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HERZ–SCHUR MULTIPLIERS AND NON-UNIFORMLY BOUNDED
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Abstract. Let G be a second countable, locally compact group and
let φ be a continuous Herz–Schur multiplier on G. Our main result gives
the existence of a (not necessarily uniformly bounded) strongly contin-
uous representation π of G on a Hilbert space H , together with vec-
tors ξ, η ∈ H , such that φ(y−1x) = ⟨π(x)ξ, π(y−1)∗η⟩ for x, y ∈ G and
supx∈G ∥π(x)ξ∥ · supy∈G ∥π(y−1)∗η∥ = ∥φ∥M0A(G). Moreover, we ob-
tain control over the growth of the representation in the sense that ∥π(g)∥ ¬
exp

(
c
2d(g, e)

)
for g ∈ G, where e ∈ G is the identity element, c is a con-

stant, and d is a metric on G.
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1. INTRODUCTION

Let us assume that Y is a non-empty set. A function ψ : Y × Y → C is called
a Schur multiplier if for every operator A = (ax,y)x,y∈Y ∈ B

(
ℓ2(Y )

)
the matrix(

ψ(x, y)ax,y
)
x,y∈Y represents an operator from B

(
ℓ2(Y )

)
(this operator is de-

noted by MψA). If ψ is a Schur multiplier it follows from the closed graph theo-
rem thatMψ ∈ B

(
B
(
ℓ2(Y )

))
, and one refers to ∥Mψ∥ as the Schur norm of ψ and

denotes it by ∥ψ∥S .
Let G be a locally compact group. In [6], Herz introduced a class of functions

on G, which was later called the class of Herz–Schur multipliers on G. By the
introduction to [1], a continuous function φ : G→ C is a Herz–Schur multiplier if
and only if the function

(1.1) φ̂(x, y) = φ(y−1x) (x, y ∈ G)

is a Schur multiplier, and the Herz–Schur norm of φ is given by

∥φ∥HS = ∥φ̂∥S .
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In [3] De Cannière and Haagerup introduced the Banach algebra MA(G) of
Fourier multipliers of G, consisting of functions φ : G→ C such that

φψ ∈ A(G) (ψ ∈ A(G)),

where A(G) is the Fourier algebra of G as introduced by Eymard in [4]. The
norm of φ (denoted by ∥φ∥MA(G)) is given by considering φ as an operator on
A(G). According to Proposition 1.2 in [3] a Fourier multiplier of G can also be
characterized as a continuous function φ : G→ C such that

λ(g)
Mφ7→ φ(g)λ(g) (g ∈ G)

extends to a σ-weakly continuous operator (still denoted by Mφ) on the group von
Neumann algebra (λ : G → B

(
L2(G)

)
is the left regular representation and the

group von Neumann algebra is the closure of the span of λ(G) in the weak operator
topology). Moreover, one has ∥φ∥MA(G) = ∥Mφ∥. The Banach algebra M0A(G)
of completely bounded Fourier multipliers of G consists of the Fourier multipliers
φ of G, for which Mφ is completely bounded. Let ∥φ∥M0A(G) = ∥Mφ∥cb.

In [1] Bożejko and Fendler show that the completely bounded Fourier mul-
tipliers coincide isometrically with the continuous Herz–Schur multipliers. In [7]
Jolissaint gives a short and self-contained proof of this result in the following form.

PROPOSITION 1.1 ([1], [7]). Let G be a locally compact group and assume
that φ : G→ C and k ­ 0 are given. Then the following are equivalent:

(i) φ is a completely bounded Fourier multiplier of G with ∥φ∥M0A(G) ¬ k.
(ii) φ is a continuous Herz–Schur multiplier on G with ∥φ∥HS ¬ k.
(iii) There exist a Hilbert space H and two bounded, continuous maps P,Q :

G→H such that

φ(y−1x) = ⟨P (x), Q(y)⟩ (x, y ∈ G)

and
∥P∥∞∥Q∥∞ ¬ k,

where

∥P∥∞ = sup
x∈G
∥P (x)∥ and ∥Q∥∞ = sup

y∈G
∥Q(y)∥.

