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Abstract. A simplification of the proof of the classification theorem
for natural notions of stochastic independence is given. This simplification
is made possible after adding the positivity condition to the algebraic ax-
ioms for a (non-symmetric) universal product (i.e. a natural product). In-
deed, this simplification is nothing but a simplification, under the positivity,
of the proof of the claim that, for any natural product, the ‘wrong-ordered’
coefficients all vanish in the expansion form. The known proof of this claim
involves a cumbersome process of solving a system of quadratic equations
in 102 unknowns, but in our new proof under the positivity we can avoid
such a process.
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1. INTRODUCTION

In non-commutative probability theory, there exist several different notions of
stochastic independence, for example, tensor independence (i.e. classical indepen-
dence), free independence, Boolean independence, and monotone independence
(see the references in [1] and [4] for the detailed explanations).

This phenomenon is very specific to the non-commutative situation because in
the commutative case there exists only one notion of independence, i.e. tensor in-
dependence. We expect that based on the various notions of independence one can
develop various probability theories in some way parallel to classical probability
theory.

A classification program for universal notions of stochastic independence was
carried out in a series of papers (see [1] and [3]–[6]). In [5] Schürmann proposed
that universal notions of stochastic independence should be formulated as universal
products among non-commutative probability spaces. Speicher [6] (in the expan-
sion form), and Ben Ghorbal and Schürmann [1] (in the form of canonical axioms)
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proved that the only possible ‘symmetric’ (or ‘commutative’) universal products
are three products: tensor, free, and Boolean products. Extending this result to the
non-symmetric case, we proved in [3] (in the expansion form) and in [4] (in the
form of canonical axioms) that the only possible ‘non-symmetric’ universal prod-
ucts (i.e. natural products) are five products: tensor, free, Boolean, monotone, and
anti-monotone products.

However, the proof of the classification theorem for natural products (Theo-
rem 2.2 in [4]) contains a cumbersome step with complicated calculations, unfor-
tunately. The claim of the step is that the coefficient t(π, λ;σ), which is associ-
ated with a given natural product, vanishes whenever the partition σ is ‘wrong-
ordered’. In the present paper, the explanations of the coefficient t(π, λ;σ) and
‘wrong-orderedness’ will be given in Section 3. In [4], to complete this step, a sys-
tem of quadratic equations in 102 unknowns was solved by hands. This is a heavy
calculation that consists of 22 pages in [4] in its compact form.

The aim of this paper is to improve this cumbersome proof of the claim (V),
i.e. the vanishment of wrong coefficients {t(π, λ;σ)}, to obtain a more clear proof,
without using such a big system of equations. However, this simplification of the
proof of the claim (V) is made possible after adding the condition of positivity (P)
to the algebraic axioms for a natural product. Up to now we do not know if such
a simplification of the proof of the claim (V) is possible or not, without using the
positivity (P).

This paper consists of the following sections. In Section 2 we prepare some
notation concerning partitions of a finite linearly ordered set. In Section 3, after
introducing some conditions on a product among algebraic probability spaces (uni-
versality, associativity, positivity, etc.), we explain the relation beteween the clas-
sification theorem for natural products and the vanishment result (V). In Section 4
we give a simple proof of the vanishment result (V) under the positivity assumption
(P), which avoids using a big system of equations.

Throughout the paper, C is the field of complex numbers, N∗ is the set of all
natural numbers ( ̸= 0), and #A or |A| denotes the cardinality of a finite set A.

