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1. INTRODUCTION

Among all stochastic processes with independent increments, essentially only
Brownian motion and Poisson process have a chaotic representation property. The
latter property means that, by using multiple stochastic integrals with respect to
the centered stochastic process, one can construct a unitary isomorphism between
the L2-space of the process and a symmetric Fock space. In the case of a Lévy
process, several approaches have been proposed in order to construct a Fock space-
type realization of the corresponding L2-space. In this paper, we will be concerned
with the approach of Nualart and Schoutens [9], who constructed a representation
of every square integrable functional of a Lévy process in terms of orthogonalized
Teugels martingales. Recall that, for a given Lévy process (Xt)t­0, its k-th order
Teugels martingale is defined by centering the power jump process

X
(k)
t :=

∑
0<s¬t

(∆Xs)
k, k ∈ N.

For numerous applications of this result, see e.g. [6] and [10]. We also refer to [7]
for an extension of this result to the case of a Lévy process taking values in Rd, and
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to [1] and [3] for a Nualart–Schoutens-type decomposition for noncommutative (in
particular, free) Lévy processes.

The aim of this note is to extend the Nualart–Schoutens decomposition to the
case of a generalized stochastic process with independent values. Consider a stan-
dard triple D ⊂ L2(Rd, dx) ⊂ D′, where D = C∞0 (Rd) is the nuclear space of
all smooth, compactly supported functions on Rd, and D′ is the dual space of D
with respect to the center space L2(Rd, dx), see e.g. [2] for detail. For ω ∈ D′
and φ ∈ D, we denote by ⟨ω, φ⟩ the dual pairing of ω and φ. Denote by C(D′) the
cylinder σ-algebra onD′. A generalized stochastic process is a probability measure
µ on

(
D′, C(D′)

)
. Thus, a generalized stochastic process is a random generalized

function ω ∈ D′. One says that a generalized stochastic process has independent
values if for any φ1, . . . , φn ∈ D which have mutually disjoint support, the random
variables ⟨ω, φ1⟩, . . . , ⟨ω, φn⟩ are independent. So, heuristically, we infer that, for
any x1, . . . , xn ∈ Rd, the random variables ω(x1), . . . , ω(xn) are independent. In
the case where d = 1, one can (at least heuristically) interpret ω(t) as the time t
derivative of a classical stochastic process X =

(
X(t)

)
t∈R with independent in-

crements, so that, for t ­ 0, X(t) =
∫ t

0
ω(s) ds.

If a generalized stochastic process with independent values, µ, has the prop-
erty that the measure µ remains invariant under each transformation x 7→ x + a
(a ∈ Rd) of the underlying space, then one calls µ a Lévy process (which is, for
d = 1, the time derivative of a classical Lévy process.) So, below, for a certain class
of generalized stochastic processes with independent values, we will construct an
orthogonal decomposition of the space L2(D′, µ), which, in the case of a classical
Lévy process, will be exactly the Nualart–Schoutens decomposition from [9]. This
paper will also extend the results of [8] for generalized stochastic processes being
Lévy processes.

2. PRELIMINARIES

We start by briefly recalling some results from [5]. Assume that, for each
x ∈ Rd, σ(x, ds) is a probability measure on

(
R,B(R)

)
. We also assume that,

for each ∆ ∈ B(R), Rd ∋ x 7→ σ(x,∆) is a measurable mapping. Hence, we can
define a σ-finite measure dxσ(x, ds) on

(
Rd × R,B(Rd × R)

)
. Let B0(Rd) de-

note the collection of all sets Λ ∈ B(Rd) which are bounded. We will additionally
assume that, for each Λ ∈ B0(Rd), there exists CΛ > 0 such that∫

R
|s|nσ(x, ds) ¬ Cn

Λn!, n ∈ N,(2.1)

for all x ∈ Λ. We fix the Hilbert space H = L2
(
Rd × R, dx σ(x, ds)

)
. We denote

by F(H) =⊕∞
n=0

H⊙nn! the symmetric Fock space over H . Here ⊙ denotes
symmetric tensor product. We denote by D the subset of F(H) which consists of
all finite vectors f = (f (0), f (1), . . . , f (n), 0, 0, . . .), where each f (k) is a symmet-
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ric function on (Rd × R)k which is obtained as the symmetrization of a finite sum
of functions of the form

g(k)(x1, s1, . . . , xk, sk) = ϕ(x1, . . . , xk)s
i1
1 . . . sikk ,

where ϕ ∈ D⊗k = C∞0
(
(Rd)k

)
and i1, . . . , ik ∈ Z+ = {0, 1, 2, . . .}. For each

φ ∈ D, we define an operator A(φ) in F(H) with domain D by

(2.2) A(φ) := a+(φ⊗m0) + a−(φ⊗m0) + a0(φ⊗m1).

