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Abstract. We show that the spectrum Â of a separable C∗-algebraA is
discrete if and only if A∗, the Banach space dual of A, has the weak∗ fixed
point property. We prove further that these properties are equivalent among
others to the uniform weak∗ Kadec-Klee property of A∗ and to the coin-
cidence of the weak∗ topology with the norm topology on the pure states
of A. If one assumes the set-theoretic diamond axiom, then the separability
is necessary.
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1. INTRODUCTION

It is a well-known theorem in harmonic analysis that a locally compact group
G is compact if and only if its dual Ĝ is discrete. This dual is just the spectrum of
the full C∗-algebra C∗(G) of G. (The spectrum of a C∗-algebra being the unitary
equivalence classes of the irreducible ∗-representations endowed with the inverse
image of the Jacobson topology on the set of primitive ideals.) There is a bunch
of properties of the weak∗ topology for the Fourier–Stieltjes algebra B(G) of G,
which are equivalent to the compactness of the group, see [7]. Some of them, which
can be formulated in purely C∗-algebraic terms, are the topic of this note.

Let E be a Banach space and K be a non-empty bounded closed convex sub-
set. K has the fixed point property if any non-expansive map T : K → K (i.e.
∥Tx− Ty∥ ¬ ∥x− y∥ for all x, y ∈ K) has a fixed point. We say that E has
the weak fixed point property if every weakly compact convex subset of E has the
fixed point property. IfE is a dual Banach space, we consider the weak∗ fixed point
property of E, i.e. the property that every weak∗ compact convex subset of E has
the fixed point property. Since in a dual Banach space convex weakly compact sets
are weak∗ compact, the weak∗ fixed point property of E implies the weak fixed
point property.
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As in [7] we shall consider the case of a left reversible semigroup S acting by
non-expansive mappings separately continuously on a non-empty weak∗ compact
convex set K ⊂ E. We say that E has the weak∗ fixed point property for left re-
versible semigroups if under these conditions there always is a common fixed point
in K.

One of the main results of [7] is that a locally compact group G is compact
if and only if B(G) has the weak∗ fixed point property for non-expansive maps,
equivalently for left reversible semigroups.

We shall prove that a separable C∗-algebra has a discrete spectrum if and only
if its Banach space dual has the weak∗ fixed point property. We consider sepa-
rable C∗-algebras only, because a separable C∗-algebra with one-point spectrum
is known to be isomorphic to the algebra of compact operators on some Hilbert
space [27]. The converse, namely that the C∗-algebra of the compact operators
has up to unitary equivalence only one irreducible representation, was proved by
Naı̆mark [23]. His question [24] whether these are the onlyC∗-algebras with a one-
point spectrum became known as Naı̆mark’s problem. Assuming the set-theoretic
diamond axiom, independent of ZFC (Zermelo Frankel set theory with the axiom
of choice), Akemann and Weaver [1] answered this in the negative. We shall prove
that their C∗-algebra does not have the weak fixed point property. This shows that
the separability assumption in our theorem is essential.

Section 2 contains our main theorem and its proof. In Section 3 we consider
the uniform weak∗ Kadec-Klee property (see Definition 3.1) of the Banach space
dual of theC∗-algebras in question. For the trace class operators this property holds
true as proved by Lennard [20]. As he points out, the weak∗ fixed point property
can be obtained, via weak∗ normal structure of non-empty weakly∗ compact sets,
by an application of UKK∗, as shown by van Dulst and Sims [6]. For corresponding
results with the weak topology we refer to the articles by Kirk [12] and Lim [21].

2. WEAK∗ FIXED POINT PROPERTY

In this section A shall be a separable C∗-algebra, unless stated otherwise. We
denote by π

′ ≃ π the unitary equivalence of ∗-representations π
′

and π. By abuse
of notation we denote by π also its equivalence class.

The following proposition is based on a theorem of Anderson [3], which itself
refines a lemma of Glimm (see [9], Lemma 9, and [8], Theorem 2).

PROPOSITION 2.1. Let A be a separable C∗-algebra. Let π
′ ̸≃ π ∈ Â with

π
′ ∈ {π} be given and assume that φ is a state of A associated with π

′
. Then there

is an orthonormal sequence (ξn) in Hπ with
(
π(·)ξn|ξn

)
→ φ weakly∗.