2. NOTATION FOR PARTITIONS

Here we describe some notation for partitions used in this paper (see [4]).
Let S be a finite linearly ordered set. A collection π = {U1, U2, . . . , Up} of

subsets of S is called a partition of S if S =
∪p

i=1 Ui, Ui ̸= ∅, and Ui ∩ Uj = ∅
for all i, j ∈ {1, 2, . . . , p} with i ̸= j. A pair (π, λ) = {U1 ≺ U2 ≺ . . . ≺ Up} of
a partition π and a linear ordering λ among blocks in π is called a linearly ordered
partition of S (see [3]). A collection π = {U1, U2, . . . , Up} of finite sequences U
of elements from S is called a BGS-partition of S if #{i1, i2, . . . , ik} = k for
each U = (i1i2 . . . ik) ∈ π and if π := {U1, U2, . . . , Up} is a (usual) partition of S
(see [1]). Here we put U := {i1, i2, . . . , ik} for U = (i1i2 . . . ik) ∈ π. For each
block U in a BGS-partition π, we put lg(U) := #(U) the length of U .
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Denote by P(S), LP(S), and P⃗(S) the set of all partitions, linearly ordered
partitions, and BGS-partitions of S, respectively. For each BGS-partition σ =
{U1, U2, . . . , Up} in P⃗(S), there exists naturally the associated usual partition in
P(S) given by σ := {U1, U2, . . . , Up}. Conversely, we identify P(S) as the subset
of P⃗(S) through the natural correspondence π 7→ π′ given by

π ∋ Uq = {i1 < i2 < . . . < ik} 7→ U ′ = (i1i2 . . . ik) ∈ π′.

For usual partitions π, σ ∈ P(S), we write σ ¬ π when σ is a refinement of π,
i.e. when for each U ∈ σ there exists V ∈ π such that U ⊂ V . When the ordered
set S is given by {1, 2, . . . , n}with the natural order, we write P(n), LP(n), P⃗(n)
instead of P(S), LP(S), P⃗(S), respectively.

3. CLASSIFICATION THEOREM AND VANISHMENT RESULT

In this section we describe the relation between the classfication theorem and
the vanishment result (V). For details see [4].

An algebraic probability space (φ,A) is a pair of an associative C-algebra
A and a C-linear functional φ over A. Denote by K the class of all algebraic
probability spaces (φ,A). We do not assume the existence of unit elements for
these algebras A. Denote by A′ the set of all C-linear finctionals φ over A, and
by A1 ⊔ A2 the free product of algebras A1 and A2. Then for any algebra homo-
morphisms jl : Bl → Al (l = 1, 2), there exists a unique algebra homomorphism
j1 ⨿ j2 : B1 ⊔B2 → A1 ⊔A2 such that il ◦ jl = (j1 ⨿ j2) ◦ ιl for all l = 1, 2. Here
il : Al → A1 ⊔ A2 (l = 1, 2) and ιl : Bl → B1 ⊔ B2 (l = 1, 2) are the natural em-
beddings. We denote the ‘expectation’ of a ∈ A with respect to φ by φ[a] instead
of φ(a).

Any map � : K × K → K :
(
(φ1,A1), (φ2,A2)

)
7→ (φ1�φ2,A1 ⊔ A2) is

called a product over K. For simplicity we used here the same symbol � to denote
two different levels of operations.

A natural product � is a product over K satisfying the following four condi-
tions.

(N1) Universality. For any algebra homomorphisms jl : Bl → Al and any
φl ∈ Al

′ (l = 1, 2), we have

(φ1�φ2) ◦ (j1 ⨿ j2) = (φ1 ◦ j1)�(φ2 ◦ j2).

(N2) Associativity. For all (φl,Al) ∈ K (l = 1, 2, 3), we have

(φ1�φ2)�φ3 = φ1�(φ2�φ3)

under the identification (A1 ⊔ A2) ⊔ A3 = A1 ⊔ (A2 ⊔ A3).
(N3) Extension. For all (φl,Al) ∈ K (l = 1, 2), we have

(φ1�φ2) ◦ il = φl (l = 1, 2),

where il are the natural embeddings of Al in the free product A1 ⊔ A2.
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(N4) Factorization. For all (φl,Al) ∈ K (l = 1, 2), we have

(φ1�φ2)[i1(a)i2(b)] = (φ1�φ2)[i2(b)i1(a)] = φ1[a]φ2[b]

for all a ∈ A1 and b ∈ A2.
The notion of natural product is nothing but a modification, to the non-sym-

metric case, of the notion of universal product of Schürmann in [5]. In [4] we
proved the following classification theorem for natural products.

