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Abstract. Let G = U x S be a group of semidirect product of U com-
pact and S finite. For an irreducible representation (=IR) p of U, let S([p])
be the stationary subgroup in S of the equivalence class [p] € U. Intertwin-

ing operators J,(s) (s € S([p])) between p and flp gives in general a spin
(= projective) representation of S([p]), which is lifted up to a linear repre-
sentation J, of a covering group S([p])’ of S([p]). Put 7° := p - J, and
take a spin representation ' of S([p]) corresponding to the factor set in-
verse to that of .J,, and put II(z°, 7!) = Indgxs([p])(wo G 7t). We give
a simple proof that I1(x, 71) is irreducible and that any IR of G is equiva-
lent to some of II(x, 71).
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1. INTRODUCTION

Let G = U x S be a semidirect product group, with U compact and S fi-
nite. For an irreducible representation (=IR) p of U, let S([p]) be the stationary
subgroup in S of the equivalence class [p] € U. Intertwining operators J,(s) (s €
S([p])), defined by p(s(u)) = J,(s) p(w) J,(s)~ (u € U), gives in general a spin
(= projective) representation of S([p]), which is lifted up to a linear representation
J, of a certain covering group S([p])" of S([p]) (cf. Lemma 2.2). Put 7 =p- Jp-
Take a spin representation 7! of S([p]) corresponding to the factor set inverse to
that of J,; then the tensor product 77° (1 7! is a non-spin IR of U x S([p]). Inducing
70Ol up to G, we get

I(x°, 7t) = Indgxs(w)(wo Orh).

We give a simple proof for the following theorem (cf. Theorem 5.1).
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THEOREM 1.1. Each TI(7°, 7t') is irreducible and the set of TI(7°, 7!) given
above is complete in the sense that the dual G of G has a complete set of repre-
sentatives in it, or that any irreducible representation of G is equivalent to some of
(70, 7t)’s.

Our proof is elementary and needs only the least minimum on projective rep-
resentations of groups, given in Section 2. (See [8] or [10] for more knowledge
on general theory of such representations.) For proofs of irreducibility and com-
pleteness, we utilize fully characters of induced representations. Thus, our proof is
completely independent of the results of Clifford in [1], with which we can give
another proof (cf. [4], Section 3). It is also independent of Mackey’s works [6], [7],
in particular on construction of IRs of semidirect product groups.

2. PREPARATORY LEMMAS

2.1. Central extension. Let G’ be a topological group and Z its closed central
subgroup. Put G := G’ /Z. Then the following sequence is exact:

(2.1) 1—27—G —G—1 (exact),
and G’ is called a central extension of G by Z. We call G’ also a covering group
of G, and G the base group of G'. R

A representation IT of G’ is said to be of spin type x € Z if 11(z) = x(2)]
(z € Z), where I denotes the identity operator. Denote by G’ the dual of G/ con-
sisting of equivalence classes [II] of unitary irreducible representations II of G,
and by G’ its subset consisting of [I1] such that the spin type of IT is x € Z. For
a compact group H, denote by uy the normalized Haar measure on H such that
pr(H) = 1, and denote by L2(H) the Hilbert space of L2-functions on H with
respect to fup.

A function f on G’ is said to be of spin rype x if f(2¢') = x(2)f(¢') (z € Z,
g € &'). Assume G’ is compact. For y € Z, denote by L2(G'; x) the subspace of
L?(G’) consisting of all f € L?(G") of spin type . Then L?(G’) is an orthogo-
nal direct sum of L?(G'; x) over x € Z. A matrix element f of a representation
IT of spin type x is a spin function of the same type. Take a complete set of rep-
resentatives QX = {II} of G’~, and denote by M([II]) the space spanned by ma-
trix elements of II. Then L?(G’; ) is an orthogonal direct sum of M ([II]) over
IT € Qx.

LEMMA 2.1. (i) Let G’ be finite. Then for each x € Z

. 1
S (@mIl) = (¢ = |6

[meG™

(ii) Let G' be infinite compact. Then for each x € Z the number of equiva-
lence classes in G’ is infinite.