By a representation (π,H ) of a locally compact group G on a Hilbert space
H we mean a homomorphism of G into the invertible elements of B(H ). A rep-
resentation (π,H ) of G is said to be uniformly bounded if

sup
g∈G
∥π(g)∥ <∞
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and one usually writes ∥π∥ for supg∈G ∥π(g)∥. If g 7→ π(g) is continuous with re-
spect to the strong operator topology on B(H ) then we say that (π,H ) is strongly
continuous. Let (π,H ) be a strongly continuous, uniformly bounded representa-
tion of G. Then, according to Theorem 2.2 of [3], any coefficient of (π,H ) is a
continuous Herz–Schur multiplier, i.e.,

g
φ7→ ⟨π(g)ξ, η⟩ (g ∈ G)

is a continuous Herz–Schur multiplier with

∥φ∥M0A(G) ¬ ∥π∥2∥ξ∥∥η∥

for any ξ, η ∈ H (note that this result also follows as a corollary to Proposi-
tion 1.1). U. Haagerup has shown that on the non-abelian free groups there are
Herz–Schur multipliers which cannot be realized as coefficients of uniformly boun-
ded representations. The proof by Haagerup has remained unpublished, but Pisier
has later given a different proof, cf. [8]. Haagerup’s proof can be modified to prove
the corresponding result for the connected, real rank one, simple Lie groups with
finite center; cf. [9], Theorem 3.6.

Strictly speaking, the requirement that the above representations be uniformly
bounded is not fully needed in order to construct a continuous Herz–Schur multi-
plier. From Proposition 1.1 it follows that it is enough to require that

(1.2) sup
x∈G
∥π(x)ξ∥ <∞ and sup

y∈G
∥π(y−1)∗η∥ <∞.

In Theorem 1.1 of [2] Bożejko and Fendler show that for countable discrete groups
all Herz–Schur multipliers can be realized as coefficients of representations satis-
fying a condition similar to (1.2). More specifically, they show that if φ is a Her-
mitian Herz–Schur multiplier on a countable discrete group Γ, then there exist a
representation (π,H ) and vectors ξ, η ∈H such that

φ(y−1x) = ⟨π(x)ξ, π(y)η⟩ (x, y ∈ Γ)

with

sup
x∈Γ
∥π(x)ξ∥ ¬ ∥φ∥1/2M0A(Γ)

and sup
y∈Γ
∥π(y)η∥ ¬ ∥φ∥1/2M0A(Γ)

.

Furthermore, they give a quantitative bound on ∥π(g)∥ for g ∈ Γ and note that the
same holds for non-Hermitian Herz–Schur multipliers by including a

√
2 factor

in the bound for supx∈Γ ∥π(x)ξ∥ and supy∈Γ ∥π(y)η∥. In Section 2 we present a
generalization of the result by Bożejko and Fendler to second countable, locally
compact groups (Theorem 2.1 and Corollary 2.1) and prove our main result, which
is the following
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THEOREM 1.1. Let G be a second countable, locally compact group and let
d be a proper, left invariant metric on G which has at most exponential growth,
i.e.,

µ
(
Bn(e)

)
¬ a · ebn (n ∈ N)

for some constants a, b > 0, where µ is a left invariant Haar measure on G and
Bn(e) = {g ∈ G : d(g, e) < n} is the open ball of radius n centered at the iden-
tity element e ∈ G. Then for any continuous Herz–Schur multiplier φ on G there
exist a strongly continuous representation (π,H ) and vectors ξ, η ∈H such that

φ(y−1x) = ⟨π(x)ξ, π(y−1)∗η⟩ (x, y ∈ G)

with

sup
x∈G
∥π(x)ξ∥ = ∥φ∥1/2M0A(G) and sup

y∈G
∥π(y−1)∗η∥ = ∥φ∥1/2M0A(G).

Moreover, for every fixed c > b, (π,H ) can be chosen such that

∥π(g)∥ ¬ e
c
2 ·d(g,e) (g ∈ G).

Note that the existence of a proper, left invariant metric with at most exponen-
tial growth on a second countable, locally compact group is guaranteed by [5].

2. COEFFICIENTS OF NON-UNIFORMLY BOUNDED REPRESENTATIONS

Second countability guarantees the existence of a proper, left invariant metric,
cf. the Theorem in [10]. Actually, according to Haagerup and Przybyszewska [5]
one can choose this metric, d, to have at most exponential growth, i.e.,

(2.1) µ
(
Bn(e)

)
¬ a · ebn (n ∈ N)

for some constants a, b > 0, where µ is a left invariant Haar measure on G.
Inspired by the proof of Theorem 1.1 in [2], we state and prove Theorem 2.1

for Hermitian Herz–Schur multipliers, i.e., Herz–Schur multipliers φ for which
φ∗ = φ, where

φ∗(g) = φ(g−1) (g ∈ G).

The non-Hermitian case is treated in Corollary 2.1.

