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Abstract. We propose data driven score rank tests for univariate sym-
metry around a known center based on non-smooth functions. A choice of
non-smooth functions is motivated by very special properties of a certain
function on [0, 1] determined by a distribution which is responsible for its
asymmetry. We modify recently introduced data driven penalty selection
rules and apply Schwarz-type penalty as well. We prove basic asymptotic
results for the test statistics. In a simulation study we compare the empirical
behavior of the new tests with the data driven tests based on the Legendre
basis and with the so-called hybrid test. We show good power behavior of
the new tests often overcoming their competitors.
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1. INTRODUCTION

Testing for symmetry is one of the oldest classical nonparametric problems
and has an extensive literature. A lot of variables which are used in the statisti-
cal modeling have antisymmetric behavior. An answer to the question about sym-
metry is usually essential for many problems in econometrics, computer science,
engineering and social sciences. Similarly, the symmetry of a distribution is some-
times crucial for a correct application of statistical procedures (see, e.g., Zheng and
Gastwirth [23]).

The sign test, which is the oldest symmetry test, has already been used by
Arbuthnot in 1710. In the paper “An argument for divine providence, taken from
the constant regularity observed in the births of both sexes” [1] he analyzed data
on birth process and showed that men are born more often than women.

In the last two decades, the problem of testing symmetry has paid renew at-
tention of many statisticians. We can mention, among others, McWilliams [15],
Modarres and Gastwirth [17], Cheng and Balakrishnan [5], Thas et al. [22], and
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Bakshaev [3]. They considered different types of symmetry tests. Cheng and Bal-
akrishnan [5] modified the sign test. The Wilcoxon sign test was at the beginning
of the investigation of Tajuddin [21] and Thas et al. [22]. Modarres and Gastwirth
[16] proposed a modified runs test. The last two authors considered also a very
interesting two-stage procedure called the hybrid test which will be taken into ac-
count in our study. Bai and Ng [2] and also Premaratne and Bera [19] studied
tests based on moments. Rank tests were throughly developed by Hájek et al. [8].
A more detailed study of the literature on testing symmetry can be found, e.g., in
Inglot et al. [11].

In the present paper we propose and study some new data driven tests. Janic-
Wróblewska [12] introduced and investigated a data driven test for symmetry based
on the Legendre polynomials and a Schwarz-type selection rule. Her study was
continued and extended by Inglot et al. in [10] and [11], where the authors added
new selection rules, provided new theoretical results, and presented a simulation
study. In the present paper we focus on score statistics based on non-smooth sys-
tems of orthogonal functions. Such a choice is motivated by very special properties
of a function on [0, 1] which contains all information about an asymmetry of the
distribution under consideration (see Section 2).

The paper is organized as follows. In Section 2 we construct the new test
statistics and give assumptions and notation. In Section 3 basic asymptotic results
for the new tests are stated. Section 4 is devoted to presenting the simulation study.
In Section 5 we formulate some conclusions. Section 6 contains proofs of theorems
stated in Section 3.

In the sequel we shall use c, C to denote positive constants, possibly different
in each case.

2. CONSTRUCTION OF THE TEST STATISTICS

Let X1, X2, . . . , Xn be i.i.d. random variables with a continuous distribution
function F (x). We are going to test

(2.1) H0 : F (m+ x) = 1− F (m− x), x ∈ R,

where m is known. Without loss of generality we may assume m to be equal to
zero.

Denote by Fs(x) =
(
F (x) + 1 − F (−x)

)
/2 the distribution function of the

symmetric part of F and put Fa = F − Fs. So,H0 is equivalent to testing whether
Fa = 0. Using Fs, we transform the data into the unit interval and obtain Ui =
Fs(Xi), i = 1, 2, . . . , n. It implies that the distribution of Ui is absolutely contin-
uous with respect to the uniform distribution on (0, 1) and its distribution function
has the form

F ◦ F−1s (t) = t+A(t), t ∈ (0, 1),

whereA = Fa ◦ F−1s is an absolutely continuous function, symmetric with respect
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to 1/2. It means that Ui has the density

(2.2) p(t) = 1 + a(t),

where a(t) = A′(t) a.s. A function a is antisymmetric with respect to 1/2 and
is responsible for asymmetry of data distribution. So, testing H0 is equivalent to
testing whether a = 0 with Fs being a nuisance parameter.

It is interesting to realize how asymmetry of a distribution F is described by
the function a defined in (2.2). Observe that when F has a density f , the function
a satisfies the following relation:

f(x)

fs(x)
− 1 = a

(
Fs(x)

)
, x ∈ R,

where fs is the density of Fs. Hence the function a takes values in [−1, 1]. The
median of F is equal to zero if and only if

∫ 1/2

0
a(t)dt = 0. If a(t) = 0 in some

neighborhood of zero, then tails of F are identical beginning from some point.
Moreover, if F has an asymmetric support, the function a takes values −1 and 1 at
some intervals near zero and one. Typically, a(0.5) = 0, a(t) has one zero in the
interval (0, 1/2) and attains the largest values near zero.

Denote by Fn the empirical distribution function of X1, X2, . . . , Xn. Then as
an estimator of an unspecified, symmetric part Fs(x) one may take

Fns(x) =
1

2

(
Fn(x) + 1−Fn(−x)

)
.