IRs of semidirect product of a compact group with a finite group 355

Proof. The dimension of /2(G’; x) is equal to the sum of dim M ([I1]) over
[II] € G'. Matrix elements of II span M([II]), and dim M([IT]) = (dim IT)2.
This gives us dim ¢2(G’; x) = Z[H]eQX (dim IT)2. On the other hand, a function f
on G’ belongs to £2(G'; x) if and only if it satisfies f(zg') = x(2)f(¢") (z € Z,
g € G"). Hence dim /2(G’; x) = |G'|/|Z] = |G|. =

2.2. Cocycle and central extension. Let G be a topological group. A projective
or spin representation 7 of G is defined as a map assigning to each g € G a linear
map 7(g) on a vector space V' (7) which satisfies

(2.2) m(g)m(h) = rgnm(gh) (g9,h € G),

where ry, € C* := {a € C; a # 0}. The function r, , on G x G is called the
factor set associated with 7. If we replace 7(g) by its scalar multiple 7/(g) :=
Agm(g), then 7' (g)n’(h) = v} 7' (gh) with 17, = (AgAn/Agn)Tg,n. When 7 is
unitary, 7,5, € T' := {a € C; |a| = 1}.

On the other hand, a function r,;, € C* ((9,h) € G x G) is called a two-
cocycle of G (with values in C) if it satisfies

(2.3) TghTghk = TghkThk (g, h, ke G)
Defining 4 5, to be equivalent to r;’ », given above, we have the second cohomology
group H?(G, C*) with multiplication product, called the Schur multiplier of G.
We assume that a cocycle ry j, is T"-valued, continuous, and normalized as
re,e = 1. Let Z be the closed subgroup of T generated by the set of values Tg.h-
Then, since Z is closed, we have only the following two cases:
Case 1. Z = (2™/") = Z, a cyclic group of order n.
Case2. Z =T
Starting with a cocycle 74 5, we can define a central extension G’ of G as follows.

LEMMA 2.2. Let G be a topological group, vy 1, (9, h € G) a cocycle, and let
Z C T be the closed subgroup generated by the set of values Tg,h-
(1) Introduce in the set Z x G the following product rule:

2.4) (2,9)(2', h) := (22'rgp, gh) (2,2 € Z, g,h € G).

Then we get a central extension G' of G by Z as in (2.1).
(ii) Let w be a projective (or spin) representation of G whose factor set is
rg.h (resp. r;}b). Then it can be lifted up to a linear representation ' of G' acting

on the same representation space V (r) in such a way that 7' ((z,9)) = z7(g)
(resp. z—1m(g)) for (z,9) € G.

We say that the central extension G’ in (i) is associated with the cocycle Tg.hos
and that the representation 7’ in (ii) is called a spin representation of G’ (and also a
spin representation of (7). When we apply this lemma later in Section 3, it is for a
finite group such as S([p]), and so the central subgroup Z is finite in that case (cf.
Section 3).
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2.3. Central character of G’ and spin representation of G. Let G’ be a central
extension of GG by a closed central subgroup Z as in (2.1). Take a section s : G —
Sa C G’ for the canonical homomorphism G’ — G. Then, for g, h € G, we have
s(g)s(h) = zg ns(gh) witha z,p, € Z.

LEMMA 2.3. For a representation 11 of G’ of spin type x € Z, put 7(g) :=
II(s(g)) (g9 € G). Then w is a spin representation of G with factor set to ) =

X(Zg,h)-

LEMMA 2.4. Let G be a compact group, and v j, a continuous cocycle of G
with values in T*. Take a central extension G’ of G associated with Tg.h- Then there
exist unitary IRs of G’ of a certain spin type x (resp. Xo) such that x(zgp) =g pn
(resp. xo(2g,n) = r;}ll).

For the existence of such a 7, we apply Lemma 2.1.

Let 7 and 7 be spin representations of G with factor sets r, , and r ;.
spectively. Then the tensor product ™ ® 7" is a spin representation with factor set
rg7hrg7h. Therefore, if r;],,h is the inverse of 5, that is, r;’ﬁ = r;}b (g,h € G),
then 7 ® 7" is non-spin or is reduced from G’ to a linear representation of the base
group G.

Ire-

3. CASE OF SEMIDIRECT PRODUCT GROUPS

Let G be a compact group of semidirect product type G = U x S, where U
is a compact group, normal in GG, and S is a finite group. Here the action of s € S
onu € U is denoted by s(u).

Take an IR p of U and consider its equivalence class [p] € U. Every s € S acts
on p as “p(u) := p(s(u)) (v € U), and on equivalence classes as [p] — [*].
Denote by U /S the set of S-orbits in the dual U of U. Take a stationary subgroup
S([p]) of [p] in S, thatis, S([p]) = {s € S; ®» = p}. Put H := U x S([p]). For

s € S([p]), we determine explicitly an intertwining operator J,(s) as
(3.1) p(s(w)) = Jp(s) p(u) Jp(s)™"  (ueU).

