4) a t z e r o. Suppose that there exists triple root
at zero. In this case

k(θ1, θ2) = A0(θ2) + A1(θ2)θ1 + A2(θ2)θ2
1 + A3(θ2) exp(λ1θ1) + C(θ2)θ3

1,

where C(·), Ai(·), i = 0, 1, 2, 3, are complex functions of θ2. We are going to show
that C ≡ 0. By fixing θ2 we obtain the univariate Laplace transform:

L(θ) = A exp
[
A1(θ2)θ + A2(θ2)θ2 + C(θ2)θ3 + A3(θ2)

(
exp(γ1θ)− 1

)]
,
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where A > 0 is a normalizing constant, and the characteristic function has the form
(3.6)
φ(t) = A exp

[
A1(θ2)it+A2(θ2)(it)2+C(θ2)(it)3 +A3(θ2)

(
exp

(
γ1(it)

)− 1
)]

.

Now we use the following extension of the Marcinkiewicz theorem (Theorem 2
in [12]).

THEOREM 3.1. Let Pm(t) =
∑m

v=0 cvt
v be a polynomial of degree m. The

function

(3.7) f(t) = exp[λ1(eit − 1) + λ2(e−it − 1) + Pm(t)]

is a characteristic function if and only if λ1 ­ 0, λ2 ­ 0, m ¬ 2 and P2(t) =
a1(it)− a2t

2, where a1 and a2 are real and a2 ­ 0.

If we put λ2 = 0 in (3.7), Theorem 3.1 implies C(θ2) = 0 and A4(θ2) ­ 0.
As a consequence of the discussion of the cases 1–3, k has the following form:

(3.8) k(θ1, θ2) = A0(θ2) + A1(θ2)θ1 + A2(θ2)θ2
1 +

3∑

i=1

A3i(θ2) exp(λiθ1).

As a general solution for b > 0, applying (3.8) to (1.7) and (1.8), we obtain k given
by (3.2).

Now, what is left to do is to analyze the case of b = 0. In this case the general
solution of (1.7) and (1.8) is

k(θ1, θ2) = A0(θ2) + A1(θ2)θ1 + A2(θ2) exp(θ1a) + A3(θ2)θ2
1,

where Ai(·), i = 0, 1, 2, 3, satisfy

A0(θ2) = A00 + A01θ2 + A02θ
2
2 + A03 exp(δ0θ2),

A1(θ2) = A10 + A11θ2,

A2(θ2) = A20 + A23 exp(δ1θ2),
A3(θ2) = A30,

and Aij , i, j = 0, 1, 2, 3, δl, l = 0, 1, are some real constants. Thus k is of the form
given by (3.2) also in this case. ¥

PROPOSITION 3.3. If k given in (3.2) is the cumulant transform of a proba-
bility measure, then

• A11, A22, 4A11A22 −A2
12 ­ 0;

•
∑

1¬i¬j¬2 Aijθiθj provides the Gaussian parts in (3.2).
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P r o o f. Let us define functions g and h:

g(θ1, θ2) =
∑

1¬i¬j¬2

Aijθiθj , h(θ1, θ2) = k(θ1, θ2)− g(θ1, θ2).

Since k is the cumulant transform of a probability measure, ϕ(t) = ek(it,0) is the
characteristic function of its marginal distribution. Hence |ϕ| is bounded on R.

Suppose that A11 < 0. Then g(it, 0) = −A11t
2 and the function

|ϕ(t)| = | exp(−A11t
2)|∣∣ exp

(
h(it, 0)

)∣∣

is unbounded on R. This contradicts the fact that ϕ is a characteristic function, and
hence A11 ­ 0. Analogously one can prove that A22 ­ 0.

Let us show that 4A11A22 −A2
12 ­ 0. Suppose that A11 > 0. Then

g(θ1, θ2) = A11

(
θ1 +

A12

2A11
θ2

)2

+
(

A22 − A2
12

4A11

)
θ2
2.

We define the characteristic function

ψ(t) = exp
{

k

(
− A12

2A11
it, it

)}
.

Then

g

(
− A12

2A11
it, it

)
= −

(
A22 − A2

12

4A11

)
t2;

hence ψ is unbounded on R if 4A11A22 −A2
12 < 0.

