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1. INTRODUCTION AND MAIN RESULT

For each function m : Rd → C of absolute value bounded by one, there is
a unique linear contraction M on L2(Rd) defined in terms of the Fourier trans-
form by

(1.1) M̂f = mf̂ ,

or, in terms of bilinear forms and the Plancherel theorem, by

(1.2) Λ(f, g) =
∫
Rd

Mf(x)g(x)dx = (2π)−d
∫
Rd

m(ξ)f̂(ξ)ĝ(−ξ)dξ.

We are interested in symbols m for which the Fourier multiplier M has a finite
operator norm ∥M∥p on Lp(Rd) for all p ∈ (1,∞):

(1.3) |Λ(f, g)| ¬ ∥M∥p∥f∥p∥g∥q,

where q = p/(p− 1) and, say, f, g ∈ C∞c (Rd). Motivated by [4] and [14], a wide
class of multipliers was recently studied in [2] and [3] by transforming the so-
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called parabolic martingales of Lévy process. Burkholder–Wang inequalities for
differentially subordinate martingales (see [15]) were used to bound their norms:

(1.4) ∥M∥p ¬ max

{
p− 1,

1

p− 1

}
=: p∗ − 1.

Surprisingly, the symbols m obtained in [2] and [3] turned out to be symmetric,
even when non-symmetric Lévy processes were used in the construction. In this
paper we propose a new approach which leads to non-symmetric symbols. Namely,
we use two different Lévy processes to drive the martingales defining the pair-
ing Λ. Compared to [2] and [3] we also slightly modify the calculations of the
Fourier symbol.

Let d, n ∈ N and consider the general Lévy–Khinchine exponent on Rn,

(1.5) Ψ(ζ)=
∫
Rn

(
ei(ζ,z) − 1− i(ζ, z)1|z|¬1

)
ν(dz)− 1

2

∫
S
(ζ, θ)2 µ(dθ) + i(ζ, γ),

where ζ, γ ∈ Rn, µ ­ 0 is a (non-unique) finite measure on the unit sphere S ⊂
Rn, and ν ­ 0 is a (unique) Lévy measure on Rn: ν({0}) = 0 and∫

Rn

min(|z|2, 1)ν(dz) <∞.

Here (ξ, η) =
∑

k ξkηk and |ξ|2 =
∑

k |ξk|
2 = (ξ, ξ) for ξ, η ∈ Rd, Rn, Cd, Cn.

Consider complex-valued functions ϕ on Rn and φ on S such that ∥ϕ∥∞ ¬ 1 and
∥φ∥∞ ¬ 1. For ζ ∈ Rn we let

(1.6) Ψ̃(ζ)=
∫
Rn

(
ei(ζ,z) − 1− i(ζ, z)1|z|¬1

)
ϕ(z)ν(dz)− 1

2

∫
S
(ζ, θ)2φ(θ)µ(dθ).

Let A,B ∈ Rd×n. For ξ ∈ Rd we define

(1.7) m(ξ) = [eΨ(BT ξ−AT ξ) − eΨ(BT ξ)+Ψ(−AT ξ)]×∫
Rd

(ei(B
T ξ,z) − 1)(ei(−A

T ξ,z) − 1)ϕ (z) ν(dz)−
∫
S
(BT ξ, θ)(−AT ξ, θ)φ (θ)µ (dθ)∫

Rd

(ei(BT ξ,z) − 1)(ei(−AT ξ,z) − 1)ν(dz)−
∫
S
(BT ξ, θ) (−AT ξ, θ)µ (dθ)

,

with the convention that

(1.8) m(ξ) = eΨ(BT ξ)+Ψ(−AT ξ)×(∫
Rd

(ei(B
T ξ,z)− 1)(ei(−A

T ξ,z)− 1)ϕ (z) ν(dz)−
∫
S
(BT ξ, θ)(−AT ξ, θ)φ (θ)µ(dθ)

)
,
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if the denominator in (1.7) is zero. To simplify (1.7) and (1.8), we note that

(1.9)
∫
Rn

(ei(ζ1,z) − 1)(ei(ζ2,z) − 1)ϕ(z)ν(dz)−
∫
S
(ζ1, θ) (ζ2, θ)φ(θ)µ(dθ)

