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DO NON-STRICTLY STABLE LAWS ON POSITIVELY GRADUATED
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LIE IN THEIR OWN DOMAIN OF NORMAL ATTRACTION?
BY
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Abstract. In the classical case of the real line, it is clear from
the very definition that non-degenerate stable laws always belong to
their own domain of normal attraction. The question if the analogue of
this is also true for positively graduated simply connected nilpotent Lie
groups (a natural framework for the generalization of the concept of
stability to the non-commutative case) turns out to be non-trivial. The
reason is that, in this case, non-strict stability is defined in terms of
generating distributions of continuous one-parameter convolution semi-
groups rather than just for the laws themselves. We show that the an-
swer is affirmative for non-degenerate (not necessarily strictly) α-dilation-
stable laws on simply connected step 2-nilpotent Lie groups (so, e.g., all
Heisenberg groups and all so-called groups of type H; cf. Kaplan [6])
if α ∈]0, 1[ ∪ ]1, 2]. The proof generalizes to positively graduated sim-
ply connected Lie groups which are nilpotent of higher step if α ∈]0, 1[.
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1. INTRODUCTION

For a great part of the introductory remarks in the following sections see
Neuenschwander [8]. See also, e.g., Hazod and Siebert [4], Neuenschwander [7],
and the literature cited in these books (e.g., Raugi [10]) as general references. For
central limit theory on the real line (and straightforward generalizations to finite-
dimensional vector spaces mutatis mutandis by looking at projections onto one-
dimensional subspaces) see also, e.g., Gnedenko and Kolmogorov [2]. Recall that
the law L(Z) of a real-valued random variable Z is called stable if for any n ­ 1
there exist τn > 0 and bn ∈ IR such that for i.i.d. copies Z1, Z2, . . . , Zn of Z it
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follows that

L
( n∑
k=1

(τnZk + bn)
)
= L(Z) (n ­ 1).

Equivalently, L(Z) is stable iff there exist i.i.d. random variables Y1, Y2, . . . and
(for all n ­ 1) an > 0 and dn ∈ IR such that

L
( n∑
k=1

(anYk + dn)
) w→ L(Z) (n→∞)

(which means weak convergence of probability measures). In this case, L(Y1) is
said to lie in the domain of attraction of L(Z). It is well known that L(Z) is stable
iff it is either Gaussian, degenerate (i.e. a Dirac measure), or its Fourier transform
(characteristic function) φ(u) has the form

φ(u) = exp

[
iuγ + βc−

0∫
−∞

(
eiux − 1− iux

1 + x2

)
dx

|x|1+α
(1.1)

+ βc+
∞∫
0

(
eiux − 1− iux

1 + x2

)
dx

x1+α

]
(β > 0; c−, c+ ­ 0; c− + c+ = 1; 0 < α < 2; γ ∈ IR). In the latter case, the law
will be called α-stable, whereas for the Gaussian situation we put α = 2. These
definitions all refer to so-called not necessarily strict stability, resp. not necessarily
strict domains of attraction. If bn = 0 for all n ­ 1, one speaks of strict stability,
whereas analogously the strict domain of attraction is that part of the domain of
attraction for which one can choose dn = 0 for all n ­ 1. In the sequel, if we will
refer to stability, domains of attraction, and related notions, we will always use
these terms in the not necessarily strict sense unless stated otherwise. It is also
well known that (in the non-degenerate case) τn = n−1/α for all n ­ 1 (where
α = 2 for non-degenerate Gaussian measures). These definitions will be kept in
the sequel; note that for degenerate stable laws no α is defined. If L(Z) is strictly
α-stable (0 < α ¬ 2), then for i.i.d. copies Z1, Z2, . . . , Zn of Z we have

(1.2) L(
n∑

k=1

ckZk) = L
(
(

n∑
k=1

cαk )
1/αZ

)
(n ­ 1; c1, c2, . . . , cn > 0).

If one can choose an = n−1/α for all n ­ 1, then the corresponding law of Y1
is said to belong to the domain of normal attraction (resp. strict domain of nor-
mal attraction) of L(Z). It follows from the very definition mentioned before that
a non-degenerate stable law on IR always belongs to its own domain of normal
attraction.