Let d(n) ­ 1 be a (bounded or not) sequence of natural numbers. For every
n ­ 1 consider a triangular array

(2.3) gk = gk(n) = (g
(n)
k1 , g

(n)
k2 , . . . , g

(n)
kk ) = (gk1, gk2, . . . , gkk),

k = 1, 2, . . . , d(n), of bounded, rowwise orthonormal functions in L2[0, 1] which
are antisymmetric with respect to 1/2. In our notation below we shall omit n
and write simply gkj and gk. In particular, if g1, g2, . . . is an infinite orthonor-
mal system on [0, 1], one may, for every n, take gkj = gj for j = 1, 2, . . . , k, k =
1, 2, . . . , d(n). In Inglot et al. [11], odd Legendre polynomials were considered.
Here, we extend that construction by removing the smoothness assumption and by
considering triangular arrays instead of common orthonormal systems. We briefly
repeat a construction of test statistics for the reader’s convenience.

Going back to the idea of Neyman [18] consider for each fixed k = 1, . . . , d(n)
the exponential family of densities

(2.4) pk(t, ϑ) = ck(ϑ) exp
{ k∑

j=1

ϑjgkj(t)
}
,
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where ϑ = (ϑ1, ϑ2, . . . , ϑk) ∈ Rk, while ck(ϑ) is the normalizing constant. Sup-
pose that p(t) = 1 + a(t) can be treated approximately as a member of the fam-
ily (2.4). Then the hypothesis H0 is equivalent to the parametric one, i.e., ϑ = 0.
By the orthonormality of the system gk, the normalized score statistic for such a
parametric problem takes the form

k∑
j=1

{
1√
n

n∑
i=1

gkj
(
Fs(Xi)

)}2

.

Since the distribution function Fs is unknown, we replace Fs with its natural
estimator Fns. Then we have

Fns(Xi) =
Ri

2n
=
n+ 0.5 + sign(Xi)(R

+
i − 0.5)

2n
,

where Ri is the rank of Xi in the pooled sample X1, . . . , Xn; −X1, . . . ,−Xn,
R+

i is the rank of the absolute value |Xi| among |X1|, |X2|, . . . , |Xn|, and
sign(Xi) denotes the sign of Xi (cf. Janic-Wróblewska [12]). Taking into account
a usual continuity correction, we obtain the score statistic for testing H0 in the
form

(2.5) Nk =
k∑

j=1

ĝ2kj ,

where

ĝkj =
1√
n

n∑
i=1

gkj

(
Fns(Xi)−

1

4n

)
=

1√
n

n∑
i=1

sign(Xi)gkj

(
n+R+

i − 0.5

2n

)
=

1√
n

n∑
i=1

gkj

(
Ri − 0.5

2n

)
.

In the sequel, ĝkj will be called empirical Fourier coefficients.
To get a flexible test we choose the dimension k in (2.5) using the data at hand.

Basing on the idea of Kallenberg and Ledwina [14] and following Inglot et al. [11]
we consider two types of selection rules. The first one is a score based Schwarz
selection rule (cf. Schwarz [20])

(2.6) S = min{k : 1 ¬ k ¬ d(n), Nk − k logn = max
1¬j¬d(n)

(Nj − j log n)}.

The second one is a less conservative class of selection rules defined by

(2.7) L = min
{
k : 1 ¬ k ¬ d(n), Nk −Π(k, n) = max

1¬j¬d(n)

(
Nj −Π(j, n)

)}
,

where
Π(j, n) = (j log n)1W c

n
+ (2j)1Wn ,



Data driven tests for symmetry 305

while Wn is an event which gives the information how many empirical Fourier co-
efficients among ĝd(n)1, . . . , ĝd(n)d(n) overcome some thresholds. More precisely,
choose 1 ¬ Kn ¬ d(n), 1 ¬ Dn ¬ Kn, λ ­ 0, and δn → 0. For j = 1, . . . ,Kn

define thresholds cjn by the formula

(2.8)
(
1−Φ(cjn)

)(
2Φ(cjn)− 1

)λ
=

1

2

(
δn
Dn

(
d(n)

j

)−1)1/j

with Φ(cjn) > 1 − (2λ + 2)−1, where Φ denotes the standard normal distribu-
tion function. Next, order ĝ2d(n)1, . . . , ĝ

2
d(n)d(n) from the largest to the smallest, ob-

taining ĝ2d(n)(1) ­ ĝ
2
d(n)(2) ­ . . . ­ ĝ

2
d(n)(d(n)). Then choose a Dn-element subset

Jn ⊆ {1, . . . ,Kn} and define

(2.9) Wn =
∪

j∈Jn
{ĝ2d(n)(j) ­ c

2
jn}.

In Inglot and Janic [9] and Inglot et al. [11] only the caseKn = Dn and λ = 0
was considered. Here, it is suitable to extend that construction. For more comments
concerning the idea of the construction of L see Inglot and Janic [9].

Finally, we propose for testingH0 the test statisticsNS andNL withNk given
by (2.5). In the present paper we focus on triangular arrays gk of non-smooth func-
tions, which better detect possibly a nonzero function a(t). In particular, in Sec-
tion 3 below, we propose to take the Haar System and the so-called Complemented
Haar System.

3. TEST STATISTICS ASYMPTOTICS

A detailed study of asymptotic behavior of the statistics NS and NL based
on the systems of orthonormal, absolutely continuous functions was presented in
Inglot et al. [11]. Here, we extend some of those results when the orthonormal
systems consist of non-smooth functions that are sufficiently regular.

Let gk = (gk1, gk2, . . . , gkk), k = 1, 2, . . . , d(n), be a triangular array of or-
thonormal and antisymmetric functions as in (2.3) such that each gkj is a linear
combination of lkj ­ 1 indicators of disjoint intervals in [0, 1]. Assume

(3.1) max
1¬k¬d(n)

max
1¬j¬k

sup
t∈[0,1]

|gkj(t)| ¬ c[d(n)]η

for some η ­ 0 and

(3.2) max
1¬k¬d(n)

max
1¬j¬k

lkj ¬ c[d(n)]ζ = o(n)

for some ζ ­ 0.