= Ψ̃(ζ1 + ζ2)− Ψ̃(ζ1)− Ψ̃(ζ2), ζ1, ζ2 ∈ Rn,

and a similar identity holds for the special case of Ψ. Thus, m(ξ) equals

[eΨ(BT ξ−AT ξ)−eΨ(BT ξ)+Ψ(−AT ξ)]
Ψ̃(BT ξ −AT ξ)−Ψ̃(BT ξ)−Ψ̃(−AT ξ)

Ψ(BT ξ −AT ξ)−Ψ(BT ξ)−Ψ(−AT ξ)

(1.10)

with the convention that

m(ξ) =eΨ(BT ξ)+Ψ(−AT ξ)[Ψ̃(BT ξ −AT ξ)−Ψ̃(BT ξ)−Ψ̃(−AT ξ)],(1.11)

if the denominator in (1.10) is zero. In short,

m(ξ) = eΨ(BT ξ)+Ψ(−AT ξ)[Ψ̃(BT ξ −AT ξ)− Ψ̃(BT ξ)− Ψ̃(−AT ξ)](1.12)

× q
(
Ψ(BT ξ −AT ξ)−Ψ(BT ξ)−Ψ(−AT ξ)

)
,

where
q(z) = (ez − 1)/z if z ∈ C \ {0}, and q(0) = 1 .

We see that (1.7) with (1.8) are equivalent to (1.12). Here is our main result.

THEOREM 1.1. If M satisfies (1.1) and (1.12), and 1 < p <∞, then ∥M∥p ¬
p∗ − 1.

Theorem 1.1 is proved in Section 2 by using stochastic calculus of Lévy pro-
cesses. In Section 3 we make some clarifying comments and point out a few sym-
bols resulting from (1.12). An alternative approach for Gaussian Lévy processes
is given in Section 4, where we use the familiar and more compact classical Itô
calculus. This, however, boils down to taking ν = 0 in (1.5), and yields only sym-
metric symbols. Details of the stochastic calculus needed in this note may be found
in [2] and [3]. We refer to [6] and [12] for information on Lévy processes, in-
cluding compound Poisson processes, and to [8], [9], and [11] for various expo-
sitions of stochastic calculus. Burkholder’s method is discussed in depth in [1],
and a classical treatment of Fourier multipliers may be found in [13]. A recent
study of non-symmetric homogeneous symbols is given in [10]. As we already
remarked, multipliers with symmetric symbols were obtained by similar methods
in [2] and [3], and they include, e.g., Marcinkiewicz-type fractional multipliers,
the Beurling–Ahlfors operator and the second order Riesz transforms. We also note
that the bound (1.4) cannot in general be improved, because it is optimal for second
order Riesz transforms (see [5]).
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While we considerably extend the class of symbols manageable by our meth-
ods, we fall short of non-symmetric symbols homogeneous of degree zero. Specif-
ically, homogeneous symbols may appear as the second factor (the ratio) in (1.7)
or (1.10), but they are tempered at the origin and infinity by the first factor therein,
which involves the Fourier transform of the semigroup. Replacing Ψ and Ψ̃ by uΨ
and uΨ̃ and letting u →∞ usually removes the first factor in (1.7) and (1.10) if
A = B. The resulting symbols are given in (3.1) below, and include many sym-
metric symbols homogeneous of degree zero, see (3.2). We wonder if a different
pairing or other modifications of our methods could produce symbols which are
both discontinuous and non-symmetric.

Below we will often use the quadratic variation [F, F ] and covariation [F,G]
of square-integrable continuous-time càdlàg martingales F , G. Recall that [F, F ] is
the unique adapted right-continuous non-decreasing process with jumps [F, F ]t −
[F, F ]t− = |Ft − Ft−|2, and such that t 7→ |F |2t − [F, F ]t is a (continuous) mar-
tingale starting at zero ([8], VII.42). We say that F is differentially subordinate
to G if t 7→ [G,G]t − [F, F ]t is nonnegative and non-decreasing (see [15]). The
covariation [F,G] is defined by polarization, and we have EFtGt = E[F,G]t. All
the functions and measures considered in this paper are assumed to be Borelian.