THEOREM 2.1. If φ is a continuous Hermitian Herz–Schur multiplier on a
second countable, locally compact groupG, and d is a proper, left invariant metric
on G satisfying (2.1) for some a, b > 0 (which exists according to [5]), then there
exist a strongly continuous representation (π,H ) and vectors ξ, η ∈H such that

φ(y−1x) = ⟨π(x)ξ, π(y)η⟩ (x, y ∈ G)
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with

sup
x∈G
∥π(x)ξ∥ = ∥φ∥1/2M0A(G) and sup

y∈G
∥π(y)η∥ = ∥φ∥1/2M0A(G).

Moreover, for every fixed c > b, (π,H ) can be chosen such that

∥π(g)∥ ¬ e
c
2 ·d(g,e) (g ∈ G).

Before we proceed with the proof of Theorems 1.1 and 2.1 we need the fol-
lowing application of [5], which was communicated to us by Haagerup.

LEMMA 2.1. If G is a second countable, locally compact group, then there
exist a positive function h ∈ L1(G) with ∥h∥1 = 1, and a positive function c on G
such that

1

c(g)

∫
G

f(z)h(z)dµ(z) ¬
∫
G

f(z)h(gz)dµ(z) ¬ c(g)
∫
G

f(z)h(z)dµ(z)

for g ∈ G and any positive f ∈ L∞(G), where µ is the Haar measure on G.
Moreover, we may use

h(g) =
e−c·d(g,e)∫

G

e−c·d(x,e)dµ(x)
and c(g) = ec·d(g,e) (g ∈ G)

for c > b, when d is a proper, left invariant metric on G satisfying (2.1).

P r o o f. Let µ be a left invariant Haar measure on G and let d be a proper,
left invariant metric on G satisfying (2.1). We claim that

0 <
∫
G

e−c·d(g,e)dµ(g) <∞.

Put E1 = B1(e) and define inductively

En = Bn(e) \Bn−1(e) (n ­ 2).

Then G is the disjoint union of En for n ∈ N and

e−cn ¬ e−c·d(g,e) ¬ e−c(n−1) (g ∈ En).

Hence, ∫
G

e−c·d(g,e)dµ(g) =
∞∑
n=1

∫
En

e−c·d(g,e)dµ(g) ¬
∞∑
n=1

e−c(n−1)µ(En)

¬ ec
∞∑
n=1

e−cnµ
(
Bn(e)

)
¬ aec

∞∑
n=1

e(b−c)n <∞

because c > b.
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By the reverse triangle inequality we see that

|d(z, g−1)− d(z, e)| ¬ d(e, g−1) (g, z ∈ G).

Using left invariance of the metric one finds that

|d(gz, e)− d(z, e)| ¬ d(g, e) (g, z ∈ G).

This implies

1

c(g)
e−c·d(z,e) ¬ e−c·d(gz,e) ¬ c(g)e−c·d(z,e) (g, z ∈ G),

which is easily seen to complete the proof. �

LEMMA 2.2. Assume that G is a second countable, locally compact group,
that H is a Hilbert space, and R : G→H is bounded and continuous. Let R′ :
G→ L2(G,H , µ) be given by

R′(x)(z) =
√
h(z)R(z−1x) (x, z ∈ G),

where h ∈ L−1(G) is chosen as in Lemma 2.1. ThenR′ is bounded and continuous,
with ∥R′(x)∥2 ¬ ∥R∥∞ for all x ∈ G. Also, let KR = span{R′(x) : x ∈ G} be
a sub-Hilbert space of L2(G,H , µ). Then there exists a unique representation
(πR,KR) such that

πR(g)R
′(x) = R′(gx) (g, x ∈ G).

Moreover,
∥πR(g)∥ ¬ e

c
2 ·d(g,e) (g ∈ G)

and the representation is strongly continuous.

P r o o f. From Lebesgue’s dominated convergence theorem it follows easily
that R′ is continuous. To see that R′ is bounded, note that

∥R′(x)∥22 =
∫
G

h(z)∥R(z−1x)∥2dµ(z) ¬ ∥R∥2∞ (x ∈ G).

If n ∈ N, x1, . . . , xn ∈ G, and c1, . . . , cn ∈ C, then Lemma 2.1 implies that∫
G

∥∥ n∑
i=1

ciR(z
−1xi)

∥∥2h(gz)dµ(z) ¬ c(g) ∫
G

∥∥ n∑
i=1

ciR(z
−1xi)

∥∥2h(z)dµ(z)
for g ∈ G, where

c(g) = ec·d(g,e) (g ∈ G).

