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Abstract. Let G = U o S be a group of semidirect product of U com-
pact and S finite. For an irreducible representation (= IR) ρ of U , let S([ρ])
be the stationary subgroup in S of the equivalence class [ρ] ∈ Û . Intertwin-
ing operators Jρ(s) (s ∈ S([ρ])) between ρ and s−1

ρ gives in general a spin
(= projective) representation of S([ρ]), which is lifted up to a linear repre-
sentation J ′ρ of a covering group S([ρ])′ of S([ρ]). Put π0 := ρ · J ′ρ , and
take a spin representation π1 of S([ρ]) corresponding to the factor set in-
verse to that of Jρ, and put Π(π0, π1) = IndGUoS([ρ])(π

0 � π1). We give
a simple proof that Π(π0, π1) is irreducible and that any IR of G is equiva-
lent to some of Π(π0, π1).
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1. INTRODUCTION

Let G = U o S be a semidirect product group, with U compact and S fi-
nite. For an irreducible representation (= IR) ρ of U , let S([ρ]) be the stationary
subgroup in S of the equivalence class [ρ] ∈ Û . Intertwining operators Jρ(s) (s ∈
S([ρ])), defined by ρ

(
s(u)

)
= Jρ(s) ρ(u) Jρ(s)

−1(u ∈ U), gives in general a spin
(= projective) representation of S([ρ]), which is lifted up to a linear representation
J ′ρ of a certain covering group S([ρ])′ of S([ρ]) (cf. Lemma 2.2). Put π0 := ρ · J ′ρ.
Take a spin representation π1 of S([ρ]) corresponding to the factor set inverse to
that of Jρ; then the tensor product π0 � π1 is a non-spin IR ofU oS([ρ]). Inducing
π0 � π1 up to G, we get

Π(π0, π1) = IndGUoS([ρ])(π
0 � π1).

We give a simple proof for the following theorem (cf. Theorem 5.1).
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THEOREM 1.1. Each Π(π0, π1) is irreducible and the set of Π(π0, π1) given
above is complete in the sense that the dual Ĝ of G has a complete set of repre-
sentatives in it, or that any irreducible representation of G is equivalent to some of
Π(π0, π1)’s.

Our proof is elementary and needs only the least minimum on projective rep-
resentations of groups, given in Section 2. (See [8] or [10] for more knowledge
on general theory of such representations.) For proofs of irreducibility and com-
pleteness, we utilize fully characters of induced representations. Thus, our proof is
completely independent of the results of Clifford in [1], with which we can give
another proof (cf. [4], Section 3). It is also independent of Mackey’s works [6], [7],
in particular on construction of IRs of semidirect product groups.

2. PREPARATORY LEMMAS

2.1. Central extension. Let G′ be a topological group and Z its closed central
subgroup. Put G := G′/Z. Then the following sequence is exact:

(2.1) 1→ Z → G′ → G→ 1 (exact),
and G′ is called a central extension of G by Z. We call G′ also a covering group
of G, and G the base group of G′.

A representation Π of G′ is said to be of spin type χ ∈ Ẑ if Π(z) = χ(z)I

(z ∈ Z), where I denotes the identity operator. Denote by Ĝ′ the dual of G′ con-
sisting of equivalence classes [Π] of unitary irreducible representations Π of G′,
and by Ĝ′

χ
its subset consisting of [Π] such that the spin type of Π is χ ∈ Ẑ. For

a compact group H , denote by µH the normalized Haar measure on H such that
µH(H) = 1, and denote by L2(H) the Hilbert space of L2-functions on H with
respect to µH .