306 J . Józefczyk

Our idea is to approximate functions gkj by absolutely continuous functions
and to reduce the problem to the case which has been already considered in Inglot
et al. [11].

We shall replace each indicator with a trapezoid. More precisely, the indicator
1[α,β](t) will be approximated by the function

1 if α+ 1/(2n) ¬ t ¬ β − 1/(2n),

2n(t− α) if α ¬ t < α+ 1/(2n),

−2n(t− β) if β − 1/(2n) < t ¬ β,
0 otherwise.

In this way each function gkj is approximated by the function, say

φ
(n)
kj = φkj ,

which is nonconstant on intervals of joint length lkj/n. Obviously, φkj’s are ab-
solutely continuous. Note also that φkj’s are antisymmetric with respect to 1/2.
However, in general, functions φk1, φk2, . . . , φkk are not necessarily orthogonal.
We shall assume that they are orthogonal, i.e.

(3.3) φk1, φk2, . . . , φkk are orthogonal for each k = 2, . . . , d(n).

The empirical Fourier coefficients with respect to gkj and φkj have the form
(cf. (2.5))

ĝkj =
1√
n

n∑
i=1

sign(Xi)gkj

(
n+R+

i − 0.5

2n

)
and

φ̂kj =
1√
n

n∑
i=1

sign(Xi)φ
(n)
kj

(
n+R+

i − 0.5

2n

)
.

We have the following lemma.

LEMMA 3.1. If the conditions (3.1) and (3.2) are satisfied, then

(3.4) max
1¬k¬d(n)

|ĝk − φ̂k|2k ¬ c
[d(n)]2η+2ζ+1

n
a.s.,

where |v|k = (v21 + v22 + . . . + v2k)
1/2 is the k-dimensional Euclidean norm of a

vector v = (v1, v2, . . .) and φ̂k = (φ̂k1, . . . , φ̂kk).

The proof of Lemma 3.1 is given in Section 6.
The following theorem establishes an asymptotic behavior of NS and NL un-

derH0.
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THEOREM 3.1. Suppose that H0 is true and the conditions (3.1), (3.2), and
(3.3) are satisfied.

(1) If d(n) = O(nτ ) for some τ < 1/(4η + 4ζ + 3), then

S
P−→ 1 and NS

D−→ χ2
1 as n→∞,

where χ2
k denotes a random variable with the central chi-square distribution with k

degrees of freedom.
(2) If Dn = D ­ 1 and Kn = K ­ 1 are fixed natural numbers such

that D ¬ K < d(n), d(n) = O(nτ ) for some τ < 1/(4η + 4ζ + 3), and
δn > 0 (cf. (2.8)) is such that δn → 0, log(1/δn) = o(n−1/(4η+4ζ+3)), and
log(1/δn)/d(n)→∞, then

P (L = S)→ 1 and NL
D−→ χ2

1 as n→∞.

The proof of Theorem 3.1 is given in Section 6.
The next theorem concerns the asymptotic behavior of upper tail tests based

on NS and NL under alternatives.

THEOREM 3.2. Suppose (3.1), (3.2), and (3.3) are satisfied, d(n) → ∞,
d(n) = O(nτ ) with τ < 1/(4η + 4ζ + 3), and F is a fixed antisymmetric dis-
tribution function such that

(3.5)
n

[d(n)]2η+2ζ+1 log4 n

∣∣ 1∫
0

[g(t)]d(n)a(t)dt
∣∣2
d(n)
→∞ as n→∞,

where a is defined in (2.2). Then NS →∞ in probability and NL →∞ in prob-
ability. Consequently, for Dn, Kn, and δn as in Theorem 3.1 the upper-tail tests
based on NS and NL are consistent in the family of alternatives satisfying (3.5).

Below, we specify two triangular arrays of functions gk which will be applied
in the sequel. The first one is based on the following system of orthogonal func-
tions:

hj(t) =
√
d(n)sign(t− 0.5)1Aj (t), j = 1, . . . , d(n),

where

Aj =

(
j − 1

2d(n)
,

j

2d(n)

)
∪
(
1− j

2d(n)
, 1− j − 1

2d(n)

)
.

Since the function a(t) defined in (2.2) has specific properties (see Section 2, com-
ments after the definition of a), an ordering of hj’s strongly influences the power
of the corresponding test. Let πn = π be a permutation of the set {1, 2, . . . , d(n)}.
Then we define the triangular array (hkj) as follows: hkj = hπ(j), j = 1, . . . , k,
k = 1, . . . , d(n), and we shall refer to it as to the Haar System. A particular choice
of π will be proposed in the next section.
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The Complemented Haar System is also based on hj’s and is defined as fol-
lows:

c11(t) = sign(t− 0.5),

c21(t) = hπ(1)(t), c22 =
√
d(n)/

(
d(n)− 1

)
sign(t− 0.5)1{t:c21(t)=0}(t),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ck1(t) = hπ(1)(t), . . . , ck,k−1(t) = hπ(k−1)(t),

ckk(t) =
√
d(n)/

(
d(n)− k + 1

)
sign(t− 0.5)1Ck

(t), k = 3, . . . , d(n),

with Ck =
∩k−1

j=1{t : ckj(t) = 0}, and again πn = π, a permutation of the set
{1, 2, . . . , d(n)}.