2. PROOF OF THEOREM 1.1

We will first prove the result for

(2.1) Ψ(ζ) =
∫
Rd

(ei(ζ,z) − 1)ν(dz), ζ ∈ Rn,

and

(2.2) Ψ̃(ζ) =
∫
Rn

(ei(ζ,z) − 1)ϕ(z)ν(dz), ζ ∈ Rn,

where ν is finite. To this end we only need to define Λ satisfying (1.2) and (1.3).
By f and g below we will denote complex-valued smooth compactly sup-

ported (i.e. C∞c ) functions on Rd or Rn. Let (Yt, t ­ 0) be a compound Poisson
process on Rn with the Lévy measure ν, semigroup (Pt), expectation E and jumps
∆Yt = Yt − Yt− . Let x ∈ Rn. Recall that

Ptf(x) = Ef(x+ Yt) =
∫
Rd

f(x+ y)pt(dy), where t ­ 0,

pt = e−t|ν|
∞∑
n=0

ν∗n

n!
, and p̂t(ζ) = Eei(ζ,Yt) = etΨ(ζ) for ζ ∈ Rn.

Let A,B ∈ Rd×n. The process (AYt, t ­ 0) is compound Poisson, too, with the
Lévy measure equal to (the pushforward measure) Aν = ν ◦ A−1 on Rd \ {0}
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([12], Proposition 11.10). Indeed, for ξ ∈ Rd,

Eei(ξ,AYt) = etΨ(AT ξ) =
∫
Rn

(ei(ξ,Az) − 1)ν(dz) =
∫
Rd

(ei(ξ,z) − 1)Aν(dz).

We also have Ef(x+AYt) = PA
t f(x), where

PA
t f(x) =

∫
f(x+Ay)pt(dy).

We proceed similarly for (BYt, t ­ 0). We remark that (AYt) and (BYt) have
fairly general dependence structure, e.g. yield pairs of projections of Y .

We consider the filtration Ft = σ{Ys : 0 ¬ s ¬ t}. For 0 ¬ t ¬ 1 we define
the parabolic martingale Ft = Ft(x; f,A), where

Ft(x; f,A) = E[f(x+AY1)|Ft] = E
[
f
(
x+A(Y1 − Yt) +AYt

)
|Ft

]
=

∫
Rd

f(x+Ay +AYt)p1−t(dy) = PA
1−tf(x+AYt).

Thus F is of function-type, i.e. a composition of a (parabolic) function with a
(space-time) stochastic process. By the Itô formula ([3], p. 17) for (AYt),

Ft − F0 =
∑

0<v¬t
∆Yv ̸=0

[PA
1−vf(x+AYv)− PA

1−vf(x+AYv−)]

−
t∫
0

∫
Rd

[
PA
1−vf

(
x+A(Yv + z)

)
− PA

1−vf(x+AYv)
]
ν(dz)dv.

Following [2] and [3] we also define more general (i.e. non function-type) martin-
gales

Gt(x; g,B, ϕ) =
∑

0<v¬t
∆Yv ̸=0

[PB
1−vg(x+BYv)− PB

1−vg(x+BYv−)]ϕ(∆Yv)

−
t∫
0

∫
Rd

[
PB
1−vg

(
x+B(Yv + z)

)
− PB

1−vg(x+BYv)
]
ϕ(z)ν(dz)dv

driven by (BYt). We see that Ft(x; f,B) = Gt(x; f,B, 1). Let

(2.3) Λ(f, g) =
∫
Rd

EF1(x; f,A)G1(x; g,B, ϕ)dx.

By [3], p. 17, it follows that Gt := Gt(x; g,B, ϕ) has quadratic variation

[G,G]t =
∑

0<v¬t
|PB

1−vg(x+BYv)− PB
1−vg(x+BYv−)|2|ϕ(∆Yv)|2.
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The quadratic variation of F is

[F, F ]t = |F0|2 +
∑

0<v¬t
|PA

1−vf(x+AYv)− PA
1−vf(x+AYv−)|2.