A function f on G′ is said to be of spin type χ if f(zg′) = χ(z)f(g′) (z ∈ Z,
g′ ∈ G′). Assume G′ is compact. For χ ∈ Ẑ, denote by L2(G′;χ) the subspace of
L2(G′) consisting of all f ∈ L2(G′) of spin type χ. Then L2(G′) is an orthogo-
nal direct sum of L2(G′;χ) over χ ∈ Ẑ. A matrix element f of a representation
Π of spin type χ is a spin function of the same type. Take a complete set of rep-
resentatives Ωχ = {Π} of Ĝ′

χ
, and denote byM([Π]) the space spanned by ma-

trix elements of Π. Then L2(G′;χ) is an orthogonal direct sum ofM([Π]) over
Π ∈ Ωχ.

LEMMA 2.1. (i) Let G′ be finite. Then for each χ ∈ Ẑ∑
[Π]∈Ĝ′

χ

(dimΠ)2 =
1

|Z|
|G′| = |G|.

(ii) Let G′ be infinite compact. Then for each χ ∈ Ẑ the number of equiva-
lence classes in Ĝ′

χ
is infinite.
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P r o o f. The dimension of ℓ2(G′;χ) is equal to the sum of dimM([Π]) over
[Π] ∈ Ĝ′

χ
. Matrix elements of Π span M([Π]), and dimM([Π]) = (dimΠ)2.

This gives us dim ℓ2(G′;χ) =
∑

[Π]∈Ωχ(dimΠ)2. On the other hand, a function f
on G′ belongs to ℓ2(G′;χ) if and only if it satisfies f(zg′) = χ(z)f(g′) (z ∈ Z,
g′ ∈ G′). Hence dim ℓ2(G′;χ) = |G′|/|Z| = |G|. �

2.2. Cocycle and central extension. LetG be a topological group. A projective
or spin representation π of G is defined as a map assigning to each g ∈ G a linear
map π(g) on a vector space V (π) which satisfies

(2.2) π(g)π(h) = rg,hπ(gh) (g, h ∈ G),
where rg,h ∈ C× := {a ∈ C ; a ̸= 0}. The function rg,h on G × G is called the
factor set associated with π. If we replace π(g) by its scalar multiple π′(g) :=
λgπ(g), then π′(g)π′(h) = r′g,hπ

′(gh) with r′g,h = (λgλh/λgh)rg,h. When π is
unitary, rg,h ∈ T 1 := {a ∈ C ; |a| = 1}.

On the other hand, a function rg,h ∈ C× ((g, h) ∈ G × G) is called a two-
cocycle of G (with values in C×) if it satisfies

(2.3) rg,hrgh,k = rg,hkrh,k (g, h, k ∈ G).
Defining rg,h to be equivalent to r′g,h given above, we have the second cohomology
group H2(G,C×) with multiplication product, called the Schur multiplier of G.

We assume that a cocycle rg,h is T 1-valued, continuous, and normalized as
re,e = 1. Let Z be the closed subgroup of T 1 generated by the set of values rg,h.
Then, since Z is closed, we have only the following two cases:

Case 1. Z = ⟨e2πi/n⟩ ∼= Zn, a cyclic group of order n.
Case 2. Z = T 1.

Starting with a cocycle rg,h, we can define a central extension G′ of G as follows.

LEMMA 2.2. Let G be a topological group, rg,h (g, h ∈ G) a cocycle, and let
Z ⊂ T 1 be the closed subgroup generated by the set of values rg,h.

(i) Introduce in the set Z ×G the following product rule:

(2.4) (z, g)(z′, h) := (zz′rg,h, gh) (z, z′ ∈ Z, g, h ∈ G).
Then we get a central extension G′ of G by Z as in (2.1).