THEOREM 3.1. There exist exactly five natural products: tensor, free, Boolean,
monotone, and anti-monotone products.

Here we omit the definitions of these five products (tensor, free, Boolean,
monotone, and anti-monotone), because in our discussions in the present paper,
we have no need to know them. For the detailed explanation of these products and
independences, see the references in [1] and [4].

The strategy to prove Theorem 3.1 is to reduce this theorem to the next The-
orem 3.2 through Theorems 3.3 and 3.4. It is the same strategy as that in the case
of ‘symmetric’ products in [1] but in our non-symmetric case we must take care of
some order structures on partitions.

Let us prepare some notation for the description of these theorems. Let
(π, λ) = {V1 ≺ V2 ≺ . . . ≺ Vp} ∈ LP(n) be a linearly ordered partition, and
(φl,Al)

p
l=1 be a family of algebraic probability spaces. Then we simply write

a1a2 . . . an ∈ A(π,λ) to describe the situation in which a1 ∈ Al1 , a2 ∈ Al2 , . . .,
an ∈ Aln , and lk = q if and only if k ∈ Vq. We always identify a ∈ Al with its
natural image il(a) ∈ ⊔pl=1Al. Let a1a2 . . . an ∈ A(π,λ) and σ ∈ P⃗(n) with σ ¬ π
be fixed. Then we put for each U = (i1i2 . . . ik) ∈ σ

φU [a1, a2, . . . , an] := φl(U)[aU ] := φl(U)[ai1ai2 . . . aik ].

Here l(U) is the label l ∈ {1, 2, . . . , p} such that lis = l for all is ∈ U .
A quasi-universal product � is a product overK satisfying the following three

conditions.
(Q1) Associativity: the same as (N2).
(Q2) Quasi-universal calculation rule for mixed moments. There exists a fam-

ily of constants

{t(π, λ; ρ)| ρ ∈ P(n), ρ ¬ π, (π, λ) ∈ LP(n), n ∈ N∗}

such that, for any p-tuple (φl,Al)
p
l=1 of algebraic probability spaces and φ =

�p
l=1φl, we have

φ[a1a2 . . . an] =
∑
ρ¬π

t(π, λ; ρ)
∏
U∈ρ

φU [a1, a2, . . . , an],

whenever a1a2 . . . an ∈ A(π,λ) with (π, λ) = {V1 ≺ V2 ≺ . . . ≺ Vp}.
(Q3) Normalization:

t(1) = t(12) = t(21) = 1.
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Here we put t(s) := t(π, λ) := t(π, λ;π), where s = (s1s2 . . . sn) is the se-
quence associated with (π, λ) defined by the condition that si = l if and only if
i ∈ Vl.

THEOREM 3.2. There exist exactly five quasi-universal products: tensor, free,
Boolean, monotone, and anti-monotone products.

Theorem 3.2 was proved in [3] based on the method of Speicher in [6]. The
following expansion theorem (Theorem 3.3) was shown in [4] by a direct applica-
tion of the theory of universal families of Ben Ghorbal and Schürmann [1].

THEOREM 3.3. Let a natural product � be given. Then there exists uniquely
a family of constants

{t(π, λ;σ)| σ ∈ P⃗(n), σ ¬ π, (π, λ) ∈ LP(n), n ∈ N∗}

such that, for any p-tuple (φl,Al)
p
l=1 of algebraic probability spaces and φ =

�p
l=1φl, we have

φ[a1a2 . . . an] =
∑

σ ∈ P⃗(n)
σ ¬ π

t(π, λ;σ)
∏
U∈σ

φU [a1, a2, . . . , an],

whenever a1a2 . . . an ∈ A(π,λ).