Then it is determined up to a non-zero scalar factor. Hence we have a projective
representation S([p]) 3 s — J,(s). Let a4 be its factor set given as

Jp(8)Jp(t) = asi Jp(st)  (s,t € S([p]))-
Let S([p])’ be a central extension of S([p]) associated with the cocycle as¢ : 1 —

Z — S([p)) 25,9 ([p]) — 1 (exact), where ®g denotes the canonical homomor-
phism. Then, by Lemma 2.4, J, can be lifted up to a linear representation J;, of
S([p]). Put H' := U % S([p])’ with the action s'(u) := s(u), s’ € S([p])’, s =
®(s’). Put also

((u ) = p(u) - Jo(s')  (ue U, s € S((p])).
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Then 7° = p - J} is an IR of H'. Take an IR 7' of S([p])’ and consider it as
a representation of H’ through the homomorphism H' — S([p]) = H'/U, and
consider the inner tensor product 7 := 7 [ ! as a representation of H’. Let the
factor set of 7!, viewed as a spin representation of the base group S([p]), be B +;
then that of 7 is avs ¢ B 4.

To get an IR of G, we pick up 7! with the factor set 35 s = ozs_,tl (this is possible
by Lemmas 2.1 and 2.4). Then 7 becomes a linear representation of the base group
H = U x S([p]). Thus we obtain a representation of G by inducing it up as

(3.2) (70, 7!) := Ind$ 7 = Ind% (% & 71).

LEMMA 3.1. Let p be an IR of U, and J,, of S([p])’ and 70 =p. Jyof H' =
U x S([p])’ be as above. Let ' and 7} be IRs of S(|p])’, mutually inequivalent,
with the factor set inverse to that of J,. Then ™ = Ot and 7, := 7" O r} are
irreducible and mutually inequivalent as representations of H = U x S([p]).

4. CHARACTER AND IRREDUCIBILITY OF II(7°, 1)

4.1. Character of IT(7°, 7'). Put IT = II(7°, 7!), and let x11 be the character
of II. Since II = Indfﬂr, we have the following expression of xy; from the general
formula for induced representations:

(4.1) xu(g) = [ xx(kgk™") dvga(k).
H\G

Here the character x. of 7 is extended from H to G by putting 0 outside H, and
vi\ is the invariant measure on H\G giving mass one to each point, and k = Hk.
Since H\G = S([p])\S is finite, (4.1) can be rewritten, using the normalized Haar
measure g on G, as

(4.2) x(g) = [H\G| £ Xr(kgk™) dp (k).

Note that, for (u,s) € H =U x S([p]), xx((u,5)) = xx0((w,5")) X1 (),
with a preimage s’ € S([p])’ of s: s = Dg(s').

4.2. Irreducibility of IT(7°, 7!).

THEOREM 4.1. Let G = U x S with U compact and S finite. Then the in-
duced representation T1(7°, 7') = Ind% (7° T ') of G in (3.2) is irreducible.

To prove this, we use the following lemma.

LEMMA 4.1. Let p, be an IR of U, and define an IR 7° := p,, - Jy, of Hj, :=
U % S([po])" in a similar way to n° = p - J), of H' = U x S([p])'. Assume that p,

!/

is not equivalent to p. Then, for any s' € S([p])’, s" € S([po])’,
4.3) f X 0 ((u, s')) X0 ((u, s”)) duy (u) = 0.
U
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Proof. Note that the character o ((u, s')) = tr(p(u).J)(s")) is, as a func-
tioninu € U, alinear combination of matrix elements of p. Similarly, x o ((u, s” ))
= tr(po(u)J), (s”)) is a linear combination of matrix elements of p,. On the other
hand, any matrix element of p is orthogonal in L?(U) to any such one of p,. Hence
the assertion of the lemma follows. =

Proof of Theorem 4.1. PutIT = II(7°, 7!). Note that IT is irreducible
if and only if

(4.4) Ixull® = f|><n )2 duc(g) = 1.