Here and below, for i ∈ Z+ := {0, 1, 2, . . .},

(φ⊗mi)(x, s) := φ(x)si;

a+(φ⊗mi) is the creation operator corresponding to φ⊗mi,

a+(φ⊗mi)f
(k) = f (k) ⊙ (φ⊗mi), f (k) ∈ H⊙k;

a−(φ⊗mi) is the corresponding annihilation operator,

a−(φ⊗mi)f
(k) = k

∫
Rd×R

dy σ(y, du)φ(y)uif (k)(y, u, ·);

and a0(φ⊗mi) is the neutral operator corresponding to φ⊗mi,(
a0(φ⊗mi)f

(k)
)
(x1, s1, . . . , xk, sk)

=
(
φ(x1)s

i
1 + . . .+ φ(xk)s

i
k

)
f (k)(x1, s1, . . . , xk, sk).

Note that A(φ) maps D into itself, and it is a symmetric operator in F(H).

THEOREM 2.1. For each φ ∈ D, the operator A(φ) is essentially self-adjoint
on D. Furthermore, there exists a unique probability measure µ on D′ such that
the linear operator I : F(H) → L2(D′, µ) given through IΩ = 1, Ω being the
vacuum vector (1, 0, 0, . . .), and

I
(
A(φ1) . . . A(φn)Ω

)
= ⟨ω, φ1⟩ . . . ⟨ω, φn⟩,

is a unitary operator. The Fourier transform of the measure µ is given by∫
D′

ei⟨φ,ω⟩µ(dω) = exp

[
− 1

2

∫
Rd

dxσ(x, {0})φ(x)2

+
∫
Rd

dx
∫
R∗

σ(x, ds)
1

s2
(
eiφ(x)s − iφ(x)s− 1

)]
,

(2.3)

where R∗ := R \ {0}. In particular, µ is a generalized stochastic process with
independent values.

Note that, if the measure σ(ds) = σ(x, ds) is the same for all x ∈ Rd, then µ
is a Lévy process.
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3. AN ORTHOGONAL DECOMPOSITION OF A FOCK SPACE

We will now discuss an orthogonal decomposition of a general symmetric
Fock space. This decomposition generalizes the well-known basis of occupation
numbers in the Fock space, see e.g. [2].

In this section, we will denote by H any real separable Hilbert space. Let
(Hk)

∞
k=0 be a sequence of closed subspaces of H such that H =⊕∞

k=0
Hk. Let

n ­ 2. Then clearly

H⊗n =
( ∞⊕
k1=0

Hk1

)
⊗

( ∞⊕
k2=0

Hk2

)
⊗ . . .⊗

( ∞
⊕
kn=0

Hkn

)
(3.1)

= ⊕
(k1,k2,...,kn)∈Zn

+

Hk1 ⊗Hk2 ⊗ . . .⊗Hkn .

Denote by Symn the orthogonal projection of H⊗n onto H⊙n. Recall that, for any
f1, f2, . . . , fn ∈ H ,

(3.2) f1 ⊙ . . .⊙ fn = Symn f1 ⊗ . . .⊗ fn =
1

n!

∑
σ∈Sn

fσ(1) ⊗ . . .⊗ fσ(n).

(Here, Sn denotes the symmetric group of order n.) For each (k1, k2, . . . , kn)
∈ Zn

+, let us assume that Hk1 ⊙ Hk2 ⊙ . . . ⊙ Hkn denote the Hilbert space
Symn(Hk1 ⊗ Hk2 ⊗ . . . ⊗ Hkn), i.e., the space of all Symn-projections of ele-
ments of Hk1 ⊗Hk2 ⊗ . . .⊗Hkn .

Assume that (k1, k2, . . . , kn) ∈ Zn
+ and (l1, l2, . . . , ln) ∈ Zn

+ are such that
there exists a permutation σ ∈ Sn such that

(3.3) (k1, k2, . . . , kn) = (lσ(1), lσ(2), . . . , lσ(n)).