If A11 = A22 = 0, we have to show that A12 = 0. In such a case we define a
characteristic function η(t) = exp [k(it, it)]. η is bounded on R iff A12 = 0. ¥

4. PROOF OF THEOREM 2.1

Now our aim is to show that the polynomials in (3.2) satisfy the conditions
given in Theorem 2.1. Using the formula for k given by (3.2), it suffices to prove
that coefficients Bij and Di are nonnegative.

Applying (3.2) to (1.7) and (1.8), we obtain a system of relations between
coefficients: Aij , Si, Bij , Di, λij , αi, βj (see Appendix 6.2).

In the proof we discuss various cases based on relations between coefficients
a, . . . , d.

• ad− bc 6= 0, bc 6= 0. From (6.11)–(6.14) in Appendix 6.2 we see that A12 =
A11 = A22 = 0. By (6.19)–(6.22) we have B11 = B12 = B21 = B22 = 0. It leads
to k of the form

(4.1) k(θ1, θ2) = A0 +
2∑

i=1

Siθi +
3∑

i=1

Di exp
(

αiθ1 +
α2

i − aαi

b
θ2

)
,
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where αi ∈ R, i = 1, 2, 3. With no loss of generality we can assume that α1 <
α2 < α3.

Suppose that α1 > 0. An argument of convexity of k implies that D3 ­ 0.
Indeed, let us consider

(4.2)
∂2k

∂θ2
1

=
3∑

i=1

Diα
2
i exp

(
αiθ1 +

α2
i − aαi

b
θ2

)
.

Since ∂2k/∂θ2
1 ­ 0 for all θ1 ∈ R, we have D3 ­ 0.

We now proceed to show that D1, D2 ­ 0. Consider the Laplace transform

L̃(θ1, θ2) = A
∞∑

j=0

1
j!

[ 3∑

i=1

Di exp
(

αiθ1 +
α2

i − aαi

b
θ2

)]j

,

where A > 0, that is, L̃ is the Laplace transform of a discrete probability measure
in R2. Note that D1 as the unique coefficient at exp

(
α1θ1 + [(α2

1 − aα1)/b]θ2

)
is

nonnegative, and AD1 is the mass of the point
(
α1, (α2

1 − aα1)/b
)
.

To deal with D2 it is sufficient to show that there is no l > 1 such that

α2 = lα1,(4.3)

α2
2 − aα2

b
= l

α2
1 − aα1

b
.(4.4)

Since α1 ­ 0, (4.3) and (4.4) imply l = 1, which contradicts the assumption that
α1 < α2. Then D2 is the unique coefficient at exp

(
α2θ1 + (α2

2 − aα2)/b
)
, and

thus D2 ­ 0.

The same conclusions can be drawn for the case α3 ¬ 0, if we consider the
Laplace transform L̃(−θ1, θ2).

Now we are left with α1 < 0 < α2 < α3. By (4.2), the argument of convexity
assures that D1 ­ 0 and D3 ­ 0. Since there are no m, r > 1 such that

α2 = rα1 + mα2,

α2
2 = rα2

1 + mα2
2,

D2 is the unique coefficient at exp
(
α2θ1 + [(α2

2 − aα2)/b]θ2

)
, and thus D2 ­ 0.

• ad− bc = 0, bc 6= 0. Since

A22 =
a2

b2
A11, A12 = −2

a

b
A11 and 4A22A11 −A2

12 = 0,
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the assumption leads to

k(θ1, θ2) = A0 + A11

(
θ1 − a

b
θ2

)2

+ D1 exp
(

α1θ1 +
α2

1 − aα1

b
θ2

)

+ D2 exp
(

α2θ1 +
α2

2 − aα2

b
θ2

)
+ S1θ1 + S2θ2.

Consider θ1 such that

α1θ1 +
α2

1 − aα1

b
θ2 = 0.

Then we can build a cumulant function k(θ) = k
(− [(α1 − a)/b]θ, θ

)
:

k(θ) = A0 + D1 + A11

(
α1

b
θ

)2

+ D2 exp
(

α2
2 − α2α1

b
θ

)
.