Therefore, it is enough for us to calculate the integral |, ol x11(9)|? dua(g). Ttis
equal to

|[H\GP* [ Xr(krgki ) X (kagks ') duc (k1) duc(k2) duc(g)
G G

xXG
= |H\G|? ffXﬂ 9) Xr(kgk™1) duc (k) duc(g)

= [ [ xx(h) Xz (khk=Y) dvgp g (k) dug (h) =: I (put).
HH\G

Take a complete set of representatives of H\G = S([p])\S as {s; € S; ¢ € Q}
with s4, = e. Then

4.5) = fxﬂ X (Sqhsq Yduw(h).
qeEQ H
On the other hand, for ' = (u,s’) € H' = U x S([p])’ with h = (u, s), s =

Pg(s'), we have sghs, 1 = (squs, ). Hence

X=(h) = tr(p(u)J'(s’)) 'Xﬂ-l(sl),

N (sahsg ) = tr(p(squs; )T/, ™1) - e (55, ™),

1 -1
»8qSS4

(4.6)

where s;, € S([p }) is a preimage of s,: ®g(s;) = s4. For any sy, ¢ # qo, since

sq & S([p]). IR % p is not equivalent to p, where (%1 p)(u) = p(squs;t). There-
fore, taking into account dpu g (h) = dpy (u) dpg () (s) for h=(u,s) €U = S([p]),
and the function form in (4.6), we can apply Lemma 4.1 to the integral term in
(4.5) for ¢ # qo, and get = 0. Thus, applying Lemma 3.1 to the case of ¢ = ¢p, we
obtain, as desired,

f d,uH(h) =1 =
H
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4.3. Orthogonality of characters x;;. For G = U x S, let { pi; IRofU, ¢ €
Iy, S} be a complete set of representatives for U /S, and for each i € Iy g let

{7@»17 jiJE JZ-} be a complete set of representatives of equivalence classes of IRs
of S([p;])" with factor set inverse to that of J,,. Put H; := U x S([pi]), H, :=

U x S([pil)s mij =7 D7}, and T ; = H( 7m0, 7} ;) = Ind m; ;. Define a set
of IRs of G as
4.7) Q(G) = {Himj = H(ﬂ-?’ﬂ-z]) ;1€ IUSa JE J}

THEOREM 4.2. For characters xii, ;, l; ; € QG), the following orthogo-
nality relations in L*(G) hold true:

Lif (i) = (7.4,
VOO0 i) # @),
Proof. The case of (i,j) = (¢, j') has been shown in the proof of Theo-
rem 4.1. Assume (4, 5) # (¢, j"), and put I, b= <XHm‘7 X11,, j,>L2(G). Then, as
in the proof of Theorem 4.1, we have

17, = [H\G| - |Hy \Glffxm ) Xy, (kgk=1) duc (k) duc(g)-

Take a complete set of representatives of H;\G = S([pir])\Sas{s; € S; ¢ € Q}
with s4, = e. Then

(4.9) 137, =3 [ Xy (B) Xy, (sghsg ') dpers, ().
qeQ H;

(1) For i = ', according to the reasoning in the paragraph following the for-
mula (4.5), by Lemma 4.1 we have to consider only the term for ¢ = qo: I ] =

il B, Xmij (h) X, ;, (R) dpor, (R). B'y‘ Lemma 3.1, we know that 7, ; is 1rredu01ble,
and that 7; ; % m; ;7. Therefore I ;JJ, =4, v, as desired.

(2) Assume that i # 4. Since S-orbits of [p;] and [p;] are different, there

exists no s, such that Sq. lpi/ is equivalent to p;. In the sum over ¢ € @ in (4.9),
note that dpg,(h) = dpy (u) dpg,,)(s) for h = (u,s), u € U, s € S([pi]), and
apply Lemma 4.1 again. Then we see that the integral for any ¢ is equal to zero. So

I ;’jj, =0, as desired. m

COROLLARY 4.1. The set Q(G) of IRs of G defined in (4.7) consists of mutu-
ally inequivalent IRs.
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5. COMPLETENESS OF THE SET Q(G) OF IRs

Let us prove that the set 2(G) in (4.7) of IRs II; ; = II(7?, 7] ]) is complete,
or that our method of induced representations gives essentially all IRs of G.

THEOREM 5.1. Let G = U % S be such that U is compact and S is finite. Let
Q(QG) be the set of IRs of G defined in (4.7). Then Q(G) gives a complete set of

representatives of the dual G.

For the proof, first note that

Recall that {7} j» J € Ji}is acomplete set of representatives of spin IRs of S([p;])’,
viewed from the base group S([p;]), of a fixed factor set (the inverse of that of J,).

