ON THE FACTORIZATION OF THE HAAR MEASURE ON FINITE COXETER GROUPS

BY

ROMAN URBAN* (WROCŁAW)

Abstract. Let W be a finite Coxeter group and let λ_W be the Haar measure on W, i.e., $\lambda_W(w) = |W|^{-1}$ for every $w \in W$. We prove that there exist a symmetric set $T \neq W$ of generators of W consisting of elements of order not greater than 2 and a finite set of probability measures $\{\mu_1, \ldots, \mu_k\}$ with their supports in T such that their convolution product $\mu_1 * \ldots * \mu_k = \lambda_W$.

2000 AMS Mathematics Subject Classification: Primary: 60B15; Secondary: 20F55.

Key words and phrases: Finite Coxeter groups, parabolic subgroups, convolution of probability measures, factorization of measure, uniform distribution, Haar measure, subgroup algorithm.

1. INTRODUCTION

The aim of this note is to prove in a constructive way the following factorization of the Haar measure on finite Coxeter groups (for the definition of finite Coxeter groups see Section 2).

THEOREM 1.1. Let W be a finite Coxeter group and let $\lambda_W(w) = |W|^{-1}$ for every $w \in W$. Then there exist a symmetric set $T \neq W$ of generators of W consisting of elements of order not greater than 2 and a finite set of probability measures $\{\mu_1, \ldots, \mu_k\}, k \geqslant 2$, with their supports in T such that their convolution product $\mu_1 * \ldots * \mu_k$ takes the form

If W is a symmetric group S_n , then the result of Theorem 1.1 is well known and widely used both in practical and theoretical problems (see e.g. the classical book by Knuth [8] and the lectures by Diaconis [3]). In this case one can take the set of generators consisting of transpositions $T = \{(i, j) : 1 \le i, j \le n\}$

^{*} The author was supported in part by the MNiSW research grant N N201 393937.

and define n-1 probability measures as follows. Let $\mu_j, 1 \leqslant j \leqslant n$, be a probability measure which is uniformly distributed on the set $\{(j,j), (j,j+1), \ldots, (j,n)\}$. Then it is clear that $\mu_1 * \ldots * \mu_{n-1} = \lambda_{\mathcal{S}_n}$.

The result for S_n motivated us to consider other finite Coxeter groups. In the case when W is a finite Coxeter group of type A_n , $n \ge 1$, B_n , $n \ge 2$, D_n , $n \ge 4$, F_4 , G_2 or $I_2(m)$, m = 5 or $7 \le m < \infty$, Theorem 1.1 was proved, in a constructive way, by the author in [15]. Here we consider the remaining types: E_6 , E_7 , E_8 , H_3 and H_4 . In some steps of the proof a computer algebra system GAP (see [10]) will be used. In particular, we use the functions contained in the CHEVIE share package of GAP. (See [5] and [2] for more information on CHEVIE.)

The problem of factorization of a given probability measure on a finite or compact group goes back to Lévy [9]. Recently, this problem and its particular case – the problem of existence of the "square root" from a given probability measure – has been studied by Diaconis [3], Diaconis and Shahshahani [4], Turnwald [13], and Sherstnev [11], [12].

We should also mention that there are, however, groups and symmetric sets T of generators for which (1.1) does not hold for any finite set of symmetric probability measures supported on T. Some examples are given in [14].

The paper is organized as follows. In Section 2 we recall some basic facts about Coxeter groups and state classification of finite Coxeter groups. In Section 3 we prove Theorem 1.1.

Acknowledgments. The author would like to thank Ms. Monika Tomczak for a discussion on the subject of the paper.

2. COXETER GROUPS

For basic references on the subject of this section see [1] and [7].

A Coxeter graph (Γ,m) is a finite graph Γ with the set of vertices S in which every two vertices are joined by at most one edge, while $m:S\times S\to \{2,3,4,\ldots\}\cup \{\infty\}$ is a function such that m(s,t)=2 if and only if there are no edges joining s and t. Therefore $m(s,t)\geqslant 3$ if and only if there exists exactly one edge joining s with t. Such an edge will be written as follows:

If m(s,t) = 3, then the edge is not labeled.