Applying Theorem 3.1 we get D2 ­ 0. Analogously one can prove that D1 ­ 0.
As a result we obtain

k(θ1, θ2) =
b(ed− fb)
2(bd− a2)

(
θ1 − a

b
θ2

)2

+ D1 exp
(

α1θ1 +
α2

1 − aα1

b
θ2

)

+ D2 exp
(

α2θ1 +
α2

2 − aα2

b
θ2

)
+ S1θ1 +

1
b

(
b(ed− fb)
bd− a2

− aS1 − e

)
θ2.

• ad− bc 6= 0, b 6= 0, c = 0. If there exists Di 6= 0 for i = 1, 2, 3, from (6.23)
and (6.24) we obtain:

βi = 0 and αi = a or βi = d and α2
i − aαi − db = 0.

We analyze separately particular cases.

• a > 0. Let a2 + 4bd > 0. In this case k has the form

(4.5) k(θ1, θ2) = B11

(
exp(aθ1)− 1

)

+ D1

(
exp(aθ1 + dθ2)− 1

)
+ D2

(
exp

(
a−√a2 + 4bd

2
θ1 + dθ2

)
− 1

)

+ D3

(
exp

(
a +
√

a2 + 4bd

2
θ1 + dθ2

)
− 1

)
+

bf − ed

ad
θ1 − f

d
θ2.

We want to show that B11 ­ 0, D1 ­ 0, D2 ­ 0, D3 ­ 0. Since ad 6= 0, putting
(4.5) into (1.7) yields D1 = 0.
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Consider ∂2k/∂θ2
1. Since θ2 can be arbitrarily chosen in R, one can easily

verify that B11 ­ 0. The argument of convexity also assures that D3 ­ 0. To deal
with D2 let us write an expansion of the Laplace transform:

(4.6) L(θ1, θ2) =
∞∑

j=0

1
j!

[
B11 exp(aθ1) + D2 exp

(
a−√a2 + 4bd

2
θ1 + dθ2

)

+ D3 exp
(

a +
√

a2 + 4bd

2
θ1 + dθ2

)]j

.

Note that D2 is the unique coefficient at exp
(
[(a−√a2 + 4bd)/2]θ1 + dθ2

)
in

(4.6), and hence D2 ­ 0.
If a2 + 4bd = 0, then

k(θ1, θ2) =

= B11

(
exp(aθ1)− 1

)
+ D2

(
exp

(
a

2
θ1 + dθ2

)
− 1

)
+

bf − ed

ad
θ1 − f

d
θ2.

Convexity of k implies that B11 ­ 0 and D2 ­ 0.
If a2 + 4bd < 0, then

k(θ1, θ2) = B11

(
exp(aθ1)− 1

)
+

bf − ed

ad
θ1 − f

d
θ2.

• a < 0. One can apply similar arguments to those in the previous case to
show that B11, D2, D3 ­ 0.

• ad− bc 6= 0, b = 0, c 6= 0. In this case the analysis is similar and we skip it.
• ad− bc = 0, b = d = 0, a 6= 0, c 6= 0. Suppose that ac > 0. Then

(4.7) k(θ1, θ2) = A0 + S1θ1 + S2θ2 + A12θ1θ2 + A22θ
2
2 + A3θ

3
2

+ D1 exp(θ1a + θ2

√
ca) + D2 exp(θ1a− θ2

√
ca).

Without any loss of generality we assume that S1 = S2 = 0. Let us fix θ1 and
consider the Laplace transform

L(θ) = exp
(
A0 + A12θθ1 + A22θ

2 + A3θ
3

+ D1 exp(θ1a + θ
√

ca) + D2 exp(θ1a− θ
√

ca)
)
.

Theorem 3.1 assures that A3 = 0 and D1, D2 ­ 0. From Proposition 3.3 we have
A12 = 0, and k is of the form

k(θ1, θ2) =
af − ec

2a
θ2
2 + D1[exp(θ1a + θ2

√
ca)− 1]

+ D2[exp(θ1a−
√

caθ2)− 1]− e

a
θ1 + s2θ2,

where D1, D2 ­ 0.
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If ac < 0, then

k(θ1, θ2) =
af − ec

2a
θ2
2 −

e

a
θ1 + s2θ2.