Then

Hk1 ⊙Hk2 ⊙ . . .⊙Hkn = Hl1 ⊙Hl2 ⊙ . . .⊙Hln .(3.4)

Indeed, take any f1 ∈ Hl1 , f2 ∈ Hl2 , . . . , fn ∈ Hln . Then

f1 ⊙ f2 ⊙ . . .⊙ fn = fσ(1) ⊙ fσ(2) ⊙ . . .⊙ fσ(n).(3.5)

We have fσ(i) ∈ Hlσ(i)
= Hki . Therefore, the vector in (3.5) belongs to Hk1 ⊙

Hk2 ⊙ . . .⊙Hkn . Since the set of all vectors of the form f1 ⊙ f2 ⊙ . . .⊙ fn with
fi ∈ Hli is total in Hl1 ⊙Hl2 ⊙ . . .⊙Hln , we conclude that

Hl1 ⊙Hl2 ⊙ . . .⊙Hln ⊂ Hk1 ⊙Hk2 ⊙ . . .⊙Hkn .

By inverting the argument, we obtain the inverse conclusion, and so formula (3.4)
holds.
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If no permutation σ ∈ Sn exists which satisfies (3.3), then

Hk1 ⊙Hk2 ⊙ . . .⊙Hkn⊥ Hl1 ⊙Hl2 ⊙ . . .⊙Hln .(3.6)

Indeed, take any fi ∈ Hki , gi ∈ Hli , i = 1, 2, . . . , n. Then, since Symn is an or-
thogonal projection,

(f1 ⊙ f2 ⊙ . . .⊙ fn, g1 ⊙ g2 ⊙ . . .⊙ gn)H⊙n

=
(
Symn(f1 ⊗ f2 ⊗ . . .⊗ fn), g1 ⊗ g2 ⊗ . . .⊗ gn

)
H⊗n

=
1

n!

∑
σ∈Sn

n∏
i=1

(fσ(i), gi)H =
1

n!

∑
σ∈Sn

n∏
i=1

(fi, gσ(i))H = 0.

Since the vectors of the form f1 ⊙ f2 ⊙ . . .⊙ fn with fi ∈ Hki and g1 ⊙ g2 ⊙ . . .
⊙ gn with gi ∈ Hli form a total set in Hk1 ⊙Hk2 ⊙ . . .⊙Hkn and Hl1 ⊙Hl2 ⊙ . . .
⊙Hln , respectively, we get (3.6).

By (3.1), the closed linear span of the spaces Hk1 ⊙ Hk2 ⊙ . . . ⊙ Hkn with
(k1, k2, . . . , kn) ∈ Zn

+ coincides with H⊙n. Hence, by (3.4) and (3.6), we get the
orthogonal decomposition

H⊙n = ⊕
α∈Z∞+,0, |α|=n

H⊙α0
0 ⊙H⊙α1

1 ⊙H⊙α2
2 ⊙ . . .(3.7)

Here Z∞+,0 denotes the set of indices α = (α0, α1, α2, . . .) such that all αi ∈ Z+

and |α| := α0 + α1 + α2 + . . . <∞. Hence, by (3.7), we get the following

LEMMA 3.1. We have the orthogonal decomposition of the symmetric Fock
space F(H) =⊕∞

n=0
H⊙nn!, i.e.,

(3.8) F(H) = ⊕
α∈Z∞+,0

(H⊙α0
0 ⊙H⊙α1

1 ⊙H⊙α2
2 . . .)|α|! .

Next, we have

LEMMA 3.2. Let α ∈ Z∞+,0 . Then

(3.9) Sym|α| : (H
⊙α0
0 ⊗H⊙α1

1 ⊗H⊙α2
2 ⊗ . . .)α0!α1!α2! . . .

→ (H⊙α0
0 ⊙H⊙α1

1 ⊙H⊙α2
2 ⊙ . . .) |α|!

is a unitary operator.

P r o o f. We start the proof with the following well-known observation. Let
k, l ­ 1, n := k + l. Then Symn = Symn(Symk⊗Syml). Hence, for any α ∈
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Z∞+,0, |α| = n, we get Symn = Symn(Symα0
⊗ Symα1

⊗ Symα2
⊗ . . .). There-

fore, we have the following equality of subspaces of H⊗n :

H⊙α0
0 ⊙H⊙α1

1 ⊙H⊙α2
2 ⊙ . . .

= Symn(H
⊗α0
0 ⊗H⊗α1

1 ⊗H⊗α2
2 ⊗ . . .)

= Symn(Symα0
⊗Symα1

⊗ Symα2
⊗ . . .)(H⊗α0

0 ⊗H⊗α1
1 ⊗H⊗α2

2 ⊗ . . .)

= Symn(H
⊙α0
0 ⊗H⊙α1

1 ⊗H⊙α2
2 ⊗ . . .).

This shows that the image of the operator Symn in (3.9) is the whole space H⊙α0
0 ⊙

H⊙α1
1 ⊙ H⊙α2

2 ⊙ . . . n! . Hence, we only need to prove that this operator is an
isometry.