Since ∥ϕ∥∞ ¬ 1, G(x; g,B, ϕ) is differentially subordinate to F (x; g,B). Let
p, q ∈ (1,∞) and 1/p+ 1/q = 1. By Fubini–Tonelli,

(2.4)
∫
Rd

E|F1(x; f,A)|pdx =
∫
Rd

E|f(x+AY1)|pdx

=
∫
Rd

∫
Rd

|f(x+Ay)|pp1(dy)dx =
∫
Rd

∫
Rd

|f(x)|pp1(dy)dx = ∥f∥pp.

We then use Burkholder–Wang theory (see [15]) and the identity p∗ − 1 = q∗ − 1:

E|G1|q ¬ (q∗ − 1)qE|g(x+BY1)|q = (p∗ − 1)qE|g(x+BY1)|q.

Following (2.4), we now obtain∫
Rd

E|G1(x; g,B, ϕ)|qdx ¬ (p∗ − 1)q
∫
Rd

|g(x)|qdx.

By the Hölder inequality, |Λ(f, g)| ¬ (p∗ − 1)∥f∥p∥g∥q, as required in (1.3). To
obtain (1.2), we recall that EF1G1 = E[F,G]1. Furthermore,

P̂A
t f(ξ) = f̂(ξ)etΨ(−AT ξ).

By this, the Lévy system (see [3] and [8]) and the Plancherel theorem,

Λ(f, g) =
∫
Rd

E
∑

0<v¬1
∆Yv ̸=0

[PA
1−vf(x+AYv)− PA

1−vf(x+AYv−)]

× [PB
1−vg(x+BYv)− PB

1−vg(x+BYv−)]ϕ(∆Yv)dx

=
∫
Rd

1∫
0

∫
Rd

∫
Rd

[
PA
1−vf

(
x+A(y + z)

)
− PA

1−vf(x+Ay)
]

×
[
PB
1−vg

(
x+B(y + z)

)
− PB

1−vg(x+By)
]
ϕ(z)ν(dz)pv(dy)dvdx

= (2π)−d
∫
Rd

m(ξ)f̂(ξ)ĝ(−ξ)dξ,
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where

(2.5) m(ξ) =
1∫
0

∫
Rd

∫
Rd

(e−i(ξ,A(y+z)) − e−i(ξ,Ay))(ei(ξ,B(y+z)) − ei(ξ,By))

× e(1−v)Ψ(−AT ξ)e(1−v)Ψ(BT ξ)ϕ(z)ν(dz)pv(dy)dv

=
1∫
0

∫
Rd

∫
Rd

ei(B
T ξ−AT ξ,y)e(1−v)(Ψ(BT ξ)+Ψ(−AT ξ))

× (ei(ξ,Bz) − 1)(e−i(ξ,Az) − 1)ϕ(z)ν(dz)pv(dy)dv

=
1∫
0

∫
Rd

evΨ(BT ξ−AT ξ)e(1−v)(Ψ(BT ξ)+Ψ(−AT ξ))

× (ei(ξ,Bz) − 1)(e−i(ξ,Az) − 1)ϕ(z)ν(dz)dv.

We directly verify (cf. (1.9)) that∫
Rd

(ei(ξ,Bz) − 1)(e−i(ξ,Az) − 1)ϕ(z)ν(dz)

= Ψ̃(BT ξ −AT ξ)− Ψ̃(BT ξ)− Ψ̃(−AT ξ).

We integrate (2.5) with respect to dv and obtain (1.12).
We shall next give an extension to compound Poisson processes with drift. We

claim that the multiplier resulting from ϕ and the Lévy–Khinchine exponent∫
Rd

(
ei(ξ,z) − 1− i(ξ, z)1|z|¬1

)
ν(dz) + i(ξ, γ) =

∫
Rd

(ei(ξ,z) − 1)ν(dz) + i(ξ, h),

where h = γ −
∫
Rd z1|z|¬1ν(dz), has also the norm bounded by p∗− 1 on Lp(Rd).

The operator Thf(x) = f(x − h) is an isometry of Lp(Rd), and also a Fourier
multiplier with symbol ei(ξ,h). We can multiply m(ξ) in (1.12) by ei(B

T ξ−AT ξ,h),
without changing the norm of the multiplier. The exponential function absorbs into
the first factor on the right-hand side of (1.12), which grants the extension.