Let σ ∈ P⃗(n) be a BGS-partition. A block U = (i1i2 . . . ik) in σ is said to
be wrong-ordered if there exist a, b ∈ {1, 2, . . . , k} such that a < b but ia > ib.
A BGS-partition σ is said to be wrong-ordered if in σ there exists a wrong-ordered
block U . Let {t(π, λ;σ)} be the coefficients associated with the natural product �
in Theorem 3.3. A coefficient t(π, λ, σ) is said to be wrong-ordered if σ is wrong-
ordered. In [4] we proved the following vanishment result. We denote it by (V).

THEOREM 3.4. For any natural product, its wrong-ordered coefficients all
vanish.

Theorem 3.4 implies that any natural product is a quasi-universal product, and
hence we reach for the classification Theorem 3.1 through Theorem 3.2.

However, the proof of the vanishment result (V) (Theorem 3.4) given in [4] is
a cumbersome one consisting of elementary but heavy calculations, unfortunately.
Therefore, for the clear understanding of the classification theorem, it is desirable
to improve this heavy proof on a more light one. In Section 4 we give such a simpli-
fied proof for the vanishment result under some additional condition of positivity
(P) for natural products.

Now let us define the positivity for a product �. LetA be a ∗-algebra and φ be
a linear functional over A. The unitization (φ̃, Ã) of (φ,A) is the pair of a unital
∗-algebra Ã and a unital linear functional φ̃ over Ã, defind by Ã := C1Ã ⊕A with
1Ã an artificial unit, and φ̃[1Ã] = 1, φ̃[a] = φ[a], a ∈ A. If A is a unital ∗-algebra
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and φ is a unital linear functional overA (φ[1A] = 1), then φ is a state onA if and
only if φ̃ is a state on Ã. A ∗-probability space (A, φ) is a pair of a ∗-algebra A
and a linear functional φ over A such that φ̃ is a state on Ã.

A product � overK is said to be positive if it satisfies the following condition.
(P) Positivity. For any ∗-algebras Al and any functionals φl ∈ A′l (l = 1, 2),

φ̃1�φ2 is a state over Ã1 ⊔ A2 whenever φ̃l is a state over Ãl for each l = 1, 2.
The five products (tensor, free, Boolean, monotone, and anti-monotone) are

positive.
Using the positivity (P), we can prove without heavy calculations the follow-

ing Theorem 3.5 which we denote by (V+).

THEOREM 3.5. For any positive natural product, its wrong-ordered coeffi-
cients all vanish.

The proof of Theorem 3.5, i.e. (V+), will be presented in Section 4. (V+) im-
plies that any positive natural product is a quasi-universal product, and so we im-
mediately reach for the following classification Theorem 3.6 through Theorem 3.2.

THEOREM 3.6. There exist exactly five positive natural products: tensor, free,
Boolean, monotone, and anti-monotone products.

Now, by the same argument as in [2] that the four conditions (N1), (N2), (N3),
and (P) imply the condition (N4), we get the next Theorem 3.7. First we need the
following definition.

A positive universal product is a product over K satisfying the four condi-
tions (N1), (N2), (N3), and (P). A product over K is said to be degenerate if
(φ1�φ2)[a1a2 . . . an] = 0 whenever a1a2 . . . an ∈ A(π,λ) with |π| ­ 2.

THEOREM 3.7. There exist exactly five non-degenerate positive universal pro-
ducts: tensor, free, Boolean, monotone, and anti-monotone products.

This is the same theorem as Theorem 2.5 in [2], but this time the proof is im-
proved so that it is dependent on Theorem 3.6, and hence on (V+) (Theorem 3.5),
and not dependent on (V) (Theorem 3.4) with heavy calculations.

4. A SIMPLE PROOF OF VANISHMENT RESULT

In this section we prove the vanishment result (V+), i.e. Theorem 3.5, not
using heavy algebraic calculations, but using the positivity.

For our purpose it is sufficient to show the following Proposition 4.1 from
which we conclude that t(π, λ;σ0) = 0 for all σ0 ∈ P⃗(n) \ P(n).