Now we will turn to a generalization of stability and domains of attraction
to non-commutative groups. It will turn out that the question if the analogue of
the statement at the end of the last paragraph is also true in this framework is a
non-trivial problem. Unfortunately, we can only give partial answers to it.
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2. STABLE SEMIGROUPS AND DOMAINS OF ATTRACTION ON GROUPS

There is a natural generalization of stability and related notions to locally
compact groups G based on continuous one-parameter convolution semigroups
of probability measures and continuous one-parameter groups of group automor-
phisms (see, e.g., Hazod and Siebert [3], [4] and the literature cited there). In par-
ticular, it turns out that strictly stable semigroups of probability measures on locally
compact groups are always concentrated on the contractible part of the group, and
hence on a positively graduated simply connected nilpotent Lie group (Hazod and
Siebert [3]). So positively graduated simply connected nilpotent Lie groups are a
natural class for investigations of stability and domains of attraction. A Lie group
G with Lie algebra G is a simply connected nilpotent Lie group if the exponen-
tial map exp : G → G is a diffeomorphism and if the descending central series is
finite, i.e. there is some non-negative integer r such that

G0
⊃
̸=G1

⊃
̸= . . .

⊃
̸=Gr = {0},

where
G0 := G, . . . ,Gk+1 := [G,Gk] (0 ¬ k ¬ r − 1).

The group G (resp., the Lie algebra G) is then called step r-nilpotent. The dimen-
sion of a Lie group is defined as the dimension of its underlying Lie algebra (or
just any tangent space). We may identify G with G = IRd via log (the inverse
map of exp). So G may be interpreted as IRd equipped with a Lie bracket [·, ·] :
IRd × IRd → IRd, which is bilinear, skew-symmetric, and satisfies the Jacobi iden-
tity. In particular, by the skew-symmetry we have [x, x] = 0 for all x. The group
product is then given by the Campbell–Hausdorff formula (cf., e.g., Neuenschwan-
der [7], p. 9, and Serre [11]), where due to the nilpotency only the terms up to order
r arise.

The first few terms are

x · y = x+ y +
1

2
[x, y] +

1

12

([
[x, y], y

]
+

[
[y, x], x

])
+ . . .

Prominent non-commutative examples are the Heisenberg groups IHd, which are
step 2-nilpotent and are given by IR2d+1 equipped with the multiplication:

x · y = x+ y +
1

2
[x, y],

[x, y] = (0, 0, ⟨x′, y′′⟩ − ⟨x′′, y′⟩) ∈ IRd × IRd × IR ∼= IHd

(x = (x′, x′′, x′′′), y = (y′, y′′, y′′′) ∈ IRd × IRd × IR ∼= IHd).

See, e.g., Neuenschwander [7] for an account of probability theory on the
(three-dimensional) Heisenberg group. The so-called groups of type H, which oc-
cur in the context of composition of quadratic forms (cf. Kaplan [6]), all belong to
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the class of simply connected step 2-nilpotent Lie groups. For a simply connected
nilpotent Lie group G as above with d-dimensional underlying Lie algebra G, one
can consider an adapted vector space decomposition of G ∼= G ∼= IRd, i.e.

G ∼= G ∼= IRd =
r

⊕
i=1

Vi

such that r

⊕
i=k

Vi = Gk−1,

where {Gk}0¬k¬r is the descending central series as described above. One can
always take a Jordan–Hölder basis of G ∼= G ∼= IRd, i.e. a basis

E = {e1, e2, . . . , ed} =
r∪

i=1

Ei,

where Ei = {ei,1, ei,2, . . . , ei,d(i)} is a basis of Vi (d(i) being the dimension of Vi).
If not mentioned otherwise, we will always represent elements of simply connected
nilpotent Lie groups with respect to a Jordan–Hölder basis. If for an adapted vector
space decomposition as above it follows that [Vi, Vj ] ⊂ Vi+j (1 ¬ i, j ¬ r, where
Vr+1 = Vr+2 = . . . := {0}), then one speaks of a positive graduation. If such a
positive graduation exists, then the group G is called positively graduated. It is
clear that every adapted vector space decomposition of a simply connected step 2-
nilpotent Lie group is automatically a positive graduation. Examples of positively
graduated simply connected Lie groups which are nilpotent of higher step are, e.g.,
the groups of upper triangular matrices of any fixed dimension with entries 1 on
the diagonal.

