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Abstract. When D is a density matrix and A1, A2 are self-adjoint
operators, then the standard variance is a 2× 2 matrix:

VarD(A1, A2)i,j := TrDAiAj − (TrDAi)(TrDAj) (1 ¬ i, j ¬ 2).

The main result in this work is that there are projections Pk such that
D =

∑
k λkPk with 0 < λk and

∑
k λk = 1 and VarD(A1, A2) =∑

k λkVarPk
(A1, A2). In a previous paper only the A1 = A2 case was

included and the relevance is motivated by the paper [8].
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1. INTRODUCTION

The subject of the paper is matrix theory, see [1] and [3]. By a density matrix
D ∈ Mn(C) we mean D ­ 0 and TrD = 1. In quantum information theory the
traditional variance is

(1.1) VarD(A) = TrDA2 − (TrDA)2

when D is a density matrix and A ∈Mn(C) is a self-adjoint operator (see [3], [5],
and [6]). This is a simple example, but here A1, A2 are self-adjoint operators. Then
the standard variance is a matrix:

VarD(A1, A2)

=

[
TrDA2

1 − (TrDA1)
2 TrDA1A2 − (TrDA1)(TrDA2)

TrDA2A1 − (TrDA2)(TrDA1) TrDA2
2 − (TrDA2)

2

]
.
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Assume that 0 ¬ λ1, λ2 and λ1+λ2 = 1. By an elementary computation we obtain

Varλ1D1+λ2D2(A1, A2)− λ1VarD1(A1, A2)− λ2VarD2(A1, A2)

= λ1λ2

[
a2 ab
ab b2

]
­ 0,

where
a = Tr (D1 −D2)A1 and b = Tr (D1 −D2)A2.

It follows that we have the concavity of the variance functional D 7→VarD(A1, A2):

VarD(A1, A2) ­
∑
i

λiVarDi(A1, A2) if D =
∑
i

λiDi,

where λi ­ 0 and
∑

i λi = 1. Here the equality may be also true and this is the
result in Theorem 3.1: D is a certain convex combination of projections Pi as
D =

∑
i piPi and

VarD(A1, A2) =
∑
i

piVarPi(A1, A2).

We note that our results can be interpreted in the recent terminology of roof
(see, e.g., [9]) that originates from quantum theory. It seems to be important to
understand roofs because they admit convex decompositions of various quantum
mechanical quantities; see, e.g., [6], [8], [10]. In this context, the introduced vari-
ance matrix is a concave roof of itself.

The particular case A1 = A2 was already obtained in [6]. It is easy to show
that

VarD(A1 + λ1I,A2 + λ2I) = VarD(A1, A2) (λ1, λ2 ∈ R).

Therefore we can assume TrDA1 = TrDA2 = 0.

2. GENERAL COMPUTATIONS

We are interested in the projections P1, P2, . . . , PN when given a density D
and self-adjoint matrices A1, A2 such that D =

∑
i λiPi (λi ­ 0,

∑
i λi = 1) and

(2.1) VarD(A1, A2) =
∑
i

λiVarPi(A1, A2).

First we make an elementary computation when
∑

i λiPi = D. (It is not as-
sumed that the projections Pi are orthogonal.) The point is to find a 2× 2 matrix:

VarD(A1, A2)−
∑
i

λiVarPi(A1, A2) =:

[
α β
β γ

]
.
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We compute α, β, γ:

α = −
(∑

i

λiTrPiA1

)2
+

∑
i

λi(TrPiA1)
2

=
∑
i

λi(TrPiA1)(TrPiA1 − TrDA1),

γ =
∑
i

λi(TrPiA2)(TrPiA2 − TrDA2),

β = −
(∑

i

λiTrPiA1

)(∑
j

λjTrPjA2

)
+

∑
i

λi(TrPiA1)(TrPiA2)

=
∑
i

λi(TrPiA1)(TrPiA2 − TrDA2).

Given the density D and the self-adjoint matrices A1 and A2 we should find
the following solution:

(a) D =
∑

i λiPi, where Pi’s are projections, λi ­ 0, and
∑

i λi = 1;
(b)

∑
i λi(TrPiA1)

2 = (TrDA1)
2 (α = 0);

(c)
∑

i λi(TrPiA2)
2 = (TrDA2)

2 (γ = 0);
(d)

∑
i λi(TrPiA1)(TrPiA2 − TrDA2) = 0 (β = 0).

Instead of (d) we can take
(d′)

∑
i λi

(
TrPi(A1 +A2)

)2
=

(
TrD(A1 +A2)

)2.
This implies that the above conditions (b)–(d) have an equivalent form.