We will now pass to general Lévy processes, i.e. arbitrary Ψ and Ψ̃ given by
(1.5) and (1.6). We first note that the norm bound of our multipliers is preserved
under pointwise convergence of the symbols, which follows from the Plancherel
theorem and Fatou’s lemma in the same way as in the proof of Theorem 1.1 in [3].
Then we remark that m in (1.12) depends continuously on Ψ and Ψ̃. Finally, we
recall the following approximation procedure: let ε→ 0+,

νε = 1{|z|>ε}ν, and µε(drdθ) = ε−2δε(dr)µ(dθ).

Here (r, θ) ∈ (0,∞)× S are the polar coordinates in Rn, and δε is the probability
measure concentrated at ε. We consider

Ψε(ξ) =
∫
Rd

(
ei(ξ,z) − 1− i(ξ, z)1|z|¬1

)
(νε + µε)(dz) + i(ξ, γ),
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and
Ψ̃ε(ξ) =

∫
Rd

(
ei(ξ,z) − 1− i(ξ, z)1|z|¬1

)
ϕε(z)(νε + µε)(dz),

where ϕε(z) = 1{|z|>ε}ϕ(z) + 1{|z|=ε}φ(z/|z|). By dominated convergence, we
have Ψε(ζ)→ Ψ(ζ) and Ψ̃ε(ζ)→ Ψ̃(ζ) (see [3], (3.3)), which yields the conver-
gence of the resulting symbols (say, mε) to m in (1.12), and completes the proof. �

3. COMMENTS AND EXAMPLES

Unless stated otherwise the multipliers discussed in this section have norms
bounded by p∗ − 1 on Lp(Rd) for 1 < p <∞, as results from the preceding dis-
cussion. We will focus on the symbols.

Note that m(ξ) given by (1.12) is continuous in ξ, since so are Ψ(ξ) and Ψ̃(ξ).
By (1.1), the Plancherel theorem and (1.4) for p = 2 we also see that |m(ξ)| ¬ 1.

Let u > 0. We may consider uΨ and uΨ̃ instead of Ψ and Ψ̃ in (1.10). If
A = B, ℜΨ(Aξ) < 0 for ξ ̸= 0, and u→∞, then we obtain the symbol

m(ξ) =
Ψ̃(AT ξ) + Ψ̃(−AT ξ)

Ψ(AT ξ) + Ψ(−AT ξ)
.(3.1)

In fact, the assumption A = B rules out non-symmetric symbols. On the other
hand, if A ̸= B, then the corresponding Lévy processes separate over time, and
their parabolic martingales quickly decorrelate (cf. the proof of Theorem 1.1). We
do not see a way to reproduce a nontrivial analogue of (3.1) in this situation. We
also note that if A = B = I and ℜΨ(ξ) < 0 for ξ ̸= 0, then (3.1) is equivalent
to (1.4) in [3]. Furthermore, if A ∈ Rd×d and detA ̸= 0, then multipliers corre-
sponding to symbols m(ξ) and m(AT ξ) have equal norms on Lp(Rd). In such a
case (3.1) is merely a trivial extension of (1.4) in [3]. If ν = 0, then (3.1) yields,
e.g., the symbols

(3.2) m(ξ) =

∫
S
(ξ, θ)2 φ(θ)µ(dθ)∫
S
(ξ, θ)2 µ(dθ)

, ξ ∈ Rd.

Further discussion and examples related to (3.1) may be found in [3]. In particular,
[3] compares (3.2) to the more usual matrix form. We also obtain the symbols

m(ξ) =
ln(1 + ξ2j )

ln(1 + ξ21) + . . .+ ln(1 + ξ2d)
(3.3)

(this corrects formulas (4.10) and (4.11) in [3]), and

m(ξ) = −2ξjξk/|ξ|2.

Here ξ ∈ Rd \ {0}, j, k = 1, . . . , d, and j ̸= k.