PROPOSITION 4.1. Let � be a positive natural product. Then for each n ∈
N∗, each (π, λ) ∈ LP(n), and each σ0 ∈ P⃗(n) \ P(n) with σ0 ¬ π there exist
∗-probability spaces (Al, φl)

|π|
l=1 and a sequence of elements a1, a2, . . . , an with
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a1a2 . . . an ∈ A(π,λ) such that for φ = �|π|l=1φl we have
(1)

∏
W∈σ φl(W )[aW ] = δσ,σ0 for all σ ∈ P⃗(n) with σ ¬ π;

(2) φ
[
a1a2 . . . an] = 0.

At first let us give a construction of (Al, φl)
|π|
l=1 and a1, a2, . . . , an. Let

(π, λ) and σ0 be fixed. Suppose that (π, λ) = {V1 ≺ V2 ≺ . . . ≺ V|π|} and σ0 =

{U1, U2, . . . , U|σ0|}. For each block V ∈ π, we put σ0(V ) := {U ∈ σ0|U ⊂ V }.
Then since σ0 ¬ π, we have V =

∪
U∈σ0(V ) U .

For each V ∈ π, let us construct a ∗-probability space (AV , φV ) by

AV = ⊕
U∈σ0(V )

BU , φV =
1

#
(
σ0(V )

)( ⊕
U∈σ0(V )

ψU

)
,

where we put, for each U ∈ σ0(V ), BU =Md(U)(C) the matirix algebra, ψU (·) =
⟨e(U)

1 | · e
(U)
1 ⟩ the state over BU , (e(U)

i )
d(U)
i=1 the natural orthonormal basis ofHU :=

Cd(U), and d(U) := lg(U) the length of U .
On these ∗-probability spaces (Al, φl) := (AVl

, φVl
), l = 1, 2, . . . , |π|, we

construct the operators a1, a2, . . . , an (a1 ∈ Al1 , a2 ∈ Al2 , . . . , an ∈ Aln) as fol-
lows. For each block U = (i1i2 . . . ik) ∈ σ0 with U ⊂ V and k ­ 2, we define the
operators ai1 , ai2 , . . . , aik in AV as the natural extensions

aiq := b̃iq := biq ⊕
( ⊕

U ′ ∈ σ0(V )

U ′ ̸= U

0
)

of the operators bi1 , bi2 , . . . , bik in BU given by

(bi1 , bi2 , bi3 , . . . , bik−1
, bik) = (E1,k, Ek,k−1, Ek−1,k−2, . . . , E3,2, E2,1),

where Ei,j are the matrix units in BU , i.e. ⟨e(U)
k |Ei,je

(U)
l ⟩ = δikδjl. When U ∈

σ0(V ) is a singleton block U = (i), we put ai := b̃i with bi = IU the identity
matrix of BU . These operators ai1 , ai2 , . . . , aik over all U = (i1i2 . . . ik) ∈ σ0
well-define the operators a1, a2, . . . , an since {1, 2, . . . , n} is the disjoint union
of all U (U ∈ σ0). Finally, we normalize the operators a1, a2, . . . , an. Put K :=∏

W∈σ0
φl(W )[aW ]. Since K ̸= 0, we can put a′1 := K−1a1 and a′i := ai (i ­ 2).

Then it can be proved that the operators a′1, a
′
2, . . . , a

′
n satisfy the desired properties

(1) and (2) as follows.

P r o o f o f P r o p o s i t i o n 4.1. Let us prove the properties (1) and (2) in
Proposition 4.1 separately. We remark here that the positivity is used only in the
final step of the proof of property (2) in the form of the Cauchy–Schwarz inequality.