Note that for both systems the assumptions (3.1), (3.2), and (3.3) are fulfilled.
In particular, for the Haar System we have η = 1/2, lkj = 2, and hence ζ = 0,
while for the Complemented Haar System we get η = 1/2, lkj = 2 for j < k and
lkk ¬ 2k, which results in ζ = 1. Moreover, both systems satisfy (3.5) for every
function a ̸= 0. Indeed, if a ̸= 0, then a > 0 on some interval which for n suffi-
ciently large contains an interval of the form

(
(j − 1)/

(
2d(n)

)
, j/

(
2d(n)

))
due

to the assumption d(n)→∞.

4. SIMULATION STUDY

In this section we present results of a simulation study for the new tests in
comparison to the hybrid test proposed by Modarres and Gastwirth in [16], denoted
below by H , and two data driven tests investigated in Inglot et al. [11], denoted
below by NS and NL (NL3 in their notation). In our computations we used R.
In all cases we took 10,000 Monte Carlo runs. We restricted our attention to the
sample size n = 100 and significance level α = 0.05. As it was suggested in Inglot
and Janic [9] and Inglot et al. [11] we took d(n) = 12.

We restrict our presentation to the tests based on two triangular arrays de-
scribed in the previous section – the Haar System and the Complemented Haar
System. The following permutation is applied in both cases:

π12 = π = (1, 3, 9, 5, 7, 11, 2, 4, 10, 6, 8, 12).

Some other choices of gk and π were also considered, but resulted in weaker tests.
For the Haar System the test statistics under the null hypothesis take a small

number of values which have significant probabilities. It causes a difficulty in deter-
mining exact critical values. To remove this difficulty, we modify the first function
h(12)1 = h1 as follows:

h̃(12)1(t) =
144√
61

[(
t− 5

24

)
1[0,1/24](t) +

(
t− 19

24

)
1[23/24,1](t)

]
.
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As in Inglot et al. [11] we consider tests applying the Schwarz-type rule S
(see (2.6)) and the rule L (see (2.7)) determined by the parameters δn = 0.05,
Kn = Dn = 3, and λ = 0. It can be observed that for systems (hkj) and (ckj)
there is usually no empirical Fourier coefficient which dominates and they often
have rather equalized values. It results in too conservative behavior of both rules.
To make the test more sensitive we propose one more choice of parameters, i.e.
δn = 0.05, Kn = 5, Dn = 3, An = {1, 3, 5}, and λ = 1. The corresponding se-
lection rule will be denoted by L∗.

In effect, we are going to study empirical behavior of five new data driven
tests. We will use the following notation:

Notation Selection rule System
NSH S Haar System,
NLH L Haar System,
NL∗H L∗ Haar System,
NSC S Complemented Haar System,
NLC L Complemented Haar System.

For more reliable comparison, we repeat simulations presented in Inglot et
al. [10], [11] for the data driven tests NS and NL based on the Legendre Sys-
tem. We decided to include into our study also the hybrid test H since it proved
to be a very sensitive symmetry test (cf. Inglot et al. [10], [11]). It occurs that
for typical alternatives the hybrid test attains high power in comparison to most
classical or recently proposed procedures. For the reader’s convenience, we briefly
present the construction of this test. This is a two-stage test procedure. Adopting
the notation from Section 2, at the first stage, the sign test given by the statistic
Z =

∑n
i=1 sign(Xi) at the significance level α1 < α is applied. If H0 is accepted

at the first stage, then a modified Tajuddin’s procedure (cf. Tajuddin [21]) is applied
at level α2. The test statistic takes the form

H =
Wp −E(Wp|Z)
[Var(Wp|Z)]1/2

,

where
Wp =

n∑
k=1

(R+
i − np)

+
1[0,+∞)

(
sign(Xi)

)
,

while p ∈ (0, 1) is a trimming proportion and u+ = max(0, u). Modarres and
Gastwirth recommended to choose p = 0.8 for sample sizes n ­ 50 and α1 =
0.01, α2 = 0.0404. We accepted these recommendations in our simulations. For
detailed description we refer to Modarres and Gastwirth [17].

4.1. Critical values. As usual for data driven tests, the slow convergence of
the rules S, L, and L∗ to one in probability under the null hypothesis implies that
exact critical values are far from the asymptotic ones for moderate sample sizes
like we just have taken. That is the reason why we prefer to take the empirical
critical values in our simulation study. We present them in Table 1.
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Table 1. Empirical critical values, α = 0.05, n = 100; 10,000 MC runs

NS NL NSH NLH NL∗H NSC NLC

5.355 6.121 4.332 4.694 4.560 4.843 6.614

Observe that for the Haar System we get significantly lower critical values.
Note that it is possible to find out some approximation formulas for the null dis-
tribution of the test statistics and in consequence for critical values. However, in
a first order approximation formula it is difficult to take into account several pa-
rameters defining the current rule L. Anyway, in the range approximation formula
works well, empirical critical values are quite close to that calculated from this
formula. For more comments see Inglot et al. [11].

4.2. Alternatives. For power comparisons we have considered a broad spec-
trum of alternatives. Most of them were described in Inglot et al. [10], [11]. All
alternatives which we take here into consideration have median zero. Below, we
list several alternatives we applied in our study. The first one is from Inglot et al.
[10], the second from Fan [6], the rest are new. In each case, the letter m denotes
the median of the underlying distribution.