With every Coxeter graph (Γ, m) we associate the corresponding *Coxeter group* $W(\Gamma, m)$ (we also use the notation $W(\Gamma)$, W(S, m) or, simply, W(S) if there is no reason for confusion) specifying its presentation:

$$W(\Gamma, m) = \langle s \in S \mid s^2 = 1, (st)^{m(s,t)} = 1, s \neq t \in S \rangle,$$

i.e., W(S) is generated by the symbols $s \in S$ satisfying the following relations: $s^2 = 1$ for every $s \in S$ and $(st)^{m(s,t)} = 1$ for all pairs $s, t \in S$ with $m(s,t) \ge 3$.

Let W be a Coxeter group with its distinguished set of generators S. A subgroup $W_J \subset W$ generated by a subset J of S is a Coxeter group and is called a parabolic subgroup.

The length function $\ell: W \to \mathbb{N} \cup \{0\}$ is defined as follows. Let $w \in W = W(S)$. If w = 1, then $\ell(w) = 0$. Otherwise, there exists a minimal $k \ge 1$ and elements $s_1, \ldots, s_k \in S$ such that $w = s_1 \ldots s_k$ (i.e., we have a reduced expression for w) and we set $\ell(w) = k$.

We will need the following classification of finite Coxeter groups.

THEOREM 2.1. Let (Γ, m) be a connected Coxeter graph and $W(\Gamma, m)$ be the Coxeter group of the Coxeter graph (Γ, m) . The group $W(\Gamma, m)$ is finite if and only if the graph (Γ, m) is one of the following Coxeter–Dynkin diagrams:

Proof. For the proof see, e.g., [1], [7], [6]. ■

3. PROOF OF THEOREM 1.1

It is clear that it is enough to consider only finite Coxeter groups corresponding to connected Dynkin diagrams given in Theorem 2.1 (i.e., *irreducible* Coxeter groups). Otherwise, we have the direct product of such irreducible groups and Theorem 1.1 clearly works for the direct products.

By the result of Urban [15] we are left with the groups E_6 , E_7 , E_8 , H_3 and H_4 . The idea of proof is the following. We show that for a given group W of the above types there exists a parabolic subgroup $W_J = \langle s \mid s \in J \rangle$, $J \subset S$, for which the factorization (1.1) holds and, moreover, there exists a set \tilde{X}_J of right coset representatives of W_J in W consisting of elements of order not greater than 2. Then Theorem 1.1 will follow from the *subgroup algorithm* (see [3]). In the simplest case the subgroup algorithm states the following. Let G be a finite group and let H be a subgroup of G (not necessarily normal). Let G be a set of coset representatives for

H in G. Then every element $g \in G$ has a unique representation: g = hc with $h \in H$ and $c \in C$. If λ_C is a uniform distribution on C and λ_H is a uniform distribution (the Haar measure) on H, then the convolution $\lambda_H * \lambda_C$ is the factorization of the Haar measure on G.

3.1. Coset representatives. Let W_J be a parabolic subgroup of W. The Coxeter group W is partitioned, with respect to W_J , into right cosets $W_J w = \{vw \mid v \in W_J\}$. The set X_J given in the next proposition will be called a set of distinguished right coset representatives of W_J in W.

PROPOSITION 3.1. Let $J \subset S$ and define

$$X_J = \{ w \in W \mid \ell(sw) > \ell(w) \text{ for all } s \in J \}.$$

Then:

- (a) For each $w \in W$ there exists a unique $v \in W_J$ and $x \in X_J$ such that w = vx. Moreover, $\ell(w) = \ell(v) + \ell(x)$.
 - (b) For any $x \in W$ the following are equivalent:
 - (i) $x \in X_J$;
 - (ii) $\ell(vx) = \ell(v) + \ell(x)$ for all $v \in W_J$;
- (iii) x is a unique element of minimal length in $W_J x$. In particular, X_J is a complete set of right coset representatives of W_J in W.

Proof. See [6], Proposition 2.1.1. ■

There is an algorithm for computing X_J . In the sequel we use the following convention. The expression $X \leftarrow Y$ means that we assign to a variable X the value of a variable Y.