(ii) Let π be a projective (or spin) representation of G whose factor set is
rg,h (resp. r−1g,h). Then it can be lifted up to a linear representation π′ of G′ acting
on the same representation space V (π) in such a way that π′

(
(z, g)

)
:= z π(g)

(resp. z−1π(g)) for (z, g) ∈ G′.
We say that the central extension G′ in (i) is associated with the cocycle rg,h,

and that the representation π′ in (ii) is called a spin representation of G′ (and also a
spin representation of G). When we apply this lemma later in Section 3, it is for a
finite group such as S([ρ]), and so the central subgroup Z is finite in that case (cf.
Section 3).
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2.3. Central character ofG′ and spin representation ofG. LetG′ be a central
extension of G by a closed central subgroup Z as in (2.1). Take a section s : G→
SG ⊂ G′ for the canonical homomorphism G′ → G. Then, for g, h ∈ G, we have
s(g)s(h) = zg,hs(gh) with a zg,h ∈ Z.

LEMMA 2.3. For a representation Π of G′ of spin type χ ∈ Ẑ, put π(g) :=
Π
(
s(g)

)
(g ∈ G). Then π is a spin representation of G with factor set tg,h =

χ(zg,h).

LEMMA 2.4. Let G be a compact group, and rg,h a continuous cocycle of G
with values in T 1. Take a central extensionG′ ofG associated with rg,h. Then there
exist unitary IRs of G′ of a certain spin type χ (resp. χ0) such that χ(zg,h) = rg,h
(resp. χ0(zg,h) = r−1g,h).

For the existence of such a π, we apply Lemma 2.1.
Let π and π′′ be spin representations of G with factor sets rg,h and r′′g,h, re-

spectively. Then the tensor product π ⊗ π′′ is a spin representation with factor set
rg,hr

′′
g,h. Therefore, if r′′g,h is the inverse of rg,h, that is, r′′g,h = r−1g,h (g, h ∈ G),

then π ⊗ π′′ is non-spin or is reduced from G′ to a linear representation of the base
group G.

3. CASE OF SEMIDIRECT PRODUCT GROUPS

Let G be a compact group of semidirect product type G = U o S, where U
is a compact group, normal in G, and S is a finite group. Here the action of s ∈ S
on u ∈ U is denoted by s(u).

Take an IR ρ of U and consider its equivalence class [ρ] ∈ Û . Every s ∈ S acts
on ρ as sρ(u) := ρ

(
s−1(u)

)
(u ∈ U), and on equivalence classes as [ρ] → [sρ].

Denote by Û/S the set of S-orbits in the dual Û of U . Take a stationary subgroup
S([ρ]) of [ρ] in S, that is, S([ρ]) = {s ∈ S ; sρ ∼= ρ}. Put H := U o S([ρ]). For
s ∈ S([ρ]), we determine explicitly an intertwining operator Jρ(s) as

(3.1) ρ
(
s(u)

)
= Jρ(s) ρ(u) Jρ(s)

−1 (u ∈ U).

Then it is determined up to a non-zero scalar factor. Hence we have a projective
representation S([ρ]) ∋ s 7→ Jρ(s). Let αs,t be its factor set given as

Jρ(s)Jρ(t) = αs,t Jρ(st) (s, t ∈ S([ρ])).

Let S([ρ])′ be a central extension of S([ρ]) associated with the cocycle αs,t : 1→
Z → S([ρ])′

ΦS−→ S([ρ])→ 1 (exact), where ΦS denotes the canonical homomor-
phism. Then, by Lemma 2.4, Jρ can be lifted up to a linear representation J ′ρ of
S([ρ])′. Put H ′ := U o S([ρ])′ with the action s′(u) := s(u), s′ ∈ S([ρ])′, s =
ΦS(s

′). Put also

π0
(
(u, s′)

)
:= ρ(u) · J ′ρ(s′) (u ∈ U, s′ ∈ S([ρ])′).
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Then π0 = ρ · J ′ρ is an IR of H ′. Take an IR π1 of S([ρ])′ and consider it as
a representation of H ′ through the homomorphism H ′ → S([ρ])′ ∼= H ′/U , and
consider the inner tensor product π := π0 � π1 as a representation of H ′. Let the
factor set of π1, viewed as a spin representation of the base group S([ρ]), be βs,t;
then that of π is αs,t βs,t.