5. PROBLEMS IN HIGHER DIMENSIONS

One can try to generalize the result given above to Rn for n > 2. Analogously
to the 2-dimensional case, by considering a characteristic equation we obtain the
general formula of the Laplace transform L:

(5.1) log L(θ1, . . . , θn) =
n∑

k1,...,kn=0

n∑

i1,...,in=0

[Ai1,...,in,k1,...,knθk1
i1

. . . θkn
in

× exp(λ1,i1,...,inθi1 + . . . + λn,i1,...,inθin)]

+
n∑

k1,...,kn=0

n∑

i1,...,in=0

n∏
l=0

[(
Bl,1,i1,i2,...,in cos(δl,i1,i2,...,inθi1) + Bl,2,i1,i2,...,in

× sin(γl,i1,i2,...,inθi2)
) · exp(ρl,1,i1,...,inθi1 + . . . + ρl,n,i1,...,inθin)

]
θk1
i1

. . . θkn
in

,

where Ai1,...,in,k1,...,kn , Bl,j,i1,...,in , λm,i1,...,in , δl,i1,...,in , γl,i1,...,in , ρl,m,i1,...,in ∈ R
for 0 ¬ i1, . . . , in, k1, . . . , kn ¬ n, 1 ¬ l, m ¬ n, 1 ¬ j ¬ 2. There arises a prob-
lem while one tries to eliminate non-probabilistic solutions. Namely, in order to
obtain the Laplace transforms of probability measures (from (5.1)), it is necessary
to put some restrictions on the coefficients.

Even in R3 the problem of identifying a measure from the cumulant transform
seems to be difficult as the example below indicates.

EXAMPLE 5.1. Let the diagonal of VF be of the form

(5.2) diag V (m1,m2,m3) = (m1, m1,m1 + m2).

From (5.2), by solving the system of partial differential equations, we obtain the
cumulant transform

(5.3) k(θ1, θ2, θ3) =
= exp(θ1 − θ3)(A1 + A3θ3 − 2A3θ2) + exp(θ1 + θ3)(A2 + A4θ3 − 2A4θ2)

+ 1−A2 −A3 + B2θ3 + B3θ
2
3 + B4θ

3
3 + 2B3θ3 + 6B4θ2θ3.

But we do not know the sign of each of Ai, Bi, i = 1, 2, 3, 4 (which is necessary to
identify the measure). To fix the signs we need to cope with a combination of expo-
nential functions and polynomials of order greater than two. To this end, it would
be required a kind of generalization of the Marcinkiewicz theorem which goes be-
yond Theorem 3.1. Unfortunately, such a generalization is not known, at least to
us, and consequently we are not able to give a complete description corresponding
to the cumulant generating function of the form (5.3).
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On the other hand, there exists a natural exponential family with VF of the
form (5.2). If we put A3 = A4 = B4 = 0, and we assume that A1 ­ 0, A2 ­ 0,
B3 ­ 0, then (5.3) is the cumulant transform of a probability measure, namely,
the combination of Poisson and Gaussian distributions. The NEF generated by this
measure is an example of the family which does not belong to the class with linear
matrix VF (described in [7]). It can be easily checked if we take ∂2k/∂θ1θ3 which
is not an affine function of ∂k/∂θ1, ∂k/∂θ2, ∂k/∂θ3.

Acknowledgments. I wish to thank J. Wesołowski for many conversations and
useful suggestions. I would like also to thank G. Letac for insightful comments.

6. APPENDIX

6.1. Solution of (1.7) and (1.8). Since we deal with a non-homogeneous sys-
tem of partial differential equations, the solution does not always exist (it depends
on the relations between parameters a, . . . , f ). Our aim is to provide a general form
of k satisfying (1.7) and (1.8). Let us consider separately two cases.

• b 6= 0. In such a case, as a consequence of (1.7) and (1.8), we obtain

(6.1)
∂4k

∂θ4
1

− 2a
∂3k

∂θ3
1

− (bd− a2)
∂2k

∂θ2
1

+ b(ad− bc)
∂k

∂θ1
+ b(ed− fb) = 0.