Notation Density
MixBeta(a, b; θ) f(x) = 0.1

(
β(a,b)(x− 1) + β(b,a)(x)

)
+0.8β(a,θ)(x+m), x ∈ [0, 2], a, b, θ > 0;

Sin(θ, j) f(x) = 0.5 + θ sin(πjx), |x| ¬ 1, |θ| ¬ 0.5;
ShiftBeta(θ) f(x) = β(2,θ)(x+m), x ∈ [0, 2], θ > 0;
ShiftChiSq(θ) f(x) = χ2

θ(x+m), x ­ 0, θ = 1, 2, . . .;
BiBeta(θ) f(x) = 0.5

(
β(2,θ)(x− 1) + β(2,2)(x)

)
, x ∈ [0, 2], θ > 0;

BiChiSq(θ) f(x) = 0.5
(
χ2
θ(−x) + χ2

6(x)
)
, x ­ 0, θ = 1, 2, . . .;

IG(µ, λ) f(x) =
√
λ/(2µx3) exp

(
− λ(x− µ)2/(2µ2x)

)
,

x > 0, λ > 0, µ > 0;
Ra(θ) f(x) = θ−2x exp(−x2/2θ2), x ­ 0, θ > 0;
Lehm(θ) f(x) = θ0.5θ(x+ 1)θ−11[−1,1](x), x ∈ [−1, 1], θ > 1.

In the above formulas, β(a,b)(x) denotes the density of the beta distribution
with parameters a and b. Apart from the alternatives described above, we also
consider alternatives belonging to the families well known from the literature. We
take into account the Generalized Lambda Family denoted here by Lambda (see,
e.g., Modarres and Gastwirth [17]). We choose three the most interesting cases
among nine frequently appearing in the literature. We also take the Generalized
Tukey-Lambda Family denoted by Tukey (see Freimer et al. [7]), two particular
cases of the Fechner Family denoted by N-Fechner and C-Fechner (see Cassart et
al. [4]), and recently introduced Sinh-arcsinh Family, denoted here by Sh-Ash (see
Jones and Pewsey [13]). Most of these families were taken into account by Inglot
et al. in [10], [11], where one can also find their more precise description.
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4.3. Power comparisons. In Tables 2 and 3 we present powers of our five new
tests as well as NS, NL, and H for the selected alternatives.

Table 2. Empirical powers in per cent, α = 0.05, n = 100; 10,000 MC runs

alternative NS NL NSH NLH NL∗H NSC NLC H

MixBeta(1, 2; 3) 61 69 31 63 60 17 59 8

MixBeta(2, 3; 16) 35 47 32 51 49 18 44 6

Sin(0.5; 8) 43 98 61 98 98 60 98 43

Sin(0.3; 3.5) 54 72 34 65 65 32 66 43

ShiftBeta(4) 60 57 86 69 79 78 73 77

ShiftChiSq(10) 70 67 88 70 79 79 74 85

BiBeta(5) 83 85 41 87 84 40 88 70

BiChiSq(3) 91 91 61 90 89 59 91 87

IG(0.1, 1) 69 66 87 67 76 77 72 85

IG(15, 10) 52 48 71 45 55 57 50 68

Ra(2) 56 53 83 64 75 73 68 74

Lehm(0.2) 52 50 87 74 83 80 77 71

Table 3. Empirical powers in per cent, α = 0.05, n = 100; 10,000 MC runs

alternative NS NL NSH NLH NL∗H NSC NLC H

Lambda(Case 4) 74 71 81 60 69 71 66 86

Lambda(Case 5) 89 88 92 80 86 87 84 96

Lambda(Case 7) 39 36 41 23 29 32 28 50

Tukey(0.1; 0.5) 67 64 91 78 86 84 81 83

Tukey(10; 0.9) 49 48 85 72 82 78 75 67

Tukey(1.1; 1.6) 56 54 88 77 86 83 80 74

Tukey(7; 1.5) 56 53 81 63 74 71 66 72

Tukey(1.1; 6.5) 70 66 86 71 80 78 74 82

N-Fechner(0.5) 73 70 83 62 71 72 67 86

C-Fechner(0.4) 81 79 43 45 48 41 49 74

Sh-Ash(+∞, 4) 59 55 78 55 65 66 61 75

Sh-Ash(0.4, 1) 60 56 68 45 54 55 50 74

The following observations can be drawn from the results in Tables 2 and 3.
The powers of tests applying the selection rule L are more stable. What is more,
the rule L∗ for the Haar System gives a significant gain in power in comparison
to the rule L (ca. 6% on average). The test NSH behaves very well, but it is
not so stable as NL∗H . In most cases the tests based on the Haar System and
the Complemented Haar System give better power in comparison with tests based
on the Legendre polynomials. The behavior of the tests with the Complemented
Haar System changes with the applied rule. The test NLC usually attains high
power while NSC has some weak points. The hybrid test H is very good, but
fails completely when asymmetry is beyond distribution’s tails (see the first two
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rows in Table 2). Note that for the Generalized Lambda Family the highest power
is achieved by the hybrid test, while for the Generalized Tukey-Lambda Family by
the tests NL∗H and NSH .

For further illustration of the behavior of the compared tests, in Figures 1, 2,
and 3 we present power curves for three alternatives when changing the parameter
θ and the corresponding plots of the functions a. For readability we omit the tests
based on the Complemented Haar System. In Figure 4 we show other six alterna-
tives.

(a) Graph of the function a for θ = 3 (b) Power curves, α = 0.05,
n = 100; 10,000 MC runs

Figure 1. Empirical behavior of selected tests for the alternative ShiftBeta(θ).
Absolute values of the three biggest empirical Fourier coefficients ĝkj (number):

Legendre – 1.48 (2); 1.05 (3); 0.62 (4); Haar – 1.71 (1); 0.29 (4); 0.27 (8)

One can observe that for alternatives ShiftBeta (Fig. 1), IG (Fig. 4a) and Tukey
(Fig. 4b) the tests with the Haar System attain higher power than their competitors.
In these cases the hybrid test behaves quite well.