Let G be a locally compact group, e the neutral element, G∗ := G\{e}. We
denote by

(
M1(G), ∗, w→

)
the topological semigroup of (regular) probability mea-

sures on G, equipped with the operation of convolution and with the weak topol-
ogy (cf. Heyer [5], Theorem 1.2.2). A continuous convolution semigroup {µt}t­0
of probability measures on G (c.c.s. for short) is a continuous semigroup homo-
morphism

([0,∞[,+) ∋ t 7→ µt ∈
(
M1(G), ∗, w→

)
,

µ0 = δe,

where δx denotes the Dirac probability measure at x ∈ G. For simply connected
nilpotent Lie groups the request µ0 = δe is no restriction, since in any case µ0 has
to be an idempotent element of M1(G), and thus is the Haar measure ωK on some
compact subgroup K ⊂ G (cf. Heyer [5], 1.5.6). However, simply connected nilpo-
tent Lie groups have no non-trivial compact subgroups (cf., e.g., Nobel [9], 2.2).
Let G be a Lie group, C∞b (G) the space of bounded complex-valued C∞-functions
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on G, andD(G) the subspace of complex-valued C∞-functions with compact sup-
port. The generating distribution A of a c.c.s. {µt}t­0 is defined (for f ∈ D(G))
as follows:

A(f) := d

dt

∣∣∣∣
t=0+

∫
G

f(x)µt(dx).

It exists on the whole of C∞b (G) (cf. Siebert [14], p. 119). Now, let G be a simply
connected nilpotent Lie group. The generating distribution of a c.c.s. {µt}t­0 on
G assumes a very explicit form: The functional A on C∞b (G) is the generating
distribution of a c.c.s. {µt}t­0 iff it has the form (Lévy–Hinčin formula)

A(f) = ⟨ξ,∇⟩f(0) + 1

2
⟨∇,M · ∇⟩f(0) +

∫
G∗

(
f(x)− f(0)−Ψ(f, x)

)
η(dx),

where

Ψ(f, x) :=

{
⟨x,∇⟩f(0), ∥x∥ ¬ 1,

⟨x/∥x∥,∇⟩f(0), ∥x∥ > 1,

and f ∈ C∞b (G), ξ ∈ G ∼= G ∼= IRd (the drift parameter), M is a positive semidef-
inite (d × d)-matrix, and η is a Lévy measure on G∗, i.e. a non-negative measure
on G∗ satisfying ∫

0<∥x∥¬1
∥x∥2η(dx) + η({x ∈ G : ∥x∥ > 1}) <∞.

The first summand in the Lévy–Hinčin formula is called the primitive term, the
second one the centered Gaussian term, and the third one (the integral expression)
the generalized Poisson distribution. The data ξ,M, η are uniquely determined by
{µt}t­0. (Cf. Siebert [13], Satz 1.) As a shorthand we will write A = [ξ,M, η].
Since the distribution A on C∞b (G) uniquely determines the c.c.s. {µt}t­0, we
may write µt =: Exp tA (t ­ 0). On the other hand, every triple [ξ,M, η] of
the above-mentioned type generates a c.c.s. (cf. Siebert [13], Satz 1). A c.c.s.
with generating distribution A will be called degenerate if the generating distri-
bution is just a primitive distribution, i.e. if A = [ξ, 0, 0]. Otherwise, it will be
called non-degenerate. Of course, a c.c.s. {µt}t­0 on a simply connected nilpotent
Lie group is degenerate (with generating distribution [ξ, 0, 0]) iff every measure
µt is a Dirac measure (given by µt = δtξ). We will call a c.c.s. Gaussian if the
Lévy measure in its generating distribution disappears, whereas a non-degenerate
c.c.s. {µt}t­0 = {Exp tA}t­0 withA = [ξ, 0, η] (η ̸= 0) will be called completely
non-Gaussian. Let T = {τt}t>0 = {tA}t>0 be a continuous one-parameter au-
tomorphism group on the simply connected nilpotent Lie group G (A denoting
a derivation of the underlying Lie algebra G, i.e. a linear endomorphism of G
with the property A([x, y]) = [A(x), y] + [x,A(y)] for all x, y ∈ G). Then a c.c.s.
{µt}t­0 = {Exp tA}t­0 is called T -stable if for any t > 0 there exists a primitive
distribution Xt such that