P r o o f. By assumption, kerπ
′ ⊃ kerπ, so there is a representation π◦ of

π(A) such that π
′
= π◦ ◦ π. We may therefore assume that π is the identical repre-

sentation. We denote by K(H) the C∗-algebra of compact operators on the Hilbert
space H .
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(i) Suppose φ|K(Hπ)∩A ̸= ∅. Then π
′
= πφ does not annihilate K(Hπ) ∩ A.

By Corollary 4.1.10 in [5], K(Hπ) ⊂ A and it is a two-sided ideal. This corollary
does not cover our case completely but we follow its proof. π

′
is faithful onK(Hπ)

and π
′

|K(Hπ)
is an irreducible representation by [5], 2.11.3. Therefore, it is equiva-

lent to the identical representation of K(Hπ). Now π
′

is equivalent to the identical
representation of A, by [5], 2.10.4 (i). This contradicts the assumption, so this case
cannot happen.

(ii) If φ|K(Hπ)∩A = ∅, then by the Theorem in [3] there is an orthonormal
sequence (ξn) in Hπ with

(
π(·)ξn|ξn

)
→ φ weakly∗. �

LEMMA 2.1. Let M be a von Neumann algebra. If its predual M∗ has the
weak fixed point property, then M is of type I. Moreover, M is atomic.

P r o o f. The argument follows the proof of Theorem 4.1 in [26]. We denote
by R the hyperfinite factor of type II1 and by τR its canonical finite trace (see,
e.g., [28]). In [22] it is proved that its predual L1(R, τR) embeds isometrically
into the predual of any von Neumann algebra not of type I. As L1([0, 1],dx) em-
beds isometrically into L1(R, τR) ([15], Lemma 3.1), we conclude from Alspach’s
theorem [2] that the weak fixed point property of M∗ forces M to be a type I von
Neumann algebra. SoM has a normal semifinite faithful trace (see [5], A35). Now,
Proposition 3.4 in [15] implies that M is an atomic von Neumann algebra. �

Lemma 2.1 and Proposition 3.4 of [15] provide the converse to Lemma 3.1 in
[19], and thus answer a question of Lau [14], Problem 1:

COROLLARY 2.1. Let M be a von Neumann algebra. Then M∗ has the weak
fixed point property if and only if it has the Radon–Nikodym property.

REMARK 2.1. If now A is a C∗-algebra whose Banach space dual A∗ has
the weak fixed point property, then, by Lemma 2.1, A∗∗ is a type I von Neumann
algebra and we know from [25], 6.8.8, that A is a type I C∗-algebra. Especially,
its spectrum, which coincides with the space of its primitive ideals in this case, is
a T0-topological space. A fortiori, this also holds if A∗ has the weak∗ fixed point
property.

PROPOSITION 2.2. Assume that A is separable. If A∗ has the weak∗ fixed
point property, then points in Â are closed.

P r o o f. If {π} is non-closed in Â, then there is π
′ ̸≃ π contained in {π}.

By Proposition 2.1, if φ is a (pure) state associated with π
′
, then there exists an

orthonormal sequence (ξn) inHπ such that φn :=
(
π(·)ξn|ξn

)
→ φweakly∗. Now

we proceed as in [7]. Set φ0 = φ; then the set

C =
{ ∞∑

0

αiφi : 0 ¬ αi ¬ 1,
∞∑
0

αi = 1
}
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is convex weak∗ compact. Now we show that the coefficients of every f=
∑∞

0 αiφi
∈ C are uniquely determined.

Since A∗ is assumed to have the weak∗ fixed point property, the universal
enveloping von Neumann algebra A∗∗ of A is atomic. By [7], Appendix A, the
universal representation of A decomposes into a direct sum of irreducible repre-
sentations. Hence we may apply Lemma 4.21 of [7] to see that the support P0 of
φ0 (in the universal enveloping von Neumann algebra) is orthogonal to the sup-
port of every other φi. So, denoting the ultraweak extensions to A∗∗ of f ∈ C and
φi, i ­ 0, by the same symbols again, we have f(P0) = α0φ0(P0) = α0. It re-
mains to pick out the remaining αi from the sum

∑∞
1 αiφi. Since π is irreducible,

its ultraweak extension to A∗∗ has B(Hπ) as its range. Thus we can evaluate the
sum

∑∞
1 αiφi at Pn, the one-dimensional projection onto C · ξn, which yields

exactly αn.
Now we may define T : C → C by

T
( ∞∑

0

αiφi
)
=
∞∑
0

αiφi+1.