Fix any fi, gi ∈ Hi with i ∈ Z+, and any α ∈ Z∞+,0. Then, by (3.2),(
Symn(f

⊗α0
0 ⊗ f⊗α1

1 ⊗ f⊗α2
2 ⊗ . . .),Symn(g

⊗α0
0 ⊗ g⊗α1

1 ⊗ g⊗α2
2 ⊗ . . .)

)
H⊙n

=
(
Symn(f

⊗α0
0 ⊗ f⊗α1

1 ⊗ f⊗α2
2 ⊗ . . .), g⊗α0

0 ⊗ g⊗α1
1 ⊗ g⊗α2

2 ⊗ . . .
)
H⊗n

=
1

n!

∑
σ0∈Sα0

(f0, g0)
α0
H0

.
∑

σ1∈Sα1

(f1, g1)
α1
H1

. . .

=
1

n!
(f⊗α0

0 , g⊗α0
0 )

H
⊙α0
0

α0!(f
⊗α1
1 , g⊗α1

1 )
H
⊙α1
1

α1! . . .

=
1

n!
(f⊗α0

0 ⊗ f⊗α1
1 ⊗ . . . , g⊗α0

0 ⊗ g⊗α1
1 ⊗ . . .)

H
⊙α0
0 ⊗H⊙α1

1 ⊗...α0!α1! . . .

Since the set of all vectors of the form f⊗αi
i with fi ∈ Hi is a total subset of H⊙αi

i ,
we conclude that the operator in (3.9) is indeed an isometry. �

We define the symmetrization operator

(3.10) Sym : ⊕
α∈Z∞+,0

(H⊙α0
0 ⊗H⊙α1

1 ⊗H⊙α2
2 ⊗ . . .)α0!α1!α2! . . .→ F(H)

so that the restriction of Sym to each space

(H⊙α0
0 ⊗H⊙α1

1 ⊗H⊙α2
2 ⊗ . . .)α0!α1!α2! . . .

is equal to Sym|α|. By Lemmas 3.1 and 3.2, we get

LEMMA 3.3. The symmetrization operator Sym is a unitary operator.

REMARK 3.1. Let us assume that each Hilbert space Hk is one-dimensional
and in each Hk we fix a vector ek ∈ Hk such that ∥ek∥ = 1. Thus, (ek)∞k=0 is an
orthonormal basis of H . By Lemma 3.3, the set of the vectors(

(α0!α1!α2! . . .)
−1/2e⊗α0

0 ⊙ e⊗α1
1 ⊙ e⊗α2

2 ⊙ . . .
)
α∈Z∞+,0

is an orthonormal basis of F(H). This basis is called a basis of occupation num-
bers.
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4. AN ORTHOGONAL DECOMPOSITION OF L2(D′, µ)

We want to apply the general result about the orthogonal decomposition of the
Fock space to the case of F(H), where H = L2

(
Rd × R, dx σ(x, ds)

)
. We note

that, by (2.1), for each x ∈ Rd, the set of polynomials is dense in L2
(
R, σ(x, ds)

)
.

We denote by
(
q(n)(x, s)

)
n­0 the sequence of monic polynomials which are or-

thogonal with respect to the measure σ(x, ds). These polynomials satisfy the fol-
lowing recursive formula:

sq(n)(x, s) = q(n+1)(x, s) + bn(x)q
(n)(x, s) + an(x)q

(n−1)(x, s), n ­ 1,

sq(0)(x, s) = q(1)(x, s) + b0(x)

(4.1)

with some bn(x) ∈ R and an(x) > 0. (Note that if the support of σ(x, ds) con-
sists of k < ∞ points, then, for n ­ k, we set q(n)(x, s) = 0, an(x) = 0 with
bn(x) ∈ R being arbitrary.)

From now on, we will assume that the following condition is satisfied:
(A) For each n ∈ N, the function an(x) from (4.1) is locally bounded on Rd,

i.e., for each Λ ∈ B0(Rd), supx∈Λ an(x) <∞.
Denote by L the linear space of all functions on Rd × R which have the form

(4.2) f(x, s) =
n∑

k=0

ak(x)q
(k)(x, s),

where n ∈ N, ak ∈ D, k = 0, 1, . . . , n.

LEMMA 4.1. The space L is densely embedded into H .

P r o o f. Let f(x, s) = a(x)q(k)(x, s), where a ∈ D. Let us show that f ∈ H .
Put Λ := supp(a). We have, for some C > 0,

(4.3)
∫
Rd

∫
R
dxσ(x, ds)f(x, s)2 ¬ C

∫
Λ

dx
∫
R
σ(x, ds) q(k)(x, s)2.