ALGORITHM 1 ([6], Algorithm B, p. 40). Given W(S) and a subset J of S, the set X_J is constructed.

- (1) Set $k \leftarrow 0, Y_0 \leftarrow \{1\}$ and $X_0 \leftarrow Y_0$.
- (2) Set $k \leftarrow k + 1$ and

$$Y_k \leftarrow \{xs \mid x \in Y_{k-1}, s \in S, \ell(xs) > \ell(x) \text{ and } \ell(txs) > \ell(tx) \text{ for all } t \in J\}.$$

Set $X \leftarrow X \cup Y_k$.

(3) Repeat (2) until $Y_k = \emptyset$. Then set $X_J \leftarrow X$ and stop.

In the proof of Theorem 1.1, for a given $J \subset S$ we are going to find, if possible, the set \tilde{X}_J of right coset representatives consisting of elements of order not greater than 2. For this purpose the following proposition will be useful.

PROPOSITION 3.2. Let $x \in Y_k \cap X_J$ and let $\tilde{x} \in \tilde{X}_J$ be such that $W_J x = W_J \tilde{x}$. Suppose that $w = xs \in Y_{k+1}$ with $s \in J$. Then the element $\tilde{w} = s\tilde{x}s$ satisfies $\tilde{w}^2 = 1$ and $W_J w = W_J \tilde{w}$.

Proof. Clearly, $\tilde{w}^2 = 1$. Since $x\tilde{x} \in W_J$, we have $w\tilde{w} = x\tilde{x}s \in W_J$ and $W_J w = W_J \tilde{w}$.

Proposition 3.2 states that if the representative $w \in Y_{k+1}$ is constructed in Algorithm 1 from the previous one by appending $s \in J$ to its end, then the corresponding representative of order 2 is constructed by appending s to the beginning and to the end of the previously constructed one.

The situation is more complicated if we append $s \notin J$ to the end of the previous representative x in Algorithm 1. Then, as will be seen in Section 3.3 and Section 3.6, it may happen that the coset W_jxs does not contain elements of order 2. Hence, our strategy in order to construct \tilde{X}_J is as follows. We choose a parabolic subgroup W_J on which Theorem 1.1 holds. Next we generate X_J (in CHEVIE there is a function ReducedRightCosetRepresentatives which produces X_J using Algorithm 1). By Proposition 3.2, it is enough to consider the following subset Z of X_J :

$$Z = \{x \in X_J \mid \operatorname{order}(x) > 2\}$$

$$\cap \{x \in X_J \mid \text{the last letter in the reduced expression of } x \text{ is in } S \setminus J\},$$

and for every $z \in Z$ we check if there is an element $w \in W_J$ such that $\operatorname{order}(wz) \le 2$ (simply by checking all elements in the coset $W_J z$). If this fails, we choose a different parabolic subgroup and repeat our procedure.

Remark. It would be interesting to find sufficient (and necessary) conditions on J which guarantee that for every $z \in Z$ there exists $w \in W_J$ such that $\operatorname{order}(wz) \leq 2$, i.e., there exists a set \tilde{X}_J of right coset representatives consisting of elements of order not greater than 2.

For a finite set A we write |A| to denote the number of its elements.

3.2. Coxeter group H_3 **.** We take

$$H_3: s_1 - s_2 - s_3, J = \{s_1, s_2\}.$$

Hence W_J is of type $I_2(5)$. We have $|W_J| = 10$, $|X_J| = 12$. The set Z contains only one element $z = s_3 s_2 s_1 s_2 s_1 s_3$. We check that $s_1 z$ can be taken as the corresponding representative of order 2. By [15], Proposition 3.2, there is a factorization of the Haar measure on $I_2(5)$, so Theorem 1.1 is proved in this case.

Alternatively, one can also take the subgroup $J=\{s_2,s_3\}$. Then W_J is of type $A_2, |W_J|=6, |X_J|=20, Z=\{z=s_1s_2s_1s_2s_1s_2s_3s_2s_1\}$. The corresponding representative of order 2 is $s_3z=s_1s_2s_3s_2s_1s_2s_1s_3$.