To show that this map is distance preserving it suffices to see that ∥
∑∞

0 βiφi∥ =∑∞
0 |βi| for real summable βi. Clearly, ∥

∑∞
0 βiφi∥ = |β0|+ ∥

∑∞
1 βiφi∥, since

the support of φ0 is orthogonal to the support of any φi, i ­ 1. Since B(Hπ) =
A∗∗/ker(π) isometrically, the norm ∥

∑∞
1 βiφi∥ can be calculated in B(Hπ).

The element Q =
∑∞

1 sign(βi)Pi ∈ B(Hπ) has norm one and
∑∞

1 βiφi(Q)
=

∑∞
1 |βi|. So ∥

∑∞
0 βiφi∥ ­

∑∞
0 |βi|. In fact, equality holds, since the reverse

inequality is plain. Hence T is distance preserving. The definition of T is such
that the only possible fixed point would be zero. But 0 /∈ C and we arrive at a
contradiction. �

THEOREM 2.1. For a separable C∗-algebra the following are equivalent:
(i) The spectrum Â is discrete.

(ii) A∗ has the weak∗ fixed point property.
(iii) A∗ has the weak∗ fixed point property for left reversible semigroups.

P r o o f. We assume thatA∗ has the weak∗ fixed point property. If Â is not dis-
crete, then there is some point π0 ∈ Â which is in the closure of some set M ⊂ Â
not containing π0. Because of the last proposition M must be infinite. So, since
A is separable, for any state φ0 associated with π0 there is a sequence of states
(φn) associated with pairwise non-equivalent representations πn with φn → φ0

weakly∗. By [7], Lemma 4.2, the support projections in the universal represen-
tation of A are mutually orthogonal. As in the proof of Proposition 2.2 the set

1From the context there, one sees that there it is assumed that every ∗-representation of the
C∗-algebra in question decomposes into a direct Hilbert sum of irreducible representations.
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C =
{∑∞

0 αiφi : αi ­ 0,
∑
αi = 1

}
is convex and weak∗ compact. The map

T : C → C defined like there is well defined and isometric because of the orthog-
onality of the supports, and it has no fixed point in C. See also [7], Theorem 4.5.
So Â must be discrete.

Conversely, if A has a discrete spectrum, then the Jacobson topology on its
set of primitive ideals is also discrete. By [5], 10.10.6 (a), A is a c0-direct sum of
C∗-algebras with one-point spectrum. Since A is separable, all these algebras are
also separable (the sum is on a countable index set of course), and hence each of
them is isomorphic to an algebra of compact operators on some Hilbert space (of
at most countable dimension), see [5], 4.7.3. By [26], Corollary 3.7, A∗ has the
weak∗ fixed point property for left reversible semigroups. By specialisation, the
weak∗ fixed point property for single non-expansive mappings follows. �

REMARK 2.2. If one enriches the ZFC set theory with the diamond axiom,
then there is a non-separable C∗-algebra with discrete spectrum, whose Banach
space dual does not have the weak (and a fortiori not the weak∗) fixed point prop-
erty.

P r o o f. The C∗-algebra A constructed by Akemann and Weaver [1] is not a
type IC∗-algebra, but it has a one-point spectrum. It follows thatA∗∗ is not a type I
von Neumann algebra (see [25], 6.8.8). By Lemma 2.1 we obtain our assertion. �

3. UNIFORM WEAK∗ KADEC-KLEE

Let K ⊂ E be a closed convex bounded subset of a Banach space E. A point
x ∈ K is a diametral point if sup{∥x− y∥ : y ∈ K} = diam(K). The set K is
said to have normal structure if every convex non-trivial (i.e. containing at least
two different points) subset H ⊂ K contains a non-diametral point of H .

A Banach space has weak normal structure if every convex weakly compact
subset has normal structure, and similarly a dual Banach space has weak∗ normal
structure if every convex weakly∗ compact subset has normal structure.