(2.1) tA = τt(A) + Xt;
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here, for a C∞-map h : G → G and a generating distribution A on C∞b (G), the
symbol h(A) denotes the functional given by h(A)(f) := A(f ◦ h); so, if τ is
an endomorphism of G and A generates the c.c.s. {λt}t­0, then τ(A) generates
the c.c.s. {τ(λt)}t­0, where if λ is the law of the random variable Z, then h(λ)
is the law of the random variable τ(Z) (i.e. h

(
λ(B)

)
:= λ

(
h−1(B)

)
for Borel

subsets B). In order to lay stress on the dependence on {Xt}t>0, one also speaks
of ({τt}t>0, {Xt}t>0)-stability. If Xt = 0 for all t > 0, then the c.c.s. {µt}t­0 is
called strictly {τt}t>0-stable. Strict stability of a c.c.s. {µt}t­0 is equivalent to the
condition that

µts = τs(µt) (t, s > 0).

A probability measure µ on the simply connected nilpotent Lie group G is called
({τt}t>0, {Xt}t>0)-stable, resp. strictly {τt}t>0-stable, if µ = µ1 for some c.c.s.
{µt}t­0 with the corresponding property, whereas ν ∈ M1(G) is said to belong
to the {τt}t>0-domain of attraction of the c.c.s. {µt}t­0 on G (symbolically, ν ∈
DOA({µt}t­0, {τt}t>0) for short) if there exist sequences {tn}n­1 ⊂ ]0,∞[ and
{dn}n­1 ⊂ G such that

(2.2)
(
τtn(ν) ∗ δdn

)∗⌊nt⌋ w→ µt (n→∞; t > 0).

If one can choose dn = 0 for all n ­ 1, then the measure ν is said to lie in the strict
{τt}t>0-domain of attraction of {µt}t­0 (ν∈SDOA({µt}t­0,{τt}t>0), symboli-
cally). On the other hand, if one can choose tn = n−1 for all n ­ 1, then one speaks
of the (strict) {τt}t>0-domain of normal attraction (DONA, resp. SDONA). If we
put t = 1 in equation (2.2), then the measure ν is said to lie in the {τt}t>0-domain
of attraction of the measure µ1 (symbolically, ν ∈ DOA(µ1, {τt}t>0)), and so on.

For finite-dimensional vector spaces it follows from the classical convergence
conditions for triangular arrays of rowwise identical probability measures (see any
standard literature on the subject, e.g., Gnedenko and Kolmogorov [2], for the
real line and observe the obvious generalizations of the corresponding facts to
finite-dimensional vector spaces by looking at projections onto one-dimensional
subspaces) that a c.c.s. {µt}t­0 of probability measures on (IRd,+) is {τt}t>0-
stable, resp. strictly {τt}t>0-stable, iff the corresponding property holds for µ1.
Analogously, a probability measure ν on (IRd,+) lies in the {τt}t>0-domain of
attraction (resp. strict {τt}t>0-domain of attraction, resp. normal {τt}t>0-domain
of attraction) of a c.c.s. {µt}t­0 on (IRd,+) iff it belongs to the corresponding
type of domain of attraction of µ1. See also Sharpe [12] as the pioneering paper on
operator-stability on finite-dimensional vector spaces.