To get an IR ofG, we pick up π1 with the factor set βs,t = α−1s,t (this is possible
by Lemmas 2.1 and 2.4). Then π becomes a linear representation of the base group
H = U o S([ρ]). Thus we obtain a representation of G by inducing it up as

(3.2) Π(π0, π1) := IndGH π = IndGH(π
0 � π1).

LEMMA 3.1. Let ρ be an IR of U, and J ′ρ of S([ρ])′ and π0 = ρ · J ′ρ of H ′ =
U o S([ρ])′ be as above. Let π1 and π1o be IRs of S([ρ])′, mutually inequivalent,
with the factor set inverse to that of Jρ. Then π = π0 � π1 and πo := π0 � π1o are
irreducible and mutually inequivalent as representations of H = U o S([ρ]).

4. CHARACTER AND IRREDUCIBILITY OF Π(π0, π1)

4.1. Character of Π(π0, π1). Put Π = Π(π0, π1), and let χΠ be the character
of Π. Since Π = IndGHπ, we have the following expression of χΠ from the general
formula for induced representations:

(4.1) χΠ(g) =
∫
H\G

χπ(kgk
−1) dνH\G(k̇).

Here the character χπ of π is extended from H to G by putting 0 outside H , and
νH\G is the invariant measure onH\G giving mass one to each point, and k̇ = Hk.
Since H\G ∼= S([ρ])\S is finite, (4.1) can be rewritten, using the normalized Haar
measure µG on G, as

(4.2) χΠ(g) = |H\G|
∫
G

χπ(kgk
−1) dµG(k).

Note that, for (u, s) ∈ H = U o S([ρ]), χπ
(
(u, s)

)
= χπ0

(
(u, s′)

)
χπ1(s′),

with a preimage s′ ∈ S([ρ])′ of s: s = ΦS(s
′).

4.2. Irreducibility of Π(π0, π1).

THEOREM 4.1. Let G = U o S with U compact and S finite. Then the in-
duced representation Π(π0, π1) = IndGH(π

0 � π1) of G in (3.2) is irreducible.

To prove this, we use the following lemma.

LEMMA 4.1. Let ρo be an IR of U, and define an IR π0o := ρo · J ′ρo of H ′o :=
U o S([ρo])

′ in a similar way to π0 = ρ · J ′ρ of H ′ = U o S([ρ])′. Assume that ρo
is not equivalent to ρ. Then, for any s′ ∈ S([ρ])′, s′′ ∈ S([ρo])′,

(4.3)
∫
U

χπ0

(
(u, s′)

)
χπ0

o

(
(u, s′′)

)
dµU (u) = 0.
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P r o o f. Note that the character χπ0

(
(u, s′)

)
= tr

(
ρ(u)J ′ρ(s

′)
)

is, as a func-
tion in u ∈ U , a linear combination of matrix elements of ρ. Similarly, χπ0

o

(
(u, s′′)

)
= tr

(
ρo(u)J

′
ρo(s

′′)
)

is a linear combination of matrix elements of ρo. On the other
hand, any matrix element of ρ is orthogonal in L2(U) to any such one of ρo. Hence
the assertion of the lemma follows. �

P r o o f o f T h e o r e m 4.1. Put Π = Π(π0, π1). Note that Π is irreducible
if and only if

(4.4) ∥χΠ∥2 =
∫
G

|χΠ(g)|2 dµG(g) = 1.

Therefore, it is enough for us to calculate the integral
∫
G
|χΠ(g)|2 dµG(g). It is

equal to

|H\G|2
∫
G

∫ ∫
G×G

χπ(k1gk
−1
1 )χπ(k2gk

−1
2 ) dµG(k1) dµG(k2) dµG(g)

= |H\G|2
∫
G

∫
G

χπ(g)χπ(kgk−1) dµG(k) dµG(g)

=
∫
H

∫
H\G

χπ(h)χπ(khk−1) dνH\G(k̇) dµH(h) =: Iπ (put).