P r o o f o f p r o p e r t y (1). We examine, for general σ ∈ P⃗(n) with σ ¬ π,
the value of

∏
W∈σ φl(W )[aW ], where we put l(W ) = q if W ⊂ Vq ∈ π. Concern-

ing a BGS-partition σ with σ ¬ π, we consider the following three cases a, b and c.
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C a s e a. There exist W ∈ σ, and U,U ′ ∈ σ0 such that W ∩ U ̸= ∅, W ∩
U ′ ̸= ∅, U ̸= U ′. In this case there exists a common V (∈ π) such that W ∪ U ∪
U ′ ⊂ V . The blocks W , U , U ′ can be expressed as

W = (ι1ι2 . . . ιs), U = (i1i2 . . . it), U ′ = (j1j2 . . . ju),

respectively. From the assumption there exist some s1, s2 ∈ {1, 2, . . . , s}, t0 ∈
{1, 2, . . . , t} and u0 ∈ {1, 2, . . . , u} such that

aιs1 = ait0 = b̃it0 (bit0 ∈ BU ),

aιs2 = aju0 = b̃ju0 (bju0 ∈ BU ′).

Since U ∩ U ′ = ∅, we have Aaιs1Baιs2C = 0 and Aaιs2Baιs1C = 0 for all
A,B,C ∈ AV , and hence aι1aι2 . . . aιs = 0. So we get

∏
W ′∈σ φl(W ′)[aW ′ ] = 0.

C a s e b. σ ¬ σ0 and σ ̸= σ0. In this case there exist W ∈ σ and U ∈ σ0
such that W ⊂ U and W ̸= U . By the way, W and U can be expressed as W =
(j1j2 . . . js) and U = (i1i2 . . . it). Note that {j1, j2, . . . , js} ⊂ {i1, i2, . . . , it}
and t ­ 2.

Let us examine the value of bj1bj2 . . . bjsξ, where ξ := e
(U)
1 . For the vector

bjsξ to be non-zero it is necessary that js = it, because bit is the only element in
{bi1 , bi2 , . . . , bit} that corresponds to E2,1 (∈ BU ). Next (when t ­ 3), for the vec-
tor bjs−1bjsξ to be non-zero it is necessary that js = it and js−1 = it−1, because
bit−1 is the only element in {bi1 , bi2 , . . . , bit} that corresponds to E3,2. Repeating
this argument we see that for the vector bj1bj2 . . . bjsξ to be non-zero it is neces-
sary that (j1j2 . . . js−1js) = (it−s+1it−s+2 . . . it−1it).

Furthermore, for the expectation

ψU [bj1bj2 . . . bjs ] = ⟨ξ|bj1bj2 . . . bjsξ⟩

to be non-zero it is necessary that (j1j2 . . . js) = (i1i2 . . . it), because bi1 is the
only element in {bi1 , bi2 , . . . , bit} that corresponds to E1,t. But by assumption
we have W = (j1 . . . js) ̸= (i1 . . . it) = U , and so ψU [bW ] = ψU [bj1 . . . bjs ] = 0.
Since

φl(W )[aW ] = φV [aW ] =
1

#
(
σ0(V )

)ψU [bW ] = 0,

we have
∏

W ′∈σ φl(W ′)[aW ′ ] = 0.

C a s e c. σ = σ0. In this case it is clear that
∏

W∈σ φl(W )[aW ] = K (̸= 0).

From the cases a, b, and c, we can infer that the property (1) holds for the
operators a′1, a

′
2, . . . , a

′
n.
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P r o o f o f p r o p e r t y (2). Let v be the largest ‘wrong’ element in the set
{1, 2, . . . , n} in the sense that

v := max
{
m ∈ {1, 2, . . . , n}| ∃U = (i1i2 . . . ilg(U)) ∈ σ0,
∃a, b ∈ {1, 2, . . . , lg(U)} such that a < b and ib < ia = m

}
.

Since σ0 is wrong-ordered, the above set is non-empty, and hence the required
v exists. Let U0 be the block in σ0 that contains v, and V0 be the block in π that
contains v. Then obviously v ∈ U0 ⊂ V0 and lg(U0) ­ 2, and the block U0 must
be of the form

U0 = (i1 . . . ia . . . ib . . . ik) = (i1 . . . v . . . u . . . ik),

where a < b and ib = u < v = ia for some a, b ∈ {1, 2, . . . , k} and for some
u ∈ U0.