THEOREM 2.1. The condition (2.1) has the equivalent form

(2.2)
∑
i

λi

(
TrPi(αA1 + βA2)

)2
=

(
TrD(αA1 + βA2)

)2
for α, β ∈ {0, 1}.

We shall give a solution for the formula (2.2). First we have the following
result when D has rank 2.

LEMMA 2.1. Let D ∈ Mn(C) be a density matrix with rankD = 2 and let
A1, A2 ∈Mn(C) be self-adjoint matrices such that TrDA1 = TrDA2 = 0. There
exist projections P1, P2 ∈Mn(C) and p ∈ (0, 1) such that

D = pP1 + (1− p)P2

and
VarD(A1, A2) = pVarP1(A1, A2) + (1− p)VarP2(A1, A2).

P r o o f. Without loss of generality one can assume that D is diagonal, hence
it is enough to prove the statement when n = 2. We recall that any 2 × 2 self-
adjoint ρ with Tr ρ = 1 can be written as the real linear combination of the identity
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I and the Pauli matrices. In fact, let

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
;

then we have
ρ =

1

2
(I + xσx + yσy + zσz)

(this is called the Bloch representation); the self-adjoint points on the Bloch sphere,
that is x2 + y2 + z2 = 1, correspond to the pure states. Moreover, any traceless
self-adjoint 2× 2 matrix can be recovered by real linear combinations of the Pauli
matrices as well.

Now one can write (TrA1)
−1A1 and (TrA2)

−1A2 in Bloch’s representation
(if TrA1 = 0 or TrA2 = 0, rewrite A1 and A2 as the linear combination of the
Pauli matrices). Hence the densities which are orthogonal to A1 and A2 are lying
at the non-empty intersection of two affine subspaces of R3. By the assumption
TrDA1 = TrDA2 = 0, the intersection contains the point of the Bloch ball that
represents D, and hence meets the Bloch sphere as well in P1 and P2. Then D is the
convex combination of the projections P1 and P2. Since TrA1Pi = TrA2Pi = 0
holds, we readily obtain the decomposition of the variance as well. �

3. DECOMPOSITION OF THE MATRIX VARIANCE

To prove the main theorem here, we need the following lemma.

LEMMA 3.1. Let D ∈ Mn(C) be a density matrix with rankD ­ 3 and let
A1, A2 ∈Mn(C) be self-adjoint matrices such that TrDA1 = TrDA2 = 0. There
exist densities D1, D2 ∈Mn(C) and p ∈ (0, 1) such that

D = pD1 + (1− p)D2, TrDiA1 = TrDiA2 = 0 (i = 1, 2),

and rankDi < rankD for i = 1, 2.

P r o o f. Let us assume the matrix form

D = Diag(d−j , . . . , d−1, d0, d1, . . . , dk),

where j, k ­ 1 and d−1, d0, d1 > 0. Then we shall construct D1 and D2 in the
block-matrix forms as

D1 =


Diag(d−j , . . . , d−2) 0 0 0 0

0 d−1 x y 0
0 x d0 z 0
0 y z d1 0
0 0 0 0 Diag(d2, . . . , dk)


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and

D2 =


Diag(d−j , . . . , d−2) 0 0 0 0

0 d−1
−px
1−p

−py
1−p 0

0 −px
1−p d0

−pz
1−p 0

0 −py
1−p

−pz
1−p d1 0

0 0 0 0 Diag(d2, . . . , dk)

,

where x, y, z ∈ R. Let D>
1 and D>

2 denote the 3× 3 matrices from D1 and D2:

D>
1 =

d−1 x y
x d0 z
y z d1

, D>
2 =

d−1
−px
1−p

−py
1−p

−px
1−p d0

−pz
1−p

−py
1−p

−pz
1−p d1

.
Now p ∈ (0, 1) is a fixed parameter, its value will be determined later. First, we
need to guarantee that

TrDiA1 = TrDiA2 = 0 (i = 1, 2) .

Since TrDA1 = TrDA2 = 0, the last equalities can be written as

TrDiA1 = Re
(
x(A1)j,j+1 + y(A1)j,j+2 + z(A1)j+1,j+2

)
= 0,

TrDiA2 = Re
(
x(A2)j,j+1 + y(A2)j,j+2 + z(A2)j+1,j+2

)
= 0.

The (x, y, z) vectors that are orthogonal to the hyperplane spanned by
Re

(
(A1)j,j+1, (A1)j,j+2, (A1)j+1,j+2

)
and Re

(
(A2)j,j+1, (A2)j,j+2, (A2)j+1,j+2

)
(except for the trivial degenerative case) are lying on a line of R3 crossing the cen-
tre (0, 0, 0). Hence, let us use the parametrization (λx, λy, λz), where λ ∈ R and
x2 + y2 + z2 = 1, for the solutions of the above linear system.