Unfortunately, in the case of non-commutative simply connected nilpotent Lie
groups G, there is no so simple description of non-strict stability in terms of the
measures (or random variables) themselves as on (IRd,+). That is why in this
framework it makes sense to ask if a not necessarily strictly T -stable law on G lies
at least in the T -domain of normal attraction of its corresponding own stable c.c.s.
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In our opinion, it is not even clear from the beginning if one should in fact conjec-
ture such a generalization. In the sequel, by some interplay between the group
and the underlying Euclidean space, we will give a partial positive answer for
“α-dilation-stable” c.c.s. (in a sense to be defined) on simply connected step 2-
nilpotent Lie groups if α ∈ ]0, 1[ ∪ ]1, 2] and for general positively graduated sim-
ply connected Lie groups which are nilpotent of any step if α ∈ ]0, 1[. This, of
course, supports the conjecture that the answer should indeed be affirmative for
stable laws on more general simply connected nilpotent Lie groups.

3. PREPARATIONS

As we have mentioned before, a simply connected nilpotent Lie group G can
be identified with its Lie algebra G via the logarithmic map log. If it will be con-
venient to distinguish whether we consider an element, function, automorphism,
generating distribution, . . . on G or rather on G, then for an object (element, func-
tion, . . . ) Ξ living on G, we will denote its counterpart living on G ∼= (IRd,+) by
◦Ξ. On the other hand, the inverse map will be written as ♣(◦Ξ) = Ξ. So, e.g.,
for an element x ∈ G we write ◦x := log(x) ∈ G, whereas, e.g., for a function
f ∈ C∞b (G) we write ◦f ∈ C∞b (G) for the function defined by ◦f(◦x) := f(x),
etc. In particular, for the measure µ on G we have ◦µ(B) := µ

(
exp(B)

)
for the

“same” measure living on G (B Borel subsets of G). For a generating distribution
A on G, its counterpart ◦A on G is given by ◦A(◦f) = A(f). Indeed,A is a gener-
ating distribution on G iff ◦A is a generating distribution on (G,+), since the form
(Lévy–Hinčin formula) of the generating distribution is independent of the group
structure as long as we remain in the framework of simply connected nilpotent Lie
groups. In particular, we have the following equivalence property:

LEMMA 3.1. Let {tA}t>0 be a continuous automorphism group of the simply
connected nilpotent Lie group G (A thus being a derivation of the underlying Lie
algebra G ∼= IRd). Then the c.c.s. {Exp tA}t­0 on G is ({tA}t>0, {Xt}t>0)-stable
iff {Exp t◦A}t­0 is a ({t◦A}t>0, {◦Xt}t>0)-stable c.c.s. on (IRd,+).

The following convergence property will turn out to be useful (see, e.g., Neuen-
schwander [7], Corollary 1.3, and the well-known convergence conditions for tri-
angular arrays of rowwise identical probability measures on IR (cf. Gnedenko and
Kolmogorov [2]) and – as mentioned before – their straightforward generalizations
to (IRd,+) by looking at projections onto one-dimensional subspaces):

LEMMA 3.2. Let G be a simply connected nilpotent Lie group. Let {νn}n­1
be a sequence of probability measures on G and {Exp tA}t­0 a c.c.s. on G. Then

ν∗⌊nt⌋n
w→ Exp tA (n→∞; t > 0)

iff
(◦νn)

∗⌊nt⌋ w→ Exp t◦A (n→∞; t > 0)
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iff
◦ν∗nn

w→ Exp ◦A (n→∞).

If G is a simply connected nilpotent Lie group with positive graduation

r

⊕
i=1

Vi
∼= G ∼= G

and A is supposed to be a derivation of the form whose restriction to Vi is deter-
mined as

A|Vi
(xi,1, xi,2, . . . , xi,d(i)) := (i/α)(xi,1, xi,2, . . . , xi,d(i)) (0 < α ¬ 2)

(where xi,j is the component of x belonging to the basis vector ei,j ; cf. the above
definition of an adapted vector space decomposition and the Jordan–Hölder basis)
we will write A =: Dα. The automorphism group {tDα}t>0 (0 < α ¬ 2) is then
called the group of α-dilations of G. It can be viewed as the analogue of the clas-
sical dilation groups of IRd given by {t(1/α)I}t>0 (I denoting the (d× d)-identity
matrix). If a c.c.s. on G is stable with respect to the before-mentioned automor-
phism group (0 < α ¬ 2), then it will be called α-dilation-stable. On Euclidean
spaces, the Gaussian part and the completely non-Gaussian part of a stable law
are (up to a shift by some constant vector) stochastically independent random vec-
tors concentrated on linear subspaces whose intersection consists only of the null
vector (cf. Sharpe [12], Theorem 4). For stable laws, domains of attraction, and
convergence conditions for triangular arrays of rowwise i.i.d. random variables on
the real line, see, e.g., Gnedenko and Kolmogorov [2]. We will use these classical
facts in the following deliberations whenever appropriate.

4. THE CASE OF SIMPLY CONNECTED STEP 2-NILPOTENT LIE GROUPS

Let G be a simply connected step 2-nilpotent Lie group with Lie algebra G. If
we identify G with G as described before, then iterating the formula

x · y = x+ y +
1

2
[x, y] (x, y ∈ G ∼= G)

yields, for the ordered product

n∏
k=1

xk = x1 · x2 · . . . · xn,

the expansion

(4.1)
n∏

k=1

xk =
n∑

k=1

xk +
1

2

∑
1¬i<j¬n

[xi, xj ] (x1, x2, . . . , xn ∈ G ∼= G).



Domains of normal attraction 197

THEOREM 4.1. Let us assume that {µt}t­0 = {Exp tA}t­0 is a non-degene-
rate ({tDα}t>0, {Xt}t>0)-stable c.c.s. on the d-dimensional simply connected step
2-nilpotent Lie group G (α ∈]0, 1[ ∪ ]1, 2]). Then

µ1 ∈ DONA({µt}t­0, {tDα}t>0).

The following property will be one of the key arguments in the following
deliberations (cf. Sharpe [12], Theorem 6). It is responsible for the fact that up to
now we still have to exclude the case α = 1 from the assertion of Theorem 4.1. Of
course, we conjecture that Theorem 4.1 also holds for α = 1, but for this situation
another proof would be needed.

LEMMA 4.1. Assume that {◦µt}t­0 = {Exp t◦A}t­0 is a {t◦Dα}t>0-stable
c.c.s. on the vector space (IRd,+) (α ∈]0, 1[ ∪ ]1, 2]). Then there exists a primitive
distribution Y such that for A := A − Y it follows that {Exp t◦A}t­0 is strictly
{t◦Dα}t>0-stable.

For a simply connected step 2-nilpotent Lie group, let G ∼= G = V1⊕V2 be
an adapted vector space decomposition (and thus, automatically, a positive gradu-
ation) of G ∼= G ∼= IRd as above. For (v1, v2) ∈ V1⊕V2 we define the projections
p, resp. q, of G ∼= V1⊕V2 onto V1, resp. V2:

p : G ∼= G ∼= V1⊕V2 ∋ x = (v1, v2) 7→ p(x) := v1 ∈ V1,

resp.
q : G ∼= G ∼= V1⊕V2 ∋ x = (v1, v2) 7→ q(x) := v2 ∈ V2.

Furthermore, we put

p̃ : G ∋ x 7→ p̃(x) :=
(
p(x), 0

)
∈ V1⊕V2

∼= G,

resp.
q̃ : G ∋ x 7→ q̃(x) :=

(
0, q(x)

)
∈ V1⊕V2

∼= G.

Auxiliary results of the following type have been used by the author in previous
work. For the sake of completeness, we state the next lemma with proof.

LEMMA 4.2. Let G be a simply connected step 2-nilpotent Lie group. Suppose
ν ∈ M1(G) and let {µt}t­0 = {Exp tA}t­0 be a c.c.s. on G. Assume α ∈]0, 2],
and {dn}n­1 ⊂ G. Then

(4.2)
(
n−
◦Dα(◦ν) ∗ δ◦dn

)∗n w→ Exp ◦A (n→∞)

implies

(4.3)
(◦
(n−Dα(ν) ∗ δdn)

)∗n w→ Exp ◦A (n→∞).
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P r o o f. Assume (4.2) holds. Of course,

(4.4) dn → 0 (n→∞).

Let {Zn}n­1 be a sequence of i.i.d. G-valued random variables with L(Z1) := ν.
From (4.2) we thus obtain

(4.5) L
([ n∑

k=1

(n−
◦Dα(◦Zk) +

◦ dn),
◦ dn

]) w→ δ0 (n→∞),

and hence

(4.6) L
( n∑
k=1

[n−
◦Dα(◦Zk),

◦ dn]
) w→ δ0 (n→∞).

Now the relations (4.2) and (4.6) imply (4.3) by (4.4) and the expansion (4.1),
which completes the proof. �

Let us now go to the proof of Theorem 4.1. We will first treat the case α ∈
]0, 1[ ∪ ]1, 2[. It will be convenient to consider the case α = 2 separately after-
wards.

P r o o f o f T h e o r e m 4.1. Let Y be as in Lemma 4.1, i.e. such that t◦A =
t◦A + t◦Y . Denote by ζ ∈ G that element of G for which Y(f) = ⟨ζ,∇⟩f(0),
where f ∈ C∞b (G). It follows from the Lie–Trotter product formula (see, e.g.,
Neuenschwander [7], p. 13) that

(4.7)
(
n−Dα(ExpA) ∗ δζ/n

)∗n w→ ExpA (n→∞).

By Lemmas 4.2 and 3.2, in order to prove the assertion of the theorem, it suffices
to show that

(4.8) ◦(ExpA) ∈ DONA({Exp t◦A}t­0, {t
◦Dα}t>0).

Let {Zn}n­1 be a sequence of i.i.d. G-valued random variables with L(Z1) :=
ExpA. We will denote by w-lim the weak limit of a sequence of probability mea-
sures. By (4.7) and the expansion (4.1) we then find

(4.9) ◦(ExpA) = w- lim
n→∞

L(◦ζ + T +Wn),

where L(T ) = ◦(ExpA) and

(4.10) Wn =
1

2

n∑
k=1

[n−1/α ·◦Zk, (n+ 1− 2k)n−1/α ·◦ζ/n].
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By the equation (4.10) and the fact that p(◦Z1) obeys a strictly {t(1/α)·I}t>0-stable
law on (V1,+) (I denoting the identity matrix on V1), it follows with the help of
(1.2) that

(4.11) L(Wn)
w→ δ0 (n→∞).

By Lemma 3.2 we have

(4.12) ◦(ExpA) ∈ SDONA({Exp t◦A}t­0, {tDα}t>0).

This, together with (4.9), (4.11), and Lemma 3.2, readily yields the condition (4.8).
So the assertion of the theorem for the case α ∈]0, 1[ ∪ ]1, 2[ is proved.

Now we go to the case α = 2. We keep the notation whenever possible. Recall
that every element in V2 ⊂ G commutes with all elements of G. This fact will be
crucial and used without further mentioning. Clearly, by Lemmas 4.2 and 3.2, there
exists a sequence {dn}n­1 ⊂ V1 ⊂ G such that

(4.13)(♣(
Exp ◦

(
p̃
(
n−D2(A)

)))
∗ δ♣(◦dn)

)⌊∗nt⌋ w→ Exp tp̃(A) (n→∞; t > 0)

on G. On the other hand, from Theorem 4 of Sharpe [12] (as mentioned before) and
the classical fact that every one-dimensional (not necessarily strictly) one-stable
law lies in its own one-domain of normal attraction it follows that on (G,+) we
have

(4.14) Exp t◦A = Exp t◦
(
p̃(A)

)
∗ Exp t◦

(
q̃(A)

)
.

Moreover, we have

(4.15) Exp tA = Exp tp̃(A) ∗ Exp tq̃(A)

by a similar argument as for (4.13). Consequently,

(4.16) Exp q̃(A) ∈ DONA
(
{Exp tq̃(A)}t­0, {tD2}t>0

)
on G. Now, by (4.13) and (4.16), the assertion of Theorem 4.1 follows also in this
case. �

5. THE CASE OF GENERAL POSITIVELY GRADUATED SIMPLY CONNECTED
NILPOTENT LIE GROUPS

Here, unfortunately, we can prove the analogue of Theorem 4.1 only under the
assumption α ∈]0, 1[, since in the case α > 1 the occurring centering constants (or
“shift constants”) cannot be handled so easily as in the step 2-situation. We keep
the notation of the preceding sections whenever possible.
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THEOREM 5.1. Let {µt}t­0 = {Exp tA}t­0 be a non-degenerate {tDα}t>0-
stable c.c.s. on the d-dimensional positively graduated simply connected step r-
nilpotent Lie group G. Then we have

µ1 ∈ DONA({µt}t­0, {tDα}t>0).

The proof of Theorem 5.1 is, to a large extent, parallel to that of the case α ̸= 2
in Theorem 4.1.

We first show (roughly speaking) that an analogue of Lemma 4.2 also holds
in the situation under consideration now. The next lemma follows at once from the
well-known characterization of the domain of attraction of a non-Gaussian stable
law on the real line in terms of the tail behavior and regularly varying functions
and the generalization of the sufficiency of these conditions to simply connected
nilpotent Lie groups (cf. Carnal [1]).

LEMMA 5.1. LetGbe a positively graduated simply connected step r-nilpotent
Lie group. Consider the α-dilation-stable c.c.s. {Exp tA}t­0 on G (0 < α < 1)
and let ν := ExpA. Let {dn}n­1 ⊂ G. Then

(5.1)
(
n−
◦Dα(◦ν) ∗ δ◦dn

)∗n w→ Exp ◦A (n→∞)

implies

(5.2) ν ∈ DONA({Exp tA}t­0, {tDα}t>0)

on G.

P r o o f o f T h e o r e m 5.1. Without loss of generality we may assume that
r ­ 3. By the preceding lemma, it suffices to verify (5.1). As a principle, the proof
of Theorem 5.1 can be translated from that of the case α < 2 of Theorem 4.1 if
we replace the corresponding citations of Lemma 4.2 by references to Lemma 5.1
and observe the following changes of Wn (cf. its definition in (4.10)): Here, the
analogous term for Wn (in contrast to (4.11) in the step 2-situation) contains also
terms of higher order (in the sense of nested Lie brackets) than two stemming from
the Campbell–Hausdorff formula. However, we can estimate ∥Wn∥ by

∥Wn∥ ¬ C
(
1 +

n∑
k=1

∥n−◦Dα(◦Zk)∥
)r−1 · ∥◦ζ/n∥(5.3)

= C
(
n−ρ +

n∑
k=1

∥n−ρ·I−◦Dα(◦Zk)∥
)r−1 · ∥◦ζ∥

for ρ := 1/(r− 1) and some suitable constant C > 0 (where, as always, I denotes
the identity matrix). Now

(5.4) L(Wn)
w→ δ0 (n→∞)
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can be obtained from (5.3) since, due to the assumption α < 1, the laws of the sums
of absolute values on the right-hand side on the second line of (5.3) tend weakly to
δ0 as n→∞.

Indeed, let us observe that the latter claim follows from Lemma 3.2 together
with the classical convergence conditions for triangular arrays of (suitably shifted)
rowwise i.i.d. real-valued random variables. The fact that here the weak conver-
gence to zero of the sums of absolute values under consideration on the right-hand
side on the second line of (5.3) holds also without the usual shifting constants
(which for an individual (non-negative) random variable in the n-th row of the tri-
angular array are well-known to have the form of minus the sum of a truncated
(e.g. at the value 1 ∈ IR) absolute moment of first order and an expression of type(
ξ + o(1)

)
/n with some fixed ξ ∈ IR) follows by the before-mentioned tail behav-

ior of laws in the domain of attraction of an α-stable law on the real line in terms of
regularly varying functions. This tail behavior implies that every law in the domain
of attraction of an α-stable law on the real line has all absolute moments of order
α′ < α. Now, by the assumption α < 1 (and thus α′ < 1) the truncated absolute
moments of first order (occurring in the shifts as mentioned before) can be esti-
mated from above by the (non-truncated) α′-th absolute moments for α′ ∈]0, α[
near enough to α such that

(1/α′)− (1/α) < ρ.

(Cf. Gnedenko and Kolmogorov [2].)
Now the assertion of Theorem 5.1 follows similarly as in the proof of Theo-

rem 4.1 by doing the corresponding adaptations. �
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