Take a complete set of representatives of H\G ∼= S([ρ])\S as {sq ∈ S ; q ∈ Q}
with sq0 = e. Then

(4.5) Iπ =
∑
q∈Q

∫
H

χπ(h)χπ(sqhs
−1
q ) dµH(h).

On the other hand, for h′ = (u, s′) ∈ H ′ = U o S([ρ])′ with h = (u, s), s =
ΦS(s

′), we have sqhs−1q = (squs
−1
q , sqss

−1
q ). Hence

(4.6)
χπ(h) = tr

(
ρ(u)J ′ρ(s

′)
)
· χπ1(s′),

χπ(sqhs
−1
q ) = tr

(
ρ(squs

−1
q )J ′ρ(s

′
qs
′s′q
−1

)
)
· χπ1(s′qs

′s′q
−1

),

where s′q ∈ S([ρ])′ is a preimage of sq: ΦS(s′q) = sq. For any sq, q ̸= q0, since

sq ̸∈ S([ρ]), IR s−1
q ρ is not equivalent to ρ, where (s

−1
q ρ)(u) = ρ(squs

−1
q ). There-

fore, taking into account dµH(h)=dµU (u) dµS([ρ])(s) for h=(u, s)∈UoS([ρ]),
and the function form in (4.6), we can apply Lemma 4.1 to the integral term in
(4.5) for q ̸= q0, and get = 0. Thus, applying Lemma 3.1 to the case of q = q0, we
obtain, as desired,

Iπ =
∫
H

χπ(h)χπ(h) dµH(h) = 1. �
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4.3. Orthogonality of characters χΠ. For G = U o S, let
{
ρi ; IR of U, i ∈

IU,S
}

be a complete set of representatives for Û/S, and for each i ∈ IU,S let{
π1i,j ; j ∈ Ji

}
be a complete set of representatives of equivalence classes of IRs

of S([ρi])′ with factor set inverse to that of Jρi . Put Hi := U o S([ρi]), H
′
i :=

U o S([ρi])
′, πi,j = π0i � π1i,j , and Πi,j = Π(π0i , π

1
i,j) = IndGHi

πi,j . Define a set
of IRs of G as

(4.7) Ω(G) := {Πi,j := Π(π0i , π
1
i,j) ; i ∈ IU,S , j ∈ Ji}.

THEOREM 4.2. For characters χΠi,j , Πi,j ∈ Ω(G), the following orthogo-
nality relations in L2(G) hold true:

(4.8)
⟨
χΠi,j , χΠi′,j′

⟩
L2(G)

=

{
1 if (i, j) = (i′, j′),

0 if (i, j) ̸= (i′, j′).

P r o o f. The case of (i, j) = (i′, j′) has been shown in the proof of Theo-
rem 4.1. Assume (i, j) ̸= (i′, j′), and put I i,ji′,j′ :=

⟨
χΠi,j , χΠi′,j′

⟩
L2(G)

. Then, as
in the proof of Theorem 4.1, we have

I i,ji′,j′ = |Hi\G| · |Hi′\G|
∫
G

∫
G

χπi,j (g)χπi′,j′ (kgk
−1) dµG(k) dµG(g).

Take a complete set of representatives ofHi′\G ∼= S([ρi′ ])\S as {sq ∈ S ; q ∈ Q}
with sq0 = e. Then

(4.9) I i,ji′,j′ =
∑
q∈Q

∫
Hi

χπi,j (h)χπi′,j′ (sqhs
−1
q ) dµHi(h).

(1) For i = i′, according to the reasoning in the paragraph following the for-
mula (4.5), by Lemma 4.1 we have to consider only the term for q = q0: I i,ji,j′ =∫
Hi
χπi,j (h)χπi,j′ (h) dµHi(h). By Lemma 3.1, we know that πi,j is irreducible,

and that πi,j ̸∼= πi,j′ . Therefore I i,ji,j′ = δj,j′ , as desired.