Hence we want to solve the fourth order ordinary differential equation (ODE). The
general theory of ODEs with constant coefficients assures that the solution can be
written in the form

(6.2) k(θ1, θ2) =
∑

λ∈Λ1

Aλ(θ1, θ2) exp(λθ1),

where Λ1 ⊂ C is a set of the solutions of the characteristic equation

(6.3) λ4 − 2aλ3 − (bd− a2)λ2 + b(ad− bc)λ = 0,

and

(6.4) Aλ(θ1, θ2) =
3∑

i=0

aλi(θ2)θi
1,

where aλi(·), i = 0, 1, 2, 3, λ ∈ Λ, are complex functions.

In order to find the explicit form of functions aλi(·) we apply (6.2) and (6.4)
to (1.8). It is easy to verify that aλi(·) also satisfy ODEs with constant coefficients
(of order at most two). Thus we can present complex functions aλi(·) as

(6.5) aλi(θ2) =
∑

γ∈Υλi

qλi(θ2) exp(γθ2),
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where Υλi ⊂ C is a finite set that depends on λ and i (Υλi is the set of all the
solutions of a characteristic equation derived from the ODE satisfied by aλi(·)),
and qλi(·) are real polynomials of degree at most two.

It follows from the above that the general solution of (1.7) and (1.8) can be
written in the form

(6.6) k(θ1, θ2) =
∑

ψ∈Ψ
Qψ(θ) exp(〈θ, ψ〉),

where Ψ ⊂ Λ1 × Λ2 (coordinates are treated symmetrically). Here Λ2 (analo-
gously to Λ1) stands for the set of all the solutions of the characteristic equation
derived from the following fourth order ODE:

(6.7)
∂4k

∂θ4
2

− 2d
∂3k

∂θ3
2

− (ac− d2)
∂2k

∂θ2
2

+ c(ad− bc)
∂k

∂θ2
+ c(fa− ec) = 0.

• b = 0. The same conclusions can be drawn for b = 0. In such a case (1.7)
leads to the following characteristic equation:

(6.8) λ2 − aλ = 0.

Hence the solution of (1.7) has the form given by (6.2), where Λ1 = {0, a}. There-
fore the general solution of (1.7) and (1.8) can be written as in (6.6).

6.2. Relations between coefficients of (3.2). We have

2A11 = aS1 + bS2 + e,(6.9)
2A22 = cS1 + dS2 + f,(6.10)

0 = 2A11a + A12b,(6.11)
0 = 2A11c + A12d,(6.12)
0 = A12a + 2A22b,(6.13)
0 = A12c + 2A22d,(6.14)

λ2
11B11 = aB11λ11,(6.15)

λ2
12B12 = aB12λ12,(6.16)

λ2
21B21 = dB21λ21,(6.17)

λ2
22B22 = dB22λ22,(6.18)

bλ21B21 = 0,(6.19)
bλ22B22 = 0,(6.20)
cB11λ11 = 0,(6.21)
cB12λ12 = 0,(6.22)

Diβ
2
i = cDiαi + dDiβi,(6.23)

Diα
2
i = aDiαi + bDiβi, i = 1, 2, 3.(6.24)
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6.3. Proof of Theorem 2.1 and the list of remaining cumulant transforms.
• ad− bc 6= 0, b = 0, c = 0. It leads to the cumulant function

k(θ1, θ2) =
f

d
θ2 − e

a
θ1 + B11[exp(aθ1)− 1] + B21[exp(dθ2)− 1]

+ D1[exp(θ1a + θ2d)− 1].

Convexity of k assures that B11, B21 and D1 are nonnegative.
• ad− bc = 0, a = c = 0, b 6= 0, d 6= 0. If bd > 0 and (ed− fb)/d ­ 0, then

k(θ1, θ2) =
ed− fb

2d
θ2
1 + D1[exp(θ1

√
bd + θ2d)− 1]

+ D2[exp(−θ1

√
bd + θ2d)− 1]− f

d
θ2 + s1θ1,

where D1, D2 ­ 0.

If bd < 0 and (ed− fb)/d ­ 0, then

k(θ1, θ2) =
ed− fb

2d
θ2
1 −

f

d
θ2 + s1θ1.