For C-Fechner (Fig. 4c) the highest power is attained by the testsNS andNL,
while H also behaves very well.

For alternatives N-Fechner and Sh-Ash (Figs. 4e, 4f) the tests with the Schwarz
type rule S perform better behavior. Here the hybrid test H attains the highest
power.

Finally, for alternatives BiBeta, MixBeta, and Sin (Figs. 2, 3, 4d) the tests
with the rules L and L∗ give better results. HereH is much worse and for MixBeta
breaks down.
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(a) Graph of the function a for θ = 4 (b) Power curves, α = 0.05,
n = 100; 10,000 MC runs

Figure 2. Empirical behavior of selected tests for the alternative BiBeta(θ).
Absolute values of the three biggest empirical Fourier coefficients ĝkj (number):

Legendre – 1.95 (12); 1.93 (1); 1.68 (2); Haar – 2.31 (12); 1.69 (6); 1.31 (1)

(a) Graph of the function a for θ = 16 (b) Power curves, α = 0.05,
n = 100; 10,000 MC runs

Figure 3. Empirical behavior of selected tests for the alternative MixBeta(2, 3; θ).
Absolute values of the three biggest empirical Fourier coefficients ĝkj (number):

Legendre – 2.09 (3); 1.20 (7); 1.16 (12); Haar – 1.68 (2); 1.53 (8); 0.71 (5)
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(a) IG(µ, 1) (b) Tukey(1.1; θ)

(c) C-Fechner(θ) (d) Sin(θ; 3.5)

(e) N-Fechner(θ) (f) Sh-Ash(θ, 1)

Figure 4. Empirical power curves of selected tests and alternatives,
α = 0.05, n = 100; 10,000 MC runs
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5. CONCLUSIONS

The presented simulation study shows that the new data driven tests can really
compete with the best tests and in many cases overcome them. Simultaneously,
they have essentially wider sensitivity. The tests with the rule L behave definitely
better. One can also observe that applying the rule L∗ gives in most cases a gain
in power, even about 10%, and sometimes loses about 3%. The tests based on the
Haar System attain the highest or close to the highest power for all considered
families of alternatives and behave stably. That is why we recommend NL∗H as
the best symmetry test.

Some insight into a compared tests ability of detection various types of alterna-
tives may give an average power. We calculated it for all 24 alternatives presented
in Tables 2 and 3. We obtained (in %): 71.8 for NL∗H , 70.0 for NSH , 68.4 for
NLC, 68.2 for H , 65.6 for NLH , 64.3 for NL, 62.5 for NS, and 62.0 for NSC.
It is seen that the test NL∗H has on average 6.2% higher power in comparison
to NLH and 7.5% to NL. It means that, in fact, L∗ increases sensitivity of the
test. The surplus of NL∗H to H of 3.6% on average proves its essentially bet-
ter performance. It is worth recalling that, as it was shown in Inglot et al. [11],
NL loses, on average, to the optimal Bayes test approximately 16.7% (for a spe-
cially designed comparison). It means that there is not much space for improving
it. Therefore, NL∗H seems to be much closer to the optimal test than NL and its
other competitors.

6. PROOFS

In this section we provide proofs of theorems stated in Section 3.

P r o o f o f L e m m a 3.1. For each j = 1, . . . , k and k = 1, . . . , d(n) let
us put

∆kj(r) = gkj

(
r − 0.5

2n

)
− φkj

(
r − 0.5

2n

)
, r = 1, 2, . . . , 2n.

By the construction of φkj , the number of nonzero ∆kj’s equals 2lkj and for
nonzero ∆kj’s we have from (3.1) an estimate |∆kj(r)| ¬ c[d(n)]η. These facts
and (3.1) together with (3.2) imply that for each k and j we have the following
estimate:

|ĝkj − φ̂kj | =
1√
n

n∑
i=1

|∆kj (Ri)| ¬
c√
n
lkj [d(n)]

η ¬ c√
n
[d(n)]η+ζ .

Now, (3.4) follows immediately. �



316 J . Józefczyk

P r o o f o f T h e o r e m 3.1. By (3.3) for each k = 1, 2, . . . , d(n) the func-
tions

φ̃kj =
φkj

∥φkj∥
, j = 1, 2, . . . , k,

where ∥v∥ denotes the L2-norm of a function v, are orthonormal and absolutely
continuous. By the construction of φkj it follows that |gkj(t)| ­ |φkj(t)| for all t
and φkj = gkj outside a set of the Lebesgue measure lkj/n. Hence, from (3.1) and
(3.2) we have for each k and j

(6.1) 0 <
1∫
0

(
g2kj(t)− φ2

kj(t)
)
dt ¬ c[d(n)]2η+ζ

n
.

By the assumption on d(n) the right-hand side of (6.1) tends to zero. Since gkj
are normalized, this gives for sufficiently large n

(6.2) 1 <
1

∥φkj∥
¬

(
1− c[d(n)]2η+ζ

n

)−1/2
¬ 1 +

c[d(n)]2η+ζ

n
.

Now, we need to apply Theorems A.3 and A.5 from Inglot et al. [11]. For our
present purpose these theorems can be stated as follows.

Let {φ̃kj , j=1, . . . , k, k=1, . . . , d(n)} be a triangular array of orthonormal
absolutely continuous functions (possibly changing with n). For k = 1, . . . , d(n)
let us set

ψ2(k) =
k∑

j=1

( 1∫
0

|φ̃′kj(t)|dt
)2

which, in general, may depend on n.