If k = 0, then q(0)(x, s) = 1, and the right-hand side of (4.3) is evidently finite. By
the theory of orthogonal polynomials (see e.g. [4])

(4.4)
∫
R
σ(x, ds) q(k)(x, s)2 = a1(x)a2(x) . . . ak(x), k ­ 1.

Hence we continue (4.3) and obtain∫
Rd

∫
R
dxσ(x, ds)f(x, s)2 ¬ C

∫
Λ

dx a1(x)a2(x) . . . ak(x) <∞

by (A). Thus, L ⊂ H .
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We now have to show that L is a dense subset of H . Let g ∈ H be such that
(g, f)H = 0 for all f ∈ L. Hence for any a ∈ D and k ­ 0∫

Rd

dx
∫
R
σ(x, ds) g(x, s) a(x) q(k)(x, s) = 0.

Fix any compact set Λ in Rd and let a ∈ D be such that the support of a is a subset
of Λ. Then, ∫

Rd

dx a(x)
( ∫
R
σ(x, ds) g(x, s) q(k)(x, s)

)
= 0.

Hence

(4.5)
∫
Λ

dx a(x)
( ∫
R
σ(x, ds) g(x, s) q(k)(x, s)

)
= 0.

We state that the function

Λ ∋ x 7→
∫
R
σ(x, ds) g(x, s) q(k)(x, s)

belongs to L2(Λ, dx). Indeed, if k = 0, then q(0)(x, s) = 1, and this statement
evidently follows from Cauchy’s inequality. Assume that k ­ 1. Then, by Cauchy’s
inequality, (4.3), and condition (A),∫

Λ

dx
( ∫
R
σ(x, ds) g(x, s) q(k)(x, s)

)2
¬
∫
Λ

dx
∫
R
σ(x, ds1) g(x, s1)

2
∫
R
σ(x, ds2) q

(k)(x, s2)
2

=
∫
Λ

dx
∫
R
σ(x, ds) g(x, s)2 a1(x)a2(x) . . . ak(x)

¬
( k∏
i=1

sup
x∈Λ

ai(x)
) ∫
Λ

dx
∫
R
σ(x, ds) g(x, s)2 <∞.

Since the set of all functions a ∈ D with support in Λ is dense in L2(Λ, dx),
we therefore conclude from (4.5) that, for dx-a.a. x ∈ Λ,

(4.6)
∫
R
σ(x, ds) g(x, s) q(k)(x, s) = 0 for all k ­ 0.

Since g ∈ H , we infer that, for dx-a.a. x ∈ Rd, g(x, ·) ∈ L2
(
R, σ(x, ds)

)
. Since

{q(k)(x, ·)}∞k=0 form an orthogonal basis in L2
(
R, σ(x, ds)

)
, we conclude from

(4.6) that, for dx-a.a. x ∈ Rd, g(x, s) = 0 for σ(x, ds)-a.a. s ∈ R. From here, we
easily conclude that g = 0 as an element of H . Hence L is indeed dense in H . �
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For each n ∈ Z+, we define

Ln := {gn(x, s) = f(x) q(n)(x, s) | f ∈ D}.

We have Ln ⊂ L, and so the linear span of the Ln spaces coincides with L.
For any gn(x, s) = fn(x) q

(n)(x, s) ∈ Ln and gm(x, s) = fm(x) q(m)(x, s) ∈ Lm,
n,m ∈ Z+, we have

(gn, gm)H =
∫

Rd×R
gn(x, s) gm(x, s)dxσ(x, ds)

=
∫
Rd

fn(x) fm(x)
( ∫
R
q(n)(x, s) q(m)(x, s)σ(x, ds)

)
dx.

(4.7)

Hence, if n ̸= m, then
(gn, gm)H = 0,

which implies that the linear spaces {Ln}∞n=0 are mutually orthogonal in H . De-
note by Hn the closure of Ln in H . Then, by Lemma 4.1, H =⊕∞

n=0
Hn.

By (4.7), setting n = m, we get

(4.8) ∥gn∥2Hn
=

∫
Rd

f2
n(x)

( ∫
R
q(n)(x, s)2 σ(x, ds)

)
dx =

∫
Rd

f2
n(x)ρn(dx),

where
ρn(dx) =

( ∫
R
q(n)(x, s)2 σ(x, ds)

)
dx

is a measure on
(
Rd,B(Rd)

)
. Consider a linear operator

D ∋ fn 7→ (Jnfn)(x, s) := fn(x)q
(n)(x, s) ∈ Ln.