• ad− bc = 0, b = c = a = 0, d 6= 0. Then

k(θ1, θ2) = B21

(
exp(dθ2)− 1

)
+ s1θ1 − f

d
θ2 + e

θ2
1

2
,

where B21 ­ 0.
• b = c = d = a = 0. If e ­ 0 and f ­ 0, then

k(θ1, θ2) =
e

2
θ2
1 +

f

2
θ2
2 + S1θ1 + S2θ2 + A12θ1θ2,

where |A12| ¬
√

ef.
• ad− bc = 0, a = b = 0, cd 6= 0. If e ­ 0, then

k(θ1, θ2) =
e

2

(
θ1 − c

d
θ2

)2

+ B21 exp(dθ2) + S1θ1 +
(

c2e

d3
− c

d
S1 − f

d

)
θ2,

where B21 ­ 0.
• ad− bc = 0, a = b = d = 0, c 6= 0 and e = 0. If cs1 ­ −f , then

k(θ1, θ2) =
cs1 + f

2
θ2
2 + s1θ1 + s2θ2 + f.

• ad− bc = 0, b = c = d = 0, a 6= 0. If f ­ 0, then

k(θ1, θ2) = B11

(
exp(aθ1)− 1

)− e

a
θ1 + s2θ2 +

f

2
θ2
2,

where B11 ­ 0.
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• ad− bc = 0, c = d = 0, ab 6= 0. If f ­ 0, then

k(θ1, θ2) =
f

2

(
b

a
θ1 − θ2

)2

+ B11 exp(aθ1)+
(

f
b2

a3
− b

a
s2 − e

a

)
θ1 + s2θ2 + e,

where B11 ­ 0.
• ad− bc = 0, a = c = d = 0, b 6= 0 and f = 0. If bs2 ­ −e, then

k(θ1, θ2) =
bs2 + e

2
θ2
1 + s1θ1 + s2θ2 + e.

REFERENCES

[1] S. K. Bar-Lev, Methods of constructing characterizations by constancy of regression on the
sample mean and related problems for NEF’s, Math. Methods Statist. 16 (2) (2007), pp. 96–
109.

[2] S. K. Bar-Lev, D. Bshouty, P. Enis , G. Letac, Lu I-Li and D. Richards, The
diagonal multivariate natural exponential families and their classification, J. Theoret. Probab.
7 (1994), pp. 883–929.

[3] M. Casal is, Les familles exponentielles sur R2 de fonction-variance V (m) = am ⊗m +
B(m) + C, C. R. Acad. Sci. Paris 314 (1992), pp. 635–638.

[4] M. Casal is, The 2d + 4 simple quadratic natural exponential families on Rd, Ann. Statist.
24 (1996), pp. 1828–1854.

[5] E. B. Fosam and D. N. Shanbhag, An extended Laha–Lukacs characterization result
based on a regression property, J. Statist. Plann. Inference 63 (1997), pp. 173–186.

[6] F. S. Gordon, Characterizations of populations using regression properties, Ann. Statist. 1
(1973), pp. 114–126.

[7] A. Hassair i and M. Zarai, Characterization of the simple cubic multivariate exponential
families, J. Funct. Anal. 235 (2006), pp. 69–89.

[8] C. Kokonendj i and A. Masmoudi, A characterization of Poisson–Gaussian families by
generalized variance, Bernoulli 12 (2) (2006), pp. 371–379.

[9] C. Kokonendj i and V. Seshadri, On the determinant of the second derivative of a Laplace
transform, Ann. Statist. 24 (1996), pp. 1813–1827.

[10] R. G. Laha and E. Lukacs, On a problem connected with quadratic regression, Biometrika
47 (1960), pp. 335–343.

[11] G. Letac, Le problème de la classification des familles exponentielles naturelles de Rd ayant
une fonction-variance quadratique, in: Probability Measures on Groups IX, Lecture Notes in
Math. No 1379 (1989).

[12] G. Letac, Lectures on natural exponential families and their variance functions, Monograph
No 50, IMPA, Rio de Janeiro 1992.

[13] G. Letac and J. Wesołowski, Laplace transforms which are negative powers of quadratic
polynomials, Trans. Amer. Math. Soc. 360 (12) (2008), pp. 6475–6496.

[14] E. Lukacs, Some extensions of a theorem of Marcinkiewicz, Pacific J. Math. 12 (1962), pp.
58–67.

Faculty of Mathematics and Information Science
Warsaw University of Technology
00-661 Warsaw, Poland
E-mail: Joanna.Matysiak@mini.pw.edu.pl

Received on 17.6.2008;
revised version on 24.6.2009