THEOREM A (Inglot et al. [11]). SupposeH0 is true.
1. For each fixed k, 1 ¬ k ¬ d(n),

|̂̃φk
|2k
D−→ χ2

k as n→∞

provided
(
ψ4(k) log6 n

)
/n→ 0 as n→∞.

2. For any sequence k(n) of natural numbers, k(n) ¬ d(n), any ν ∈ (0, 1/2),
and every sequence xn of positive numbers such that

(6.3) x1−2νn ψ2
(
k(n)

)
→ 0,

nx2n
k(n)

→∞, n3x
4(1+ν)
n

ψ4
(
k(n)

)
log6 n

→∞

it follows that

P (|̂̃φk(n)
|2k(n) ­ nx

2
n) = exp

{
−nx

2
n

2
+O(nx2+ν

n ) +O
(
k(n) log nx2n

)}
.
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3. For any sequence k(n) of natural numbers, k(n) ¬ d(n), any ν ∈ (0, 1/2),
and every sequence xn of positive numbers such that

x1−2νn ψ2
(
d(n)

)
→ 0,

nx2n
d(n)

→∞, n3x
4(1+ν)
n

ψ4
(
d(n)

)
log6 n

→∞

it follows that

P (|̂̃φd(n)
|2E ­ nx2n) = exp

{
−nx

2
n

2
+O(nx2+ν

n ) +O
(
k(n) log nx2n

)}
for any k(n)-element subset E ⊂ {1, . . . , d(n)}, where |v|2E =

∑
i∈E v

2
i .

We shall apply Theorem A to particular triangular arrays φ̃kj defined in Sec-
tion 3.

Since φ̃′kj(t) = 0 outside the set of Lebesgue measure lkj/n and for every t
|φ̃′kj(t)| ¬ cn[d(n)]η, by (3.1) and (3.2) we have ψ2(k) ¬ ck[d(n)]2η+2ζ uni-
formly in n.

From part 1 of Theorem A and the assumption on d(n) we immediately obtain

|̂̃φ|21 = ̂̃φ2

11
D→ χ2

1, which by (6.2) and the assumption on d(n) implies φ̂2
11
D→ χ2

1.
From Lemma 3.1 we have ĝ11 − φ̂11 → 0 a.s. and, consequently,

N1 = ĝ211
D→ χ2

1.

From the definition of S (see (2.6)) we have

P (S ­ 2) =
d(n)∑
k=2

P (S = k) ¬
d(n)∑
k=2

P
(
Nk ­ (k − 1) log n

)
(6.4)

=
d(n)∑
k=2

P
(
|ĝk|2k ­ (k − 1) log n

)
.

Applying part 2 of Theorem A for 2 ¬ k = k(n) ¬ d(n),
x2n =

(
k(n) − 1

)
(log n)/n and 0 < ν < [1 − τ(4η + 4ζ + 3)]/2(1− τ) we see

that (6.3) is fulfilled. So, for sufficiently large n we get

P
(
|̂̃φk
|2k ­ (k− 1) log n

)
= exp

{
−1
2
(k − 1)(logn)

(
1 + o(1)

)}
¬ n−

1
2
(1+o(1)).

Hence and from Lemma 3.1, (6.2) and the assumptions on d(n) we have for n
sufficiently large

(6.5)

P
(
|ĝk|2k ­ (k − 1) log n

)
¬ P

(
|φ̂k|k + c

d(n)η+ζ+1/2

√
n

­
√

(k − 1) log n

)
¬ P

(
|̂̃φk
|2k ­

(
1− 1

n1/4

)
(k − 1) log n

)
¬ n−

1
2
(1+o(1)).



318 J . Józefczyk

Combining (6.4) and (6.5) we finally get for n sufficiently large

P (S ­ 2) ¬ d(n)n−
1
2
(1+o(1))

which tends to zero, and hence proves the first part of the theorem.
To prove the second part, consider the family Ej of all j-element subsets of

the set {1, 2, . . . , d(n)}. Then from the definition of the event Wn and the corre-
sponding set Jn (see (2.9)), Lemma 3.1, and (6.2) we get similarly as above

P (Wn) ¬
D∑
j=1

∑
E∈Ej

P (|ĝd(n)|2E ­ jc2jn)(6.6)

¬
K∑
j=1

∑
E∈Ej

P

(
|̂̃φd(n)

|2E ­
(
1− 1

n1/4

)
jc2jn

)
.

Proceeding as in the proof of Theorem 3.1 in Inglot et al. [11] we prove that

(6.7) log
c2jn
2
¬ log log

2Dd(n)

δn
, jc2jn ­ log

1

δn
+ 2 log

(
d(n)

j

)
.

Applying part 3 of Theorem A to nx2n = (1 − n−1/4)2(jc2jn) and
0 < ν <

(
1− τ(4η + 4ζ + 3)

)
/2 we see the assumption of part 3 is fulfilled and

the right-hand side of (6.6) is estimated by

K∑
j=1

∑
E∈Ej

exp

{
−
jc2jn
2

(
1− 1

n1/4

)
+O

(
n−ν/2(jc2jn)

1+ν/2
)
+O(log c2jn)

}
.

By (6.7) this can be further estimated by the expression

K∑
j=1

exp

{
− 1

2
log

1

δn
+
jc2jn

n1/4
+O

(
n−ν/2(jc2jn)

1+ν/2
)
+O(log c2jn)

}
.