Next, we choose the value of λ to obtain positive D1 and D2 and guarantee
the lower rank for them as well.

For the lower rank of D1 and D2, it is enough that the following equalities are
satisfied:

(detD>
1 )(λ) = d−1d0d1 + 2λ3xyz − λ2(x2d1 + y2d0 + z2d−1) = 0,

(detD>
2 )(λ) = d−1d0d1 − 2λ3

(
p

1− p

)3

xyz

− λ2

(
p

1− p

)2

(x2d1 + y2d0 + z2d−1) = 0.

To get positive semi-definite D1 and D2, let us calculate the Hilbert–Schmidt norm
∥ · ∥2 of D>

1 and D>
2 . We recall that

∥D>
i ∥

2
2 =

∑
j,k

(D>
i )2jk = Tr (D>

i )2 = σ2
D>

i ,1
+ σ2

D>
i ,2

+ σ2
D>

i ,3
,
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where σD>
i ,j denote the eigenvalues of D>

i . Since detD>
i = 0, the matrix D>

i

is positive semi-definite if (and only if) ∥D>
i ∥2 ¬ TrD>

i are satisfied (i = 1, 2).
Hence we need

∥D>
1 ∥22 = d2−1 + d20 + d21 + 2λ2(x2 + y2 + z2) ¬ (TrD>

1 )2,

which is the same as
(3.1)

|λ| ¬
√

1

2

(
(d−1 + d0 + d1)2 − d2−1 − d20 − d21

)
= (d−1d0 + d0d1 + d1d−1)

1/2.

Using the analogous inequality for ∥D>
2 ∥22, we note that it is enough to prove

that the equation (detD>
1 )(λ) = 0 has solutions of different signs λ1, λ2 such

that (3.1) holds. Then one can find a p ∈ (0, 1) such that −λ1p/(1 − p) = λ2.
Therefore, (detD>

1 )(λ1) = (detD>
1 )(λ2) = (detD>

2 )(λ1) = 0, which is what
we intended to have. Moreover, the positivity of D>

i implies that Di ­ 0, i = 1, 2.
To establish (3.1), note that the cubic function λ 7→ (detD>

1 )(λ) (λ ∈ R) has
positive local maximum at zero, i.e. (detD>

1 )(0) = d−1d0d1. Hence we can find
solutions of the equation (detD1)(λ) = 0 with the above property if (and only if)

(detD>
1 )

(
± (d−1d0 + d0d1 + d1d−1)

1/2
)
¬ 0

or, equivalently,

d−1d0d1 ± 2(d−1d0 + d0d1 + d1d−1)
3/2xyz

− (d−1d0 + d0d1 + d1d−1)(x
2d1 + y2d0 + z2d−1) ¬ 0.

Expanding the last product we get

± 2(d1d0 + d0d−1 + d−1d1)
3/2xyz

¬ x2d21(d0 + d−1) + y2d20(d1 + d−1) + z2d2−1(d1 + d0).

From the Cauchy–Schwarz inequality we have(
d1(d0 + d−1) + d0(d−1 + d1) + d−1(d1 + d0)

)
xyz

¬
(
x2d21(d0 + d−1) + y2d20(d1 + d−1) + z2d2−1(d1 + d0)

)1/2
×

(
x2y2(d1 + d0) + y2z2(d0 + d−1) + x2z2(d1 + d−1)

)1/2
.

Thus it is enough to prove that

(3.2)
(d1d0+d0d−1+d1d−1)

(
x2y2(d1+d0)+ y2z2(d0+ d−1)+x2z2(d1+ d−1)

)
¬ x2d21(d0 + d−1) + y2d20(d1 + d−1) + z2d2−1(d1 + d0).
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After multiplication we see that the left-hand side is equal to

x2(y2 + z2)d21(d0 + d−1) + y2(x2 + z2)d20(d1 + d−1)

+ z2(x2 + y2)d2−1(d1 + d0) + 2(x2y2 + y2z2 + z2x2)d1d0d−1.

Since x2 + y2 + z2 = 1, we can actually write (3.2) in the following form:

2(x2y2 + y2z2 + z2x2)d1d0d−1

¬ x4d21(d0 + d−1) + y4d20(d1 + d−1) + z4d2−1(d1 + d0).