(2) Assume that i ̸= i′. Since S-orbits of [ρi] and [ρi′ ] are different, there
exists no sq such that s

−1
q ρi′ is equivalent to ρi. In the sum over q ∈ Q in (4.9),

note that dµHi(h) = dµU (u) dµS[ρi](s) for h = (u, s), u ∈ U, s ∈ S([ρi]), and
apply Lemma 4.1 again. Then we see that the integral for any q is equal to zero. So
I i,ji,j′ = 0, as desired. �

COROLLARY 4.1. The set Ω(G) of IRs of G defined in (4.7) consists of mutu-
ally inequivalent IRs.
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5. COMPLETENESS OF THE SET Ω(G) OF IRs

Let us prove that the set Ω(G) in (4.7) of IRs Πi,j = Π(π0i , π
1
i,j) is complete,

or that our method of induced representations gives essentially all IRs of G.

THEOREM 5.1. Let G = U o S be such that U is compact and S is finite. Let
Ω(G) be the set of IRs of G defined in (4.7). Then Ω(G) gives a complete set of
representatives of the dual Ĝ.

For the proof, first note that

dimΠi,j = dimπi,j · |Hi\G| = dim ρi · dimπ1i,j · |S([ρi])\S|.

Recall that {π1i,j , j ∈ Ji} is a complete set of representatives of spin IRs of S([ρi])′,
viewed from the base group S([ρi]), of a fixed factor set (the inverse of that of Jρ).
Then we have, by Lemma 2.1 (i),

∑
j∈Ji(dimπ1i,j)

2 = |S([ρi])|, whence

(5.1)
∑
j∈Ji

(dimΠi,j)
2 = (dim ρi)

2 · |S([ρi])\S| × |S|.

5.1. Proof in the case where G is finite. Assume that G = U o S is finite. By
Theorem 4.2, to prove the completeness, it is enough to establish the equality

(5.2)
∑

Πi,j∈Ω(G)

(dimΠi,j)
2 = |G|.

Note that (dim ρi)
2 · |S([ρi])\S| is equal to the sum of (dim ρ)2 over [ρ] in

the S-orbit of [ρi]. Since {ρi ; IU,S} is a complete set of representatives of Û/S,
we have ∑

i∈IU,S

(dim ρi)
2 · |S([ρi])\S| =

∑
[ρ]∈Û

(dim ρ)2 = |U |.

By (5.1), this gives the desired equality (5.2), because |U | · |S| = |G|.

5.2. Proof in the case where G is compact. Let G = U o S with U compact
and S finite. In this case, to prove the completeness of the set Ω(G) of Πi,j’s, first
we give the following lemma, which corresponds to Lemma 2.1 for G finite.

LEMMA 5.1. Let ρ be an IR of U . Then the number of equivalence classes
[Π] ∈ Ĝ of IRs Π of G such that Π|U contains ρ, or Π|U ⊃ ρ, is finite, and

(5.3)
∑

[Π]∈Ĝ: Π|U⊃ρ
(dimΠ)2 = (dim ρ)2 · |S([ρ])\S| · |S|.

P r o o f. Denote byMρ(G) the space spanned by matrix elements of IndGUρ.
Then it is a direct sum of spacesM(Π) spanned by matrices of Π, which appear in
IndGUρ or

[
IndGUρ : Π] > 0. By the Frobenius reciprocity law we have

[
Π|U : ρ

]
=
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IndGUρ : Π], and the last condition is equivalent to

[
Π|U : ρ

]
> 0, that is, Π|U ⊃ ρ.

Hence we obtain

(5.4) dimMρ(G) =
∑

[Π]∈Ĝ: Π|U⊃ρ
(dimΠ)2.