Using again (6.7) and the assumptions on δn we see that the above expression also
tends to zero (cf. the proof of Theorem 3.1 in Inglot et al. [11]). Hence P (Wn)→ 0
and consequently P (L = S)→ 1. �

It remains to prove Theorem 3.2.

P r o o f o f T h e o r e m 3.2. We have NS − S log n ­ Nd(n) − d(n) log n
a.s. for each n, which means that

NS ­ |ĝd(n)|2d(n) − d(n) log n a.s.

So, to prove that NS →∞ in probability it is enough to show

(6.8) P
(
|ĝd(n)|2d(n) ­ 2d(n) logn

)
→ 1 as n→∞.
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By Lemma 3.1 and the assumption on d(n) we have

|ĝd(n) − φ̂d(n)|2d(n) ¬ c[d(n)]
2η+2ζ+1/n→ 0 a.s.

Thus, by (6.2) and the triangle inequality, (6.8) can be reduced to

P
(
|̂̃φd(n)

|2d(n) ­ 4d(n) log n
)
→ 1

or to the stronger condition

(6.9) P
(
|̂̃φd(n)

|2d(n) ­ [d(n)]2η+2ζ+1 log4 n
)
→ 1.

Now, Proposition A.8 in Inglot et al. [11] can be applied to ̂̃φd(n)
. We have (cf.

(A.3) and (A.5) in Inglot et al. [11])

̂̃φd(n)
=

=
[ 1∫

0

[
φ̃
(
Hns(t)

)]d(n)
dεn(t)− ̂̃φd(n)

0

]
+ ̂̃φd(n)

0 +
√
n

1∫
0

[
φ̃
(
Hns(t)

)]d(n)
dA(t),

where ̂̃φd(n)

0 =
∫ 1

0
[φ̃(t)]d(n)dεn(t). Hence, putting κn = [d(n)]η+ζ+1/2 log2 n, we

get

P (|̂̃φd(n)
|d(n) ­ κn) ­ P

(∣∣ 1∫
0

[
φ̃
(
Hns(t)

)]d(n)
dA(t)

∣∣
d(n)
­ 3

κn√
n

)
−P

(∣∣ 1∫
0

[
φ̃
(
Hns(t)

)]d(n)
dεn(t)− ̂̃φd(n)

0

∣∣
d(n)
­ κn

)
−P (|̂̃φd(n)

0 |d(n) ­ κn).

So, to prove (6.9) it is enough to check

(i) P

(∣∣ 1∫
0

[
φ̃
(
Hns(t)

)]d(n)
dA(t)

∣∣
d(n)
­ 3

κn√
n

)
→ 1,

(ii) P
(∣∣ 1∫

0

[
φ̃
(
Hns(t)

)]d(n)
dεn(t)− ̂̃φd(n)

0

∣∣
d(n)
­ κn

)
→ 0,

and

(iii) P (|̂̃φd(n)

0 |d(n) ­ κn)→ 0.

To prove (i) observe that the construction of φkj , (3.1), (3.2), (6.2), bounded-
ness of a, and (3.5) imply

∣∣∫ 1

0
[φ̃(t)]d(n)dA(t)

∣∣
d(n)
­ 2ξnκn/

√
n for n sufficiently
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large, where ξn is some sequence tending to infinity. By the triangle inequality, to
get (i) it is enough to prove

(6.10) P

(∣∣ 1∫
0

[
φ̃
(
Hns(t)

)]d(n)
dA(t)−

1∫
0

[φ̃(t)]d(n)dA(t)
∣∣
d(n)
­ ξn

κn√
n

)
→ 0.

Applying (A.22) from Inglot et al. [11] to x2n = (log4 n)/n we get

P

(∣∣ 1∫
0

[
φ̃
(
Hns(t)

)]d(n)
dA(t)−

1∫
0

[φ̃(t)]d(n)dA(t)
∣∣
d(n)
­ 3ψ

(
d(n)

) log2 n√
n

)
¬ C exp{−c log4 n} → 0.

Since
ξnκn√
n
>

3ψ
(
d(n)

)
(log2 n)
√
n

for n sufficiently large, the relation (6.10) follows, thus proving (i).
To prove (ii) we apply (A.21) from Inglot et al. [11] to xn = 1/(log n) and

σ = 1/4 and obtain

P
(∣∣ 1∫

0

[
φ̃
(
Hns(t)

)]d(n)
dεn(t)− ̂̃φd(n)

0

∣∣
d(n)
­ ∆(n)

)
¬ P

(∣∣ 1∫
0

[
φ̃
(
Hns(t)

)]d(n)
dεn(t)− ̂̃φd(n)

0

∣∣
d(n)
­ ψ

(
d(n)

)
xσn

)
¬ C exp{−cnx2n}+ C exp{−cx2σ−1n } → 0.

Finally, to prove (iii) observe that

|̂̃φd(n)

0 |d(n) =
∣∣ 1∫
0

(φ̃d(n))′(t)εn(t)dt
∣∣
d(n)
¬ ψ

(
d(n)

)
sup
t
|εn(t)|

¬ c[d(n)]η+ζ+1/2 sup
t
|εn(t)|.

So, (iii) reduces to
P
(
sup
t
|εn(t)| ­ log3/2 n

)
→ 0,

which follows immediately from the Komlós, Major, and Tusnády inequality and
the estimate P

(
supt |B(t)| ­ x

)
¬ 2 exp{−2x2}, where B(t) denotes the Brow-

nian bridge.
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Since NL ­ Nd(n) − d(n) log n a.s., the above proof also remains valid for
the statistics NL. This completes the proof of Theorem 3.2. �
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