It follows that∥∥ n∑
i=1

ciR
′(gxi)

∥∥2
2
¬ c(g)

∥∥ n∑
i=1

ciR
′(xi)

∥∥2
2

(g ∈ G),
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from which we conclude that there exists a unique representation (πR,KR) of G
such that

πR(g)R
′(x) = R′(gx) (g, x ∈ G).

Furthermore,
∥πR(g)∥ ¬

√
c(g) (g ∈ G).

We proceed to show that the representation is strongly continuous. Since
span{R′(x) : x ∈ G} is total in KR and ∥πR(g)∥ ¬

√
c(g), where g 7→

√
c(g) is

a continuous function, it is enough to show that

lim
n→∞

πR(gn)R
′(x) = R′(x)

for x ∈ G, when (gn)n∈N is a sequence converging to the identity e∈G (sinceG is
second countable, we do not have to consider nets). But πR(gn)R′(x) = R′(gnx),
so this follows simply from continuity of R′. �

P r o o f o f T h e o r e m 2.1. Let us assume that φ is a continuous Hermi-
tian Herz–Schur multiplier and use Proposition 1.1 to find a Hilbert space H and
bounded, continuous maps P,Q : G→H such that

φ(y−1x) = ⟨P (x), Q(y)⟩ (x, y ∈ G)

and
∥P∥∞ = ∥Q∥∞ = ∥φ∥1/2M0A(G).

Define

a±(x, y) =
1

4
⟨P (x)±Q(x), P (y)±Q(y)⟩ (x, y ∈ G).

This gives rise to two positive definite, bounded kernels on G×G satisfying

a+(x, y)− a−(x, y) =
1

2
φ(y−1x) +

1

2
φ∗(y−1x) = φ(y−1x) (x, y ∈ G)

and

a+(x, x) + a−(x, x) =
1

2
∥P (x)∥2 + 1

2
∥Q(x)∥2 ¬ ∥φ∥M0A(G) (x ∈ G).

Let

h(g) =
e−c·d(g,e)∫

G

e−c·d(x,e)dµ(x)
(g ∈ G)

for some c > b, when d is a proper, left invariant metric on G satisfying (2.1)
(cf. Lemma 2.1). Define (P ±Q)′ : G→ L2(G,H , µ) by

(P ±Q)′(x)(z) =
√
h(z)(P ±Q)(z−1x) (x, z ∈ G).
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By Lemma 2.2 there exist strongly continuous representations (πP±Q,KP±Q),
where KP±Q = span{(P ′ ± Q′)(x) : x ∈ G} and πP±Q(g)(P ± Q)′(x) =
(P ±Q)′(gx) for g, x ∈ G. Furthermore, these representations satisfy

(2.2) ∥πP±Q(g)∥ ¬ e
c
2 ·d(g,e) (g ∈ G).

Put
A±(x, y) = ⟨(P ±Q)′(x), (P ±Q)′(y)⟩KP±Q

(x, y ∈ G).

Then A± are positive definite, bounded kernels on G×G satisfying

(2.3) A+(x, y)−A−(x, y) = φ(y−1x) (x, y ∈ G)

and

(2.4) A+(x, x) +A−(x, x) ¬ ∥φ∥M0A(G) (x ∈ G).

To make the notation less cumbersome, let π± = πP±Q and K± = KP±Q and
define ξ± = (P ±Q)′(e). Notice that

⟨π±(x)ξ±, π±(y)ξ±⟩K± = A±(x, y) (x, y ∈ G),

and that (2.2) now reads

∥π±(g)∥ ¬ e
c
2 ·d(g,e) (g ∈ G).

Put

K = K+ ⊕K−, ξ = ξ+ ⊕ ξ−, η = ξ+ ⊕−ξ−, and π = π+ ⊕ π−.

Observe that π is a strongly continuous representation such that

(2.5) ∥π(g)∥ ¬ e
c
2 ·d(g,e) (g ∈ G)

and
⟨π(x)ξ, π(y)η⟩K = φ(y−1x) (x, y ∈ G).

Finally, observe that

∥π(x)ξ∥2 = ∥π+(x)ξ+∥2 + ∥π−(x)ξ−∥2 = A+(x, x) +A−(x, x) ¬ ∥φ∥M0A(G)

for x ∈ G, and similarly

∥π(y)η∥2 ¬ ∥φ∥M0A(G)

for y ∈ G. This completes the proof. �
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COROLLARY 2.1. If φ is a continuous Herz–Schur multiplier on a second
countable, locally compact group G, and d is a proper, left invariant metric on G
satisfying (2.1) for some a, b > 0 (which exist according to [5]), then there exist a
strongly continuous representation (π,H ) and vectors ξ, η ∈H such that

φ(y−1x) = ⟨π(x)ξ, π(y)η⟩ (x, y ∈ G)

with

sup
x∈G
∥π(x)ξ∥ ¬

√
2∥φ∥1/2M0A(G) and sup

y∈G
∥π(y)η∥ ¬

√
2∥φ∥1/2M0A(G).