Now, estimate the norm of the vector (i.e. an equivalence class) [avav+1 . . . an]

in the GNS-representation space associated with φ = �|π|l=1φl. First we have from
Theorem 3.3

∥[avav+1 . . . an]∥2 = φ[(avav+1 . . . an)
∗(avav+1 . . . an)]

= φ[a∗n . . . a
∗
v+1a

∗
vavav+1 . . . an]

= φ[a∗n . . . a
∗
v+1(a

∗
vav)av+1 . . . an]

=
∑

τ ∈ P⃗(S)

τ ¬ ρ

t(ρ, µ; τ)
∏
T∈τ

φl(T )[cT ].

Here S is the linearly ordered finite set given by

S = {−n,−(n− 1), . . . ,−(v + 1), v, v + 1, . . . , n− 1, n},

(ρ, µ) is the linearly ordered partion of S associated with the sequence

(ln, ln−1, . . . , lv+1, lv, lv+1, . . . , ln−1, ln),

and c’s are the operators defined by

c−n = a∗n, c−(n−1) = a∗n−1, . . . , c−(v+1) = a∗v+1,

cv = a∗vav, cv+1 = av+1, . . . , cn−1 = an−1, cn = an.

Also here we put l(T ) = q if it follows that T ∩ Vq ̸= ∅ or −T ∩ Vq ̸= ∅ with
−T := {−m|m ∈ T}.
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For each partition τ ∈ P⃗(S) with τ ¬ ρ, there exists a unique block T0 ∈ τ
such that T0 ∋ v. Also let R0 be the unique block in ρ such that R0 ∋ v; then we
have T0 ⊂ R0. Since u /∈ {v, v+1, . . . , n}, we have u /∈ T0, and hence {a∗u, au}∩
{cm|m ∈ T0} = ∅. By the definition of the operators ai1 , . . . , aia , . . . , aib , . . . , aik
(∈ AV0) based on the block U0 = (i1 . . . ia . . . ib . . . ik) with ia = v, ib = u, we
see that

au = Ẽ
(U0)
N+1,N with N = (k − b) + 1,

av =
˜

E
(U0)
M+1,M with M = (k − a) + 1 for a ­ 2,

av = Ẽ
(U0)
1,k for a = 1.

So we have cv = a∗vav = Ẽ
(U0)
M,M for a ­ 2, and cv = a∗vav = Ẽ

(U0)
k,k for a = 1. Put

cT0
:= {cm|m ∈ T0}, aU0

:= {am|m ∈ U0}, and a∗
U0

:= {a∗m|m ∈ U0}. Then we
have

{cv} ⊂ cT0
⊂

(
(aU0
∪ a∗

U0
) \ {au, a∗u, av, a∗v}

)
∪ {cv}.

This means that {Ẽ(U0)
M,M} ⊂ cT0

and

cT0
⊂

(
(aU0
∪ a∗

U0
) \ {Ẽ(U0)

N+1,N , Ẽ
(U0)
N,N+1,

˜
E

(U0)
M+1,M ,

˜
E

(U0)
M,M+1}

)
∪ {Ẽ(U0)

M,M}

for a ­ 2, and that {Ẽ(U0)
k,k } ⊂ cT0

and

cT0
⊂

(
(aU0
∪ a∗

U0
) \ {Ẽ(U0)

N+1,N , Ẽ
(U0)
N,N+1, Ẽ

(U0)
1,k , Ẽ

(U0)
k,1 }

)
∪ {Ẽ(U0)

k,k }

for a = 1.

Put T∗ :=
(
T0 ∪ (−T0)

)
∩ {v, v+1, . . . , n}; then T0 ⊂ T∗ ∪ (−T∗). For sim-

plicity we denote E(U0)
i,j by Ei,j . Concerning T∗, we consider the following three

cases a, b, and c.