On the other hand, the space V (IndGUρ) is spanned by V (ρ)-valued functions f
onG such that f(ug) = ρ(u)f(g) (u ∈ U, g ∈ G). Therefore f corresponds one-
to-one to φ := f |S in F

(
S;V (ρ)

)
, the space of V (ρ)-valued L2-functions on S

for which the norm is ∥φ∥2 =
∫
S
∥φ(s)∥2V (ρ)dµS(s), where ∥ · ∥V (ρ) denotes the

norm in V (ρ). Denote by Πρ the realization of IndGUρ on F
(
S;V (ρ)

)
. Note that,

for s ∈ S and g0 = (u0, s0) ∈ U o S, we have sg0 = (e, s)g0 = (su0s
−1, ss0),

and so

(5.5) Πρ(g0)φ(s) = ρ(su0s
−1)

(
φ(ss0)

)
.

The spaceF
(
S;V (ρ)

)
is spanned by functions of the form φv,ψ(s) :=v ·ψ(s)

(s ∈ S), where v ∈ V (ρ), ψ ∈ L2(S). Take φ1, φ2 ∈ F
(
S;V (ρ)

)
as φi(s) =

vi · ψi(s) (s ∈ S) with vi ∈ V (ρ) and ψi ∈ L2(S). Calculate the matrix element
for Πρ as⟨

Πρ(g0)φ1, φ2

⟩
=
∫
S

⟨
Πρ(g0)φ1(s), φ2(s)

⟩
V (ρ)

dµS(s)

=
∫
S

⟨
ρ(su0s

−1)v1, v2
⟩
V (ρ)

ψ1(ss0)ψ2(s)µS(s) =: F (g0) (put).

For t ∈ S, denote by δt the delta functions on S given as δt(s) = 1 or 0 according
to s = t or not. Put ψi = δti for ti ∈ S. Then

(5.6) F (g0) = |S|−1 ·
⟨
ρ(t2u0t

−1
2 )v1, v2

⟩
V (ρ)
· δt−1

2 t1
(s0).

Here, the second factor, as a function in u0 ∈ U , spans the space M([t
−1
2 ρ]) of

matrix elements of an IR t−1
2 ρ of U . The third factor, as a function in s0 ∈ S, i.e.

δt(s0) with t = t−12 t1, spans the space F(S) of all functions on S. Thus we obtain

dimMρ(G) =
∑

different [sρ]

dimM([sρ]) · dimF(S)(5.7)

=
∑
[sρ]

(dim sρ)2 · |S| = (dim ρ)2 · |S([ρ])\S| · |S|.

From (5.4) and (5.7) we obtain the desired equality (5.3). �

Applying Lemma 5.1 we see that the completeness of the set Ω(G) of Πi,j is
equivalent to the following equality, given already in (5.1): for each i ∈ IU,S ,∑

j∈Ji
(dimΠi,j)

2 = (dim ρi)
2 · |S([ρi])\S| · |S|. �
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REMARK 5.1. In his Chicago lecture note [6], Mackey discussed construction
of irreducible representation or factor representations of semidirect product groups
U o S mainly in a locally compact case. However, an explicit statement such as
Theorem 1.1 or Theorem 5.1 in the present paper cannot be found for the case
where U is compact and S is finite. It seems that his discussion is beyond this
classical case (cf. also [7]).

Acknowledgments. The main result of this paper gives a general background
of works [2], [3], and [5], in which we construct all spin IRs of generalized sym-
metric groups of certain spin types, using their semidirect product structures (and
calculate spin characters and their limits). On these subjects, I had opportunities to
give talks twice in Workshops “Non-Commutative Harmonic Analysis” at Będlewo
organized by Professor M. Bożejko and peoples of Wrocław University, in August
2007 and August 2009. Each time I enjoyed warm hospitality in which I could think
about a proof of the completeness of the set of IRs Π(π0, π1), yet not knowing the
work of Clifford [1]. I would like to thank them very much for these precious situ-
ations.
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