A dual Banach space E is said to have the weak∗ Kadec-Klee property (KK∗)
if weak∗ and norm convergence coincide on sequences of its unit sphere.

DEFINITION 3.1. A dual Banach space E is said to have the uniform weak∗

Kadec-Klee property (UKK∗) if for ϵ > 0 there is 0 < δ < 1 such that for any sub-
set C of its closed unit ball containing an infinite sequence (xi)i∈N with separation
sep

(
(xi)i

)
:= inf{∥xi − xj∥ : i ̸= j} > ϵ, there is an x in the weak∗-closure of C

with ∥x∥ < δ.

For a discussion of these and similar properties we refer the interested reader
to [17]. The following proposition is known, but we could not find a valid reference.
So, for the reader’s convenience, we give a proof.
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PROPOSITION 3.1. Let E be a dual Banach space.
(i) The uniform weak∗ Kadec-Klee property implies the weak∗ Kadec-Klee

property.
(ii) If E is the dual of a separable Banach space E∗ and has the uniform

weak∗ Kadec-Klee property, then the weak∗ topology and the norm topology coin-
cide on the unit sphere of E.

P r o o f. To prove (i) assume that ∥xn∥ = 1, xn → x weakly∗ and ∥x∥ = 1.
If {xn : n ∈ N} is relatively norm compact then the only norm accumulation point
has to be x, since the norm topology is finer than the weak∗ topology, and a sub-
sequence has to converge in norm to x. Hence we assume that {xn : n ∈ N} is not
relatively compact in the norm topology and shall derive a contradiction. Because
{xn : n ∈ N} is not totally bounded, by induction, we obtain a subsequence (xnk

)k
with sep

(
(xnk

)k
)
> 0. By the UKK∗ property there is δ < 1 and a weak∗ accumu-

lation point y of (xn)n with ∥y∥ < δ < 1. Since every weak∗ neighbourhood of y
contains infinitely many xn, it follows that y = x. This contradicts ∥x∥ = 1.

Now (ii) follows since in this case the weak∗ topology on the unit sphere of E
is metrisable. �

THEOREM 3.1. For a separable C∗-algebra A the following are equivalent:
(i) The spectrum Â is discrete.

(ii) The Banach space dual A∗ has the UKK∗ property.
(iii) On the unit sphere of A∗ the weak∗ and the norm topology coincide.
(iv) On the set of states S(A) of A the weak∗ and the norm topology coin-

cide.
(v) On the set of pure states P(A) of A the weak∗ and the norm topology

coincide.
(vi) A∗ has weak∗ normal structure.

(vii) A∗ has the weak∗ fixed point property for non-expansive mappings.
(viii) A∗ has the weak∗ fixed point property for left reversible semigroups.

REMARK 3.1. The C∗-algebras fulfilling the equivalent conditions of the the-
orem are just the separable dual C∗-algebras (see [28], p. 157, for the definition).
This follows from the fact that separable dualC∗-algebras are characterised by the
property that their spectrum is discrete (see [5], 9.5.3 and 10.10.6; see also [13],
p. 706).

P r o o f o f T h e o r e m 3.1. Assume (i). Then, as in the proof of Theo-
rem 2.1,A∗ is a countable l1-direct sum of trace class operators in canonical duality
to the corresponding c0-direct sum of compact operators. Moreover, considering
A∗ as block diagonal trace class operators on the Hilbert space direct sum of the



C∗-algebras and weak∗ fixed point property 239

underlying Hilbert spaces gives an isometric embedding of A∗ in the trace class
operators on this direct sum Hilbert space. The image is closed in the weak∗ topol-
ogy and we obtain the UKK∗ property of A∗ from the UKK∗ property of the trace
class operators [20].

Now (ii) implies (iii) by Proposition 3.1 above. Clearly, (iii) implies (iv) and
the latter implies (v) by restriction. So the first part of our proof will be finished
by proving the implication (v)⇒(i). We adapt the proof of Lemma 3.7 in [4] to
our context. For φ ∈ S(A) denote by πφ the representation of A obtained from
the GNS construction. Here extreme points yield irreducible representations and
conversely a representative of any element of Â can be obtained in this way. More-
over, if P(A) is endowed with the weak∗ topology then the mapping q : φ→ πφ