C a s e a. There existsm∈T∗ such thatm /∈ U0. In this case there existm′∈S
and U ′∈σ0 such that cm′=am= b̃m or cm′ = a∗m = b̃∗m with bm∈U ′ and U ′ ̸=U0.
So we have two operators bm (or b∗m) ∈ BU ′ and bv ∈ BU0 with U ′ ∩ U0 = ∅ so
that {b̃v, b̃m} ⊂ cT0

or {b̃v, b̃∗m} ⊂ cT0
. This implies φl(T0)[cT0 ] = 0.

C a s e b. T∗ ⊂ U0 and ia = v (a ­ 2). In this case let dm (m ∈ T0) be the
operators in BU0 such that cm = d̃m. Then we have in the algebra BU0

{EM,M} ⊂ dT0
⊂ {E1,k, Ek,k−1, . . . , ̂EM+1,M , . . . , ÊN+1,N , . . . , E3,2, E2,1}

∪ {E1,2, E2,3, . . . , ÊN,N+1, . . . , ̂EM,M+1, . . . , Ek−1,k, Ek,1}
∪ {EM,M}
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with 1 ¬ N < M ¬ k − 1. Here the symbol ̂ denotes the omission. Since there
are two gaps {N,N + 1} and {M,M + 1} in the circle graph (minus two edges){
{1, 2}, {2, 3}, {3, 4}, . . . , {k − 1, k}, {k, 1}

}
\
{
{N,N + 1}, {M,M + 1}

}
withN < M , the vertexM cannot be connected to the vertex 1. So there is no path
allowing for starting from the vertex 1, passing through the vertex M , and finally
arriving at the vertex 1 again. This implies that

φl(T0)[cT0 ] =
1

#σ0(V0)
⟨ξ|dι1 . . . dιtξ⟩ = 0

with T0 = (ι1 . . . ιt) and ξ = e
(U0)
1 .

C a s e c. T∗ ⊂ U0 and ia = v (a = 1). In this case let dm (m ∈ T0) be the
same as above. Then we have in BU0

{Ek,k} ⊂ dT0
⊂ {Ek,k−1, . . . , ÊN+1,N , . . . , E3,2, E2,1}

∪ {E1,2, E2,3, . . . , ÊN,N+1, . . . , Ek−1,k} ∪ {Ek,k}.

Since there is one gap {N,N + 1} in the linear graph (minus one edge){
{1, 2}, {2, 3}, {3, 4}, . . . , {k − 1, k}

}
\
{
{N,N + 1}

}
with N ¬ k − 1, the vertex k cannot be connected to the vertex 1. So there is
no path allowing for starting from the vertex 1, passing through the vertex k, and
finally arriving at the vertex 1 again. This implies that

φl(T0)[cT0 ] =
1

#σ0(V0)
⟨ξ|dι1 . . . dιtξ⟩ = 0.

For each of the cases a, b, and c, we have

∥[avav+1 . . . an]∥2 =
∑

τ ∈ P⃗(S)

τ ¬ ρ

t(ρ, µ; τ)
∏
T∈τ

φl(T )[cT ] = 0.

Hence we get, by the Cauchy–Schwarz inequality,

|φ[a1 . . . av−1av . . . an]| ¬ ∥[a1 . . . av−1]∥ ∥[av . . . an]∥ = 0,

from which we conclude that φ[a′1a
′
2 . . . a

′
n] = 0. �

Now we have completed the simplified proof for (V+), i.e. Theorem 3.5.
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REMARK 4.1. In Proposition 4.1, the role of the associativity (N2) is not es-
sential. Indeed, instead of iterating an associative binary product � : K2 → K, we
can start from anL-ary product �(L) : KL → K, whereL is a non-empty set. Then,
for any L-ary product �(L) satisfying universality, the expansion theorem (Theo-
rem 3.3) still holds in the form that the coefficients t(π, λ;σ) in the expression
are replaced with t(l1l2 . . . ln;σ). Here (l1l2 . . . ln) is the sequence of indices in L
associated with a1, a2, . . . , an. Besides, the proof of Proposition 4.1 still works for
any product �(L) satisfying universality and positivity. So the vanishment result
(Theorem 3.5) still holds for this “non-associative product” �(L).
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