The image of Jn is clearly the whole Ln. Now, Ln is dense in Hn, while D is
evidently dense in L2

(
Rd, ρn(dx)

)
. By (4.8), for each fn ∈ D,

∥Jnfn∥Hn = ∥fn∥L2(Rd, ρn(dx)).

Therefore, we can extend the operator Jn by continuity to a unitary operator

(4.9) Jn : L2
(
Rd, ρn(dx)

)
→ Hn.

In particular,

Hn =
{
fn(x) q

(n)(x, s) | fn ∈ L2
(
Rd, ρn(dx)

)}
.

Therefore, for each k ­ 2,

H⊗kn =
{
f (k)
n (x1, . . . , xk) q

(n)(x1, s1) . . . q
(n)(xk, sk) |

f (k)
n ∈ L2

(
Rd, ρn(dx)

)⊗k
= L2

(
(Rd)k, ρn(dx1) . . . ρn(dxk)

)}
.
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Since the operator Jn in (4.9) is unitary, we infer that the operator

J⊗kn : L2
(
Rd, ρn(dx)

)⊗k → H⊗kn

is also unitary. The restriction of J⊗kn to L2
(
Rd, ρn(dx)

)⊙k is a unitary operator

(4.10) J⊗kn : L2
(
Rd, ρn(dx)

)⊙k → H⊙kn .

Indeed, take any fn ∈ L2
(
Rd, ρn(dx)

)
. Then f⊗kn ∈ L2

(
Rd, ρn(dx)

)⊙k and the

set of all such vectors is total in L2
(
Rd, ρn(dx)

)⊙k. Now, by the definition of J⊗kn ,
we get

J⊗kn f⊗kn = (Jn fn)
⊗k ∈ H⊙kn ,

and furthermore the set of all vectors of the form (Jn fn)
⊗k is total in H⊙kn . Hence,

the statement follows.
For any f

(k)
n ∈ L2

(
Rd, ρn(dx)

)⊗k,

(J⊗kn f (k)
n )(x1, s1, . . . , xk, sk) = f (k)

n (x1, . . . , xk)q
(n)(x1, s1) . . . q

(n)(xk, sk).

Hence, the unitary operator (4.10) acts as follows:

L2
(
Rd, ρn(dx)

)⊙k ∋ f (k)
n (x1, . . . , xk)

7→ (J⊗kn f (k)
n )(x1, s1, . . . , xk, sk) = f (k)

n (x1, . . . , xk)q
(n)(x1, s1) . . . q

(n)(xk, sk).

Thus, each function g
(k)
n ∈ H⊙kn has a representation

g(k)n (x1, s1, . . . , xk, sk) = f (k)
n (x1, . . . , xk)q

(n)(x1, s1) . . . q
(n)(xk, sk),

where f
(k)
n ∈ L2

(
Rd, ρn(dx)

)⊙k and ∥g(k)n ∥H⊙k
n

= ∥f (k)
n ∥L2(Rd,ρn(dx))⊙k .

For each α ∈ Z∞+,0, we consider the Hilbert space

L2
α

(
(Rd)|α|

)
:= L2

(
Rd, ρ0(dx)

)⊙α0 ⊗ L2
(
Rd, ρ1(dx)

)⊙α1 ⊗ . . .(4.11)

We now define a unitary operator

Jα : L2
α

(
(Rd)|α|

)
→ H⊙α0

0 ⊗H⊙α1
1 ⊗ . . . ,

where
Jα = J⊗α0

0 ⊗ J⊗α1
1 ⊗ . . .

We evidently have, for each fα ∈ L2
α

(
(Rd)|α|

)
,

(Jα fα)(x1, s1, x2, s2, . . . , x|α|, s|α|)

= fα(x1, x2, . . . , x|α|)q
(0)(x1, s1) . . . q

(0)(xα0 , sα0)

× q(1)(xα0+1, sα0+1) . . . q
(1)(xα0+α1 , sα0+α1) . . .



A chaotic decomposition 419

For each α ∈ Z∞+,0, we define a Hilbert space

Gα := L2
α

(
(Rd)|α|

)
α0!α1! . . .

The Jα is evidently a unitary operator

Jα : Gα → (H⊙α0
0 ⊗H⊙α1

1 ⊗ . . .)α0!α1! . . .