Parabolic martingales and Fourier multipliers 249

To exhibit a non-symmetric symbol resulting from our construction, we let
n = d, α ∈ (0, 2) and Ψ(ξ) = −|ξ|α, so that µ = 0, γ = 0, ν(dz) = cα|z|−d−αdz,
and cα = Γ

(
(d+ α)/2

)
2απ−d/2/|Γ(−α/2)| in (1.5) (see [7]). These correspond

to the isotropic α-stable Lévy process. If α ∈ (0, 1) and B = I = −A in (1.12),
then, by (1.7) and (1.9),

m(ξ) =
e−|2ξ|

α − e−2|ξ|
α

−|2ξ|α + 2|ξ|α
∫
Rd

(ei(ξ,z) − 1)2ϕ(z)ν(dz).

Let d = 1 and ϕ(z) = sgn(z). We have (eiξz − 1)2 = (e2iξz − 1) − 2(eiξz − 1)
and ∫

R

eiξz − 1

|z|1+α
ϕ(z)dz = 2i

∞∫
0

sin ξz

|z|1+α
dz = −2iΓ(−α) sin πα

2
sgn(ξ)|ξ|α.

By this and the multiplication and reflection formulas for the gamma function,∫
R
(eiξz − 1)2ϕ(z)ν(dz) = −i tan πα

2
[|2ξ|α − 2|ξ|α].(3.4)

Therefore,

m(ξ) = i tan
πα

2
sgn(ξ)(e−|2ξ|

α − e−2|ξ|
α
), ξ ∈ R.(3.5)

We may let α→ 1 in (3.5), and use l’Hospital’s rule to obtain

m(ξ) =
4i ln 2

π
ξe−2|ξ|.

This agrees well with (1.8) and (1.11), see (3.4). By analytic continuation, (3.5)
extends to α ∈ (1, 2).

As seen in the proof of Theorem 1.1, the drift γ plays little role in our results,
according with the conclusions of [3].

4. GAUSSIAN CASE

For multipliers resulting from the linear transformations of the Brownian mo-
tion there is an alternative direct approach based on the classical Itô calculus. The
calculations are simpler and may shed some light on the procedures in Section 2.

THEOREM 4.1. Let d, n ∈ N and A,B ∈ Rd×n. Let K ∈ Cn×n satisfy

(4.1) |Kz| ¬ |z| for z ∈ Cn.
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For each p ∈ (1,∞), the Fourier multiplier M with the symbol

(4.2) m(ξ) = [e−|A
T ξ−BT ξ|2 − e−|A

T ξ|2−|BT ξ|2 ]
(AT ξ,KBT ξ)

(AT ξ,BT ξ)

is bounded in Lp(Rd). In fact, ∥Mf∥p¬(p∗ − 1)∥f∥p for f ∈Lp(Rd), where we
assume m(ξ) = e−|A

T ξ|2−|BT ξ|2(AT ξ,KBT ξ), if the denominator in (4.2) is zero.

P r o o f. Let (Wt)t­0 be the Brownian motion in Rn. Let pt denote the dis-
tribution of Wt. Thus, for t > 0 we have pt(dw) = pt(w)dw, where pt(w) =
(2πt)−n/2 exp

(
− |w|2/(2t)

)
. Let f, g ∈ C∞c (Rd) and x ∈ Rd. We consider the

filtration
Ft = σ{Ws ; 0 ¬ s ¬ t}, t ­ 0,

and the parabolic martingale Ft = Ft(x; f,A), where

Ft(x; f,A) = E[f(x+AW1)|Ft] = E
[
f
(
x+AWt +A(W1 −Wt)

)
|Ft

]
=

∫
Rd

f(x+AWt +Az)p1−t(dz).

Note that F1 = f(x + AW1) and F0 = Ef(x + AW1). Let f̃(z) = f(Az). We
have∇f̃(y) = AT∇f(Ay). For 0 ¬ t ¬ 1, w ∈ Rd, we define

(4.3) h(t, w) =
∫
Rd

f(x+Aw +Az)p1−t(dz).

We observe that h is parabolic, i.e.(
∂

∂t
+

1

2
∆w

)
h(t, w) =

∫
Rd

f(x+Aw +Az)
∂

∂t

[
p1−t(z)

]
dz(4.4)

+
1

2

∫
Rd

∆z[f(x+Aw +Az)]p1−t(z)dz = 0.