Moreover, for every fixed c > b, (π,H ) can be chosen such that

∥π(g)∥ ¬ e
c
2 ·d(g,e) (g ∈ G).

P r o o f. This follows from Theorem 2.1 since

φ = ℜ(φ) + iℑ(φ),

where
ℜ(φ) = φ+ φ∗

2
and ℑ(φ) = φ− φ∗

2i

are continuous Hermitian Herz–Schur multipliers with

∥ℜ(φ)∥M0A(G) ¬ ∥φ∥M0A(G) and ∥ℑ(φ)∥M0A(G) ¬ ∥φ∥M0A(G).

Thus the proof is complete. �

P r o o f o f T h e o r e m 1.1. Assume thatφ is a continuous Herz–Schur mul-
tiplier and use Proposition 1.1 to find a Hilbert space H and bounded, continuous
maps P,Q : G→H such that

φ(y−1x) = ⟨P (x), Q(y)⟩ (x, y ∈ G)

and
∥P∥∞ = ∥Q∥∞ = ∥φ∥1/2M0A(G).

Let

h(g) =
e−c·d(g,e)∫

G

e−c·d(x,e)dµ(x)
(g ∈ G)

for some c > b, when d is a proper, left invariant metric on G satisfying (2.1)
(cf. Lemma 2.1). Define P ′, Q′ : G→ L2(G,H , µ) by

P ′(x)(z) =
√
h(z)P (z−1x) and Q′(y)(z) =

√
h(z)Q(z−1y) (z ∈ G)
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for x, y ∈ G. According to Lemma 2.2 there exists a strongly continuous represen-
tation (πP ,KP ), where KP = span{P ′(x) : x ∈ G} and πP (g)P ′(x) = P ′(gx)
for g, x ∈ G. Furthermore, this representation satisfies

∥πP (g)∥ ¬ e
c
2 ·d(g,e) (g ∈ G).

Observe that

∥P ′(x)∥22, ∥Q′(y)∥22 ¬ ∥φ∥M0A(G)

and

⟨P ′(x), Q′(y)⟩L2(G,H ,µ) =
∫
G

h(z)⟨P (z−1x), Q(z−1y)⟩H dµ(z) = φ(y−1x)

for x, y ∈ G. Put ξ = P ′(e) and η = PKP
Q′(e), where PKP

is the orthogonal
projection on KP . Note that ξ, η ∈ KP and

φ(y−1x) = ⟨πP (y−1x)ξ, η⟩KP
= ⟨πP (x)ξ, πP (y−1)∗η⟩KP

(x, y ∈ G).

It is clear that ∥πP (x)ξ∥2KP
= ∥P ′(x)∥22 ¬ ∥φ∥M0A(G). The corresponding result

for ∥πP (y−1)∗η∥2KP
requires more work. For x ∈ G arbitrary we find that

⟨πP (y−1)P ′(x), PKP
Q′(e)⟩KP

= ⟨P ′(y−1x), PKP
Q′(e)⟩KP

= ⟨P ′(y−1x), Q′(e)⟩H = φ(y−1x)

= ⟨P ′(x), Q′(y)⟩H = ⟨P ′(x), PKP
Q′(y)⟩KP

from which we conclude that πP (y−1)∗PKP
Q′(e) = PKP

Q′(y), and therefore

∥πP (y−1)∗η∥2KP
= ∥PKP

Q′(y)∥2KP
¬ ∥Q′(y)∥22 ¬ ∥φ∥M0A(G).

Thus the proof is complete. �

REMARK 2.1. For the free group on N generators (2 ¬ N < ∞) the con-
stants a, b in (2.1) may be chosen as

a =
N

(N − 1)(2N − 1)
and b = ln(2N − 1).

This implies that for r >
√
2N − 1 the representations (π,H ) from Theorems 1.1

and 2.1 and Corollary 2.1 may be chosen to satisfy ∥π(g)∥ ¬ rd(g,e) for all g ∈ G.
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[4] P. Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France
92 (1964), pp. 181–236.

[5] U. Haagerup and A. Przybyszewska, Proper metrics on locally compact groups, and
proper affine isometric actions on Banach spaces, arXiv:math/0606794 (2006).
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