Put G :=⊕α∈Z∞+,0
Gα. Hence, we can construct a unitary operator

J : G → ⊕
α∈Z∞+,0

(H⊙α0
0 ⊗H⊙α1

1 ⊗ . . .)α0!α1! . . .

by setting J :=⊕α∈Z∞+,0
Jα. By Lemma 3.3, we get a unitary operator R : G →

F(H) by settingR := SymJ . Thus, by Theorem 2.1, we get

THEOREM 4.1. Let condition (A) be satisfied. We have a unitary isomorphism
K : G → L2(D′, µ) given by K := IR, where the unitary operator I : F(H) →
L2(D′, µ) is from Theorem 2.1.

5. THE UNITARY ISOMORPHISM K THROUGH MULTIPLE STOCHASTIC INTEGRALS

We will now give an interpretation of the unitary isomorphism K in terms of
multiple stochastic integrals. We will only present a sketch of the proof, omitting
some technical details.

Let us recall the operators A(φ) in F(H) defined by (2.2). Now, for each
k ∈ N, we define operators

(5.1) A(k)(φ) := a+(φ⊗mk−1) + a0(φ⊗mk) + a−(φ⊗mk−1).

In particular, A(1)(φ) = A(φ). The operator A(k)(φ) being symmetric, we de-
note by A(k)(φ)∼ the closure of A(k)(φ). For each k ∈ N and φ ∈ D, we define
Y (k−1)(φ) := I(φ⊗mk−1). It can be shown that, for each k ∈ N, IA(k)(φ)∼I−1

is the operator of multiplication by the function Y (k−1).
Suppose, for a moment, that the measures σ(x, ds) do not depend on x ∈ Rd.

For a fixed φ ∈ D, let us orthogonalize in L2(D′, µ) the functions
(
Y (k)(φ)

)∞
k=0

.
This is of course equivalent to the orthogonalization of the monomials (sk)∞k=0 in
L2(R, σ). Denote by (q(k))∞k=0 the system of monic orthogonal polynomials with
respect to the measure σ. Let us put (φ ⊗ q(k))(x, s) := φ(x)q(k)(s). Thus, the
random variables

Z(k)(φ) := I(φ⊗ q(k)), k ∈ Z+,

appear as a result of the orthogonalization of
(
Y (k)(φ)

)∞
k=0

. Since q(0)(s) = 1, we
have

Z(0)(φ) = Y (0)(φ) = ⟨·, φ⟩.
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For each k ­ 1, we have a representation of q(k)(s) as follows:

q(k)(s) =
k∑

i=0

b
(k)
i si.

Thus,

Z(k)(φ) = I(φ⊗ q(k)) =
k∑

i=0

b
(k)
i I(φ⊗mi) =

k∑
i=0

b
(k)
i Y (i)(φ).

Hence, under I−1, the image of the operator of multiplication by Z(k)(φ) is the
operator

R(k)(φ) : =
k∑

i=0

b
(k)
i

(
a+(φ⊗mi) + a−(φ⊗mi) + a0(φ⊗mi+1)

)
= a+(φ⊗ q(k)) + a−(φ⊗ q(k)) + a0(φ⊗ ρ(k)),

where ρ(k)(s) := sq(k)(s).
Let us now consider the general case, i.e., the case where the measure σ(x, ds)

does depend on x ∈ Rd. We are using the monic polynomials
(
q(k)(x, ·)

)∞
k=0

which are orthogonal with respect to the measure σ(x, ds). We have

q(k)(x, s) =
k∑

i=0

b
(k)
i (x) si.

We define

Z(k)(φ) := I(φq(k)) =
k∑

i=0

Y (i)(φb
(k)
i ),

where (φq(k))(x, s) := φ(x)q(k)(x, s). Hence, under I−1, the image of the opera-
tor of multiplication by Z(k)(φ) is the operator

R(k)(φ) :=
k∑

i=0

(
a+

(
(φb

(k)
i )⊗mi

)
+ a−

(
(φb

(k)
i )⊗mi

)
+ a0

(
(φb

(k)
i )⊗mi+1

))
= a+

((
φ

k∑
i=0

b
(k)
i

)
⊗mi

)
+ a−

((
φ

k∑
i=0

b
(k)
i

)
⊗mi

)
+ a0

((
φ

k∑
i=0

b
(k)
i

)
⊗mi+1

)
= a+(φq(k)) + a−(φq(k)) + a0(φρ(k)),

where ρ(k)(x, s) := sq(k)(x, s).
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It is not hard to see that the above definitions and formulas can be easily ex-
tended to the case where the function φ : Rd → R is just measurable, bounded, and
has compact support. In particular, for each ∆ ∈ B0(Rd), we will use the operators
Z(k)(∆) := Z(k)(χ∆).