From the trivial identity 2(x2y2 + y2z2 + z2x2) = 1− (x4 + y4 + z4) it follows
that

d1d0d−1 ¬ (d1d0 + d0d−1 + d−1d1)(x
4d1 + y4d0 + z4d−1),

which is that same as
1

1

d1
+

1

d0
+

1

d−1

=
1

x2

x2d1
+

y2

y2d0
+

z2

z2d−1

¬ x4d1 + y4d0 + z4d−1,

a weighted form of the harmonic and arithmetic mean inequality [7]. We showed
that (3.2) holds, hence (3.1) also follows. This means that there exist p ∈ (0, 1)
and real density matrices D1, D2 such that D = pD1 + (1 − p)D2, TrDiA1 =
TrDiA2 = 0 and rankDi < rankD. �

Now we can prove our main result.

THEOREM 3.1. Let D ∈Mn(C) be a density matrix and let A1, A2 ∈Mn(C)
be self-adjoint matrices. There exist a probability distribution pi and a family of
projections Pi such that

D =
∑
i

piPi and VarD(A1, A2) =
∑
i

piVarPi(A1, A2).

P r o o f. Since

VarD(A1, A2) = VarD(A1 − λ1I, A2 − λ2I)

for any λ1, λ2 ∈ R, we can assume that TrDA1 = TrDA2 = 0.
Let us apply induction on the rank of D. We remark that from conjugation

by unitaries we can always assume that D is diagonal. If rankD = 2 then the
existence of the decomposition is proved in Lemma 2.1.

For the general case, let us note that we can always reduce rankD according
to Lemma 3.1. Since TrDiA1 = TrDiA2 = 0 also holds, we readily get

VarD(A1, A2) = pVarD1(A1, A2) + (1− p)VarD2(A1, A2),

where p ∈ (0, 1). Now the induction gives a decomposition for D1 and D2 and the
proof is complete. �
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We remark here that the existence of the decomposition of the matrix variance
is essentially based on the decomposition of the low-dimensional densities. In fact,
the Krein–Milman theorem always gives the decomposition into rank-3 or lower
rank densities. This is the subject of the next example. The proof is based on a
simple geometrical observation.

LEMMA 3.2. Let R be a nonempty intersection of an (n− 1)-simplex ∆ and
two affine hyperplanes of Rn (n ­ 3). The extreme points of R are lying at 2-
simplices of ∆.

P r o o f. If n = 3, we are ready. Thus let us assume that n > 3. An extreme
point e of R must be lying on its topological boundary but any boundary point
is on a proper face Fe of ∆. Since Fe ∩ R is a face of R, it follows that e is an
extreme point of Fe ∩R as well. The simplex Fe has lower dimension, hence one
can infer by induction that e is lying on a 2-simplex of ∆. �

EXAMPLE 3.1. Let n ­ 3 and D = Diag(d1, . . . , dn) ∈ Mn(C) be a den-
sity matrix. Let A1, A2 ∈ Mn(C) be self-adjoint matrices. Then one can find a
probability distribution pi and a family of densities Di such that rankDi ¬ 3,

D =
∑
i

piDi and VarD(A1, A2) =
∑
i

piVarDi(A1, A2).

In fact, again by the equality

VarD(A1, A2) = VarD(A1 − λ1I, A2 − λ2I),

we can assume that TrDA1 = TrDA2 = 0. Let ∆n−1 denote the convex hull
of the standard basis vectors in Rn, i.e. the standard (n − 1)-simplex. The points
(r1, . . . , rn) ∈ ∆n−1 that satisfy the equalities

∑
i

ri(A1)ii = 0 and
∑
i

ri(A2)ii = 0

form a nonempty compact convex setR of Rn. By Lemma 3.2, the extreme points
of R, denoted by E(R), are lying at 2-simplices of ∆n−1. However, any element
of E(R) is spanned by at most three standard basis vectors. On the other hand, the
Krein–Milman theorem [4] gives

R =
∑

e∈E(R)
pee, where

∑
e∈E(R)

pe = 1 and pe ­ 0.

Since any point in E(R) uniquely determines a diagonal operator (state) and
(d1, . . . , dn) ∈ R, we conclude that there exist densities Di such that

D =
∑
i

piDi,
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where rankDi ¬ 3. Moreover, by the orthogonality TrDiA1 = TrDiA2 = 0 we
obtain

VarD(A1, A2) =
∑
i

piVarDi(A1, A2).

We note that one can give an alternative proof of Theorem 3.1 relying on the
previous example. In fact, any rank-3 density can be decomposed into lower rank
ones according to the proof of Lemma 3.1 and Lemma 2.1. Furthermore, a linear
estimate readily results from the number of the projections used in Theorem 3.1.
Actually, by an elementary geometrical reasoning, the length of the decomposition
is O

(
(rankD)3

)
.
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