3.3. Coxeter group H_4 **.** Let us take

$$H_4: s_1 - s_2 - s_3 - s_4, \quad J = \{s_2, s_3, s_4\}.$$

Thus W_J is of type A_3 . We have $|W_J| = 24$, $|X_J| = 600$, |Z| = 88. It turns out that this is a wrong choice for the parabolic subgroup. There are 51 cosets which do contain only elements of order greater than 2, e.g., the coset

$$W_J s_1 s_2 s_1 s_2 s_3 s_2 s_1 s_2 s_1 s_4 s_3 s_2 s_1$$
.

Therefore, we try another subgroup and we take

$$J = \{s_1, s_2, s_3\}.$$

Thus W_J is of type H_3 . We have $|W_J| = |X_J| = 120$, |Z| = 22. For example, the shortest and the longest elements in Z are

```
z_1 = s_4 s_3 s_2 s_1 s_2 s_1 s_3 s_4,
```

 $z_2 = s_4 s_3 s_2 s_1 s_2 s_1 s_3 s_2 s_1 s_2 s_3 s_4 s_3 s_2 s_1 s_2 s_1 s_3 s_2 s_1 s_2 s_3 s_4 s_3 s_2 s_1 s_2 s_1 s_3 s_2 s_1 s_2 s_4.$

The corresponding representatives of order 2 are

$$s_1z_1$$
, $s_2s_1s_2s_1s_3s_2s_1z_2$.

For all other elements from the set Z we succeeded in finding corresponding representatives of order not greater than 2. Since, by the results of Section 3.2, Theorem 1.1 is valid for groups of type H_3 , we have proved that it is also valid for groups of type H_4 .

3.4. Coxeter group E_6 **.** We take

$$E_6: s_1 - s_3 - s_4 - s_5 - s_6, \quad J = \{s_1, s_3, s_4, s_5, s_6\}.$$

Hence W_J is of type A_5 . We have $|W_J| = 720$, $|X_J| = 72$, |Z| = 4. The set Z contains the following elements:

 $z_1 = s_2 s_4 s_3 s_1 s_5 s_4 s_2,$

 $z_2 = s_2 s_4 s_3 s_1 s_5 s_4 s_2 s_3 s_6 s_5 s_4 s_2,$

 $z_3 = s_2 s_4 s_3 s_1 s_5 s_4 s_2 s_3 s_4 s_6 s_5 s_4 s_2,$

 $z_4 = s_2 s_4 s_3 s_1 s_5 s_4 s_2 s_3 s_4 s_5 s_6 s_5 s_4 s_2.$

The corresponding representatives of order 2 are

$$s_1 z_1 = s_1 s_2 s_4 s_3 s_1 s_5 s_4 s_2,$$

$$s_4 z_2 = s_2 s_4 s_2 s_3 s_1 s_5 s_4 s_2 s_3 s_6 s_5 s_4 s_2,$$

$$s_5 s_4 z_3 = s_2 s_4 s_3 s_1 s_5 s_4 s_2 s_3 s_1 s_4 s_3 s_6 s_5 s_4 s_2,$$

 $s_6s_5s_4z_4 = s_2s_4s_3s_1s_5s_6s_5s_4s_2s_3s_1s_4s_3s_5s_4s_2s_6.$

Thus we are done in this case. We could also choose $J = \{s_1, s_2, s_3, s_4, s_5\}$. Then W_J is of type D_5 (there is a factorization on W_J by the results of [15]), $|W_J| = 1920$, $|X_J| = 27$, |Z| = 4, and so \tilde{X}_J exists.

3.5. Coxeter group E_7 **.** We take

$$E_7: s_1 - s_3 - s_4 - s_5 - s_6 - s_7, \quad J = \{s_1, s_3, s_4, s_5, s_6, s_7\}.$$

Hence W_J is of type A_6 . We have $|W_J| = 5{,}040, |X_J| = 576, |Z| = 32$. Since for every $z \in Z$ there exists $w \in W_J$ such that $\operatorname{order}(wz) \leq 2$, Theorem 1.1 is proved in this case.