We will now introduce a multiple Wiener–Itô integral with respect to Z(k)’s.
So, we fix any α ∈ Z∞+,0, |α| = n, n ∈ N. Take any ∆1, . . . ,∆n ∈ B0(Rd), mutu-
ally disjoint. Then we define∫
∆1×∆2×...×∆n

dZ(0)(x1) . . . dZ
(0)(xα0)dZ

(1)(xα0+1) . . . dZ
(1)(xα0+α1)

× dZ(2)(xα0+α1+1) . . .

=
∫

(Rd)n
χ∆1(x1)χ∆2(x2) . . . χ∆n(xn)dZ

(0)(x1) . . . dZ
(0)(xα0)

× dZ(1)(xα0+1) . . . dZ
(1)(xα0+α1)dZ

(2)(xα0+α1+1) . . .

:= Z(0)(∆1) . . . Z
(0)(∆α0)Z

(1)(∆α0+1) . . . Z
(1)(∆α0+α1)Z

(2)(∆α0+α1+1) . . .

Using the fact that the sets ∆1, . . . ,∆n are mutually disjoint, we get

I−1
(
Z(0)(∆1) . . . Z

(0)(∆α0)Z
(1)(∆α0+1) . . . Z

(1)(∆α0+α1)Z
(2)(∆α0+α1+1) . . .

)
= R(0)(χ∆1) . . . R

(0)(χ∆α0
)R(1)(χ∆α0+1) . . . R

(1)(χ∆α0+α1
)R(2)(χ∆α0+α1+1) . . .

= a+(χ∆1q
(0)) . . . a+(χ∆α0

q(0))a+(χ∆α0+1q
(1)) . . . a+(χ∆α0+α1

q(1))

× a+(χ∆α0+α1+1q
(2)) . . .Ω

= (χ∆1q
(0))⊙ . . .⊙ (χ∆α0

q(0))⊙ (χ∆α0+1q
(1))⊙ . . .⊙ (χ∆α0+α1

q(1))

⊙ (χ∆α0+α1+1q
(2))⊙ . . .

= Symn

(
[(χ∆1q

(0))⊙ . . .⊙ (χ∆α0
q(0))]

⊗ [(χ∆α0+1q
(1))⊙ . . .⊙ (χ∆α0+α1

q(1))]⊗ . . .
)

= Symn

(
[(χ∆1 ⊙ . . .⊙ χ∆α0

)(x1, . . . , xα0)q
(0)(x1, s1) . . . q

(0)(xα0 , sα0)]

⊗ [(χ∆α0+1 ⊙ . . .⊙ χ∆α0+α1
)(xα0+1, . . . , xα0+α1) q

(1)(xα0+1, sα0+1)

. . . q(1)(xα0+α1 , sα0+α1)]⊗ . . .
)

= R
(
(χ∆1 ⊙ . . .⊙ χ∆α0

)⊗ (χ∆α0+1 ⊙ . . .⊙ χ∆α0+α1
)⊗ . . .

)
.

Hence

Z(0)(∆1) . . . Z
(0)(∆α0)Z

(1)(∆α0+1) . . . Z
(1)(∆α0+α1)Z

(2)(∆α0+α1+1) . . .

= K
(
(χ∆1 ⊙ . . .⊙ χ∆α0

)⊗ (χ∆α0+1 ⊙ . . .⊙ χ∆α0+α1
)⊗ . . .

)
.
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The set of all vectors of the form(
(χ∆1 ⊙ . . .⊙ χ∆α0

)⊗ (χ∆α0+1 ⊙ . . .⊙ χ∆α0+α1
)⊗ . . .

)
is total in Gα. Therefore, by linearity and continuity, we can extend the definition
of the multiple Winner–Itô integral to the whole space Gα. Thus, we get, for each
fα ∈ Gα,∫
(Rd)|α|

fα(x1, . . . , x|α|)dZ
(0)(x1) . . . dZ

(0)(xα0)dZ
(1)(xα0+1) . . . dZ

(1)(xα0+α1)

× dZ(2)(xα0+α1+1) . . . = Kfα.

Thus, we have the following theorem.

THEOREM 5.1. The unitary isomorphism K : G → L2(D′, µ) from Theo-
rem 4.1 is given by

G = ⊕
α∈Z∞+,0

Gα ∋ (fα)α∈Z∞+,0
= f 7→ Kf

=
∑

α∈Z∞+,0

∫
(Rd)|α|

fα(x1, . . . , x|α|)dZ
(0)(x1) . . . dZ

(0)(xα0)

× dZ(1)(xα0+1) . . . dZ
(1)(xα0+α1)dZ

(2)(xα0+α1+1) . . .
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