Then we have, by Lemma 2.1 (i), 3 ;. ( (dim; ;)* = [S([pi])|, whence

(5.1) ZJ (dimIT; 5)* = (dim p;) - [S([p])\S| x |S].
JEJi

5.1. Proof in the case where G is finite. Assume that G = U x S is finite. By
Theorem 4.2, to prove the completeness, it is enough to establish the equality

(5.2) Y (dimTL ;)% = |G|
1L ;€9(@)
Note that (dim p;)? - |S([p;])\'S| is equal to the sum of (dim p)? over [p] in
the S-orbit of [p;]. Since {p;; Iy 5} is a complete set of representatives of U /S,

we have
> (dimp)? - S(pD\S| = X (dimp)? = |U].
iGIU,S [p]G(/j

By (5.1), this gives the desired equality (5.2), because |U| - |S| = |G].
5.2. Proof in the case where G is compact. Let G = U x S with U compact

and S finite. In this case, to prove the completeness of the set (G) of II; ;’s, first
we give the following lemma, which corresponds to Lemma 2.1 for G finite.

LEMMA 5.1. Let p be an IR of U. Then the number of equivalence classes
[I1] € G of IRs 11 of G such that 11| contains p, or 1|y D p, is finite, and

(5.3) > (dimID)? = (dimp)? - [S([\S] - |S].

[eG:T|yDp

Proof. Denote by M ,(G) the space spanned by matrix elements of Indgp
Then it is a direct sum of spaces M (II) spanned by matrices of IT, which appear in
Indgp or [Indgp : IT] > 0. By the Frobenius reciprocity law we have [H!U : ,0] =
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[Ind$p : 1], and the last condition is equivalent to [II|;; : p] > 0, thatis, II|;y D p.
Hence we obtain

(5.4) dimM,(G)= Y (dimI])%
[M)eG: |y Dp

On the other hand, the space V (Ind$ p) is spanned by V(p)-valued functions f
on G such that f(ug) = p(u)f(g) (v € U, g € G). Therefore f corresponds one-
to-one to ¢ := f|s in F(S;V(p)), the space of V(p)-valued L*-functions on S
for which the norm is ||¢[|? = fs | go(s)||%/(p)du5(3), where || - ||y, denotes the
norm in V(p). Denote by II,, the realization of Ind{;p on F (S;V(p)). Note that,
for s € S and go = (ug,s0) € U x S, we have sgo = (e, s)g0 = (sups™ !, ss0),
and so

(5.5) I, (g0)¢(s) = p(suos™") (p(s50)).

The space F (S; V(p)) is spanned by functions of the form ¢, y(s) :=v - 9(s)
(s € S), where v € V(p), ¢ € L*(S). Take @1, 02 € F(S;V(p)) as pi(s) =
vi - i(s) (s € S) withv; € V(p) and ; € L%(S). Calculate the matrix element
for II, as

<Hp(90)8017 ‘P2> = £ <Hp(90)@01(3)a <‘02(S)>V(p) dps(s)

=£<P(SU0871)017U2>V@) D1 (s50) ba(s) ps(s) =: F(go) (put).

For ¢t € S, denote by ¢; the delta functions on S given as d;(s) = 1 or 0 according
to s = t or not. Put ¢); = dy, for t; € S. Then

(5.6) F(go) = S|+ (p(tauoty ')vr, U2>V(p) ~0y -1, (s0)-

Here, the second factor, as a function in ug € U, spans the space M ([t2 1p]) of

matrix elements of an IR 2 1p of U. The third factor, as a function in s € .5, i.e.
S1(s0) with ¢ = ¢, 't1, spans the space () of all functions on S. Thus we obtain

5.7 dimM,(G)= > dimM([p]) - dim F(S)

different [%p]

= [Z] (dim°p)? - |S| = (dim p)* - [S([p)\S] - |S].
°p

From (5.4) and (5.7) we obtain the desired equality (5.3). =

Applying Lemma 5.1 we see that the completeness of the set Q(G) of II; ; is
equivalent to the following equality, given already in (5.1): for each i € Iy g,

-Z,_(dim I 5)* = (dim p;)* - [S([pa])\S| - S]. =
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REMARK 5.1. In his Chicago lecture note [6], Mackey discussed construction
of irreducible representation or factor representations of semidirect product groups
U » S mainly in a locally compact case. However, an explicit statement such as
Theorem 1.1 or Theorem 5.1 in the present paper cannot be found for the case
where U is compact and S is finite. It seems that his discussion is beyond this
classical case (cf. also [7]).
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