We can also take $J = \{s_1, s_2, s_3, s_4, s_5, s_6\}$. Then W_J is of type E_6 . By the above, there is a factorization on W_J . In this case we have $|W_J| = 51,840, |X_J| = 56, |Z| = 9$ and for every z we can construct a corresponding representative of order less than or equal to 2.

3.6. Coxeter group E_8 **.** If we take

$$E_8: s_1 - s_3 - s_4 - s_5 - s_6 - s_7 - s_8, \quad J = \{s_1, s_3, s_4, s_5, s_6, s_7, s_8\}$$

then W_J is of type A_7 . We have $|W_J| = 40{,}320$, $|X_J| = 17{,}280$. Unfortunately, this is not a right choice since there are cosets which contain only elements of order greater than 2, as, e.g., the following one:

$$W_J s_2 s_4 s_3 s_1 s_5 s_4 s_3 s_6 s_5 s_4 s_2 s_7 s_6 s_5 s_4 s_3 s_8 s_7 s_6 s_5 s_4 s_2.$$

However, we take $J = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7\}$. That is, W_J is of type E_7 . We have $|W_J| = 2,903,040, |X_J| = 240, |Z| = 26$. In this case our procedure works. From Section 3.5 we know that there is a factorization on W_J , so the last case of Theorem 1.1 has been proved.

REFERENCES

- [1] N. Bourbaki, Groupes et algèbres de Lie, Ch. 5, 6, 7, Hermann, 1968.
- [2] CHEVIE: http://www.math.rwth-aachen.de/~CHEVIE
- [3] P. Diaconis, Application of non-commutative Fourier analysis to probability problems, Lecture Notes in Math. Vol. 1362, Springer, 1982, pp. 51–100.
- [4] P. Diaconis and M. Shahshahani, On square roots of the uniform distribution on compact groups, Proc. Amer. Math. Soc. 98 (2) (1986), pp. 341–348.
- [5] M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, *CHEVIE a system for computing and processing generic character tables. Computational methods in Lie theory (Essen, 1994)*, Appl. Algebra Engrg. Comm. Comput. 7 (3) (1996), pp. 175–210.
- [6] M. Geck and G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, London Math. Soc. Monogr. (2000).
- [7] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge-New York 1990.
- [8] D. E. Knuth, The Art of Computer Programming, Vol. 2. Seminumerical Algorithms, second edition, Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass., 1981.

- [9] P. Lévy, Premiers éléments de l'arithmétique des substitutions aléatoires, C. R. Acad. Sci. Paris 237 (1953), pp. 1488–1489.
- [10] M. Schönert et al., *GAP Groups, Algorithms, and Programming version 3 release 4 patchlevel 4*, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1997; available at http://www.gap-system.org/gap.html.
- [11] V. I. Sherstnev, A random variable uniformly distributed on a finite abelian group as a sum of independent summands (in Russian), Teor. Veroyatnost. i Primenen. 43 (2) (1998), pp. 397–403. Translation in: Theory Probab. Appl. 43 (2) (1999), pp. 329–335.
- [12] V. I. Sherstnev, *Decompositions of a uniform distribution on a finite group* (in Russian), Teor. Veroyatnost. i Primenen. 47 (3) (2002), pp. 594–599. Translation in: Theory Probab. Appl. 47 (3) (2003), pp. 550–555.
- [13] G. Turnwald, Roots of Haar measure and topological Hamiltonian groups, in: Probability Measures on Groups, IX (Oberwolfach, 1988), Lecture Notes in Math. Vol. 1379, Springer, 1989, pp. 364–375.
- [14] R. Urban, Some remarks on the random walk on finite groups, Colloq. Math. 74 (2) (1997), pp. 287–298.
- [15] R. Urban, Note on the factorization of the Haar measure on finite Coxeter groups, Probab. Math. Statist. 24 (1) (2004), pp. 173–180.

Institute of Mathematics University of Wrocław pl. Grunwaldzki 2/4 50-384 Wroclaw, Poland *E-mail*: urban@math.uni.wroc.pl

> Received on 11.6.2010; revised version on 23.12.2010