Here ∆w =
∑n

i=1 ∂
2/∂w2

i is the Laplacian, and the last inequality follows from
integrating by parts and the heat equation

∂

∂s
ps(z) =

1

2
∆zps(z), s > 0, z ∈ Rn.

Let pAt (dy) be the distribution of AWt, i.e. pAt = Apt (the pushforward measure).
We have

p̂At (ξ) = exp(−t|AT ξ|2/2), ξ ∈ Rd,

h(t, w) = f ∗ pA1−t(x + Aw), and h(1, w) = f(x + Aw). Thus, Ft(x; f,A) =
h(t,Wt). By (4.4) and the Itô formula for h we obtain

(4.5) Ft − F0 =
t∫
0

AT (∇f) ∗ pA1−v(x+AWv)dWv.
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For t ∈ [0, u] we define

Gt = Gt(x; g,B,K) =
t∫
0

KBT (∇g) ∗ pB1−v(x+BWv)dWv,

where pBt = Bpt. The quadratic variations of these martingales are:

[F, F ]t = |F0|2 +
t∫
0

|AT (∇f) ∗ pA1−v(x+AWv)|2dv,(4.6)

[G,G]t =
t∫
0

|KBT (∇g) ∗ pB1−v(x+BWv)|2dv.(4.7)

By Burkholder–Wang theory of differentially subordinated martingales [15],

(4.8) E|Gt(x; g,B,K)|p ¬ (p∗ − 1)pE|Ft(x; g,B)|p.

Furthermore, we have

∫
Rd

|F1(x; f)|pdx =
∫
Rd

|f(x+AW1)|pdx =
∫
Rd

∫
Rd

|f(x+Ay)|pp1(dy)dx

=
∫
Rd

∫
Rd

|f(x)|pp1(dy)dx = ∥f∥pp.

(4.9)

A similar identitity holds for g and q = p/(p− 1). Therefore,

(4.10)
∫
Rd

E|G1(x; g,B,K)|pdx ¬ (p∗ − 1)p∥g∥pp.

We define

Λ(f, g) =
∫
Rd

E[F,G]1dx.

By (4.9), (4.10), and the Hölder inequality for the measure P ⊗ dx, we have

(4.11) Λ(f, g) ¬ (p∗ − 1)∥f∥q∥g∥p.
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By the Plancherel theorem,

Λ(f, g) =
1∫
0

∫
Rd

(2π)−d
∫
Rd

(AT ξ,KBT ξ)e−(1−t)|A
T ξ|2/2

× e−(1−t)|B
T ξ|2/2e−i(A

T ξ,y)ei(B
T ξ,y)pt(y)f̂(ξ)ĝ(−ξ)dξdydt

=
1∫
0

∫
Rd

(2π)−d(AT ξ,KBT ξ)e−(1−t)(|A
T ξ|2+|BT ξ|2)/2e−t|B

T ξ−AT ξ|2/2

× f̂(ξ)ĝ(−ξ)dξdt

=
∫
Rd

(2π)−df̂(ξ)ĝ(−ξ)(AT ξ,KBT ξ)e−(|A
T ξ|2+|BT ξ|2)/2

(4.12) ×
1∫
0

e−t[|B
T ξ−AT ξ|2−|AT ξ|2−|BT ξ|2]/2dtdξ

=
∫
Rd

(2π)−df̂(ξ)ĝ(−ξ)(AT ξ,KBT ξ)e−(|A
T ξ|2+|BT ξ|2)/2 e

(AT ξ,BT ξ) − 1

(AT ξ,BT ξ)
dξ.

Here we used the identity |AT ξ|2 + |BT ξ|2 − 2(AT ξ,BT ξ) = |BT ξ − AT ξ|2
(if (AT ξ,BT ξ) = 0, then the inner integral in (4.12) equals one). This yields the
symbol. The multiplier’s norm bound follows from (4.11), as in the proof of The-
orem 1.1. �

If Aξ = Bξ ̸= 0 for all ξ ̸= 0, and we multiply the matrices by u→∞, then

(4.13) m(ξ) =
(AT ξ,KAT ξ)

(AT ξ, AT ξ)
,

and the corresponding multiplier has the same norm bound p∗ − 1 (see the remarks
following Theorem 1.1). Such symbols were discussed in some detail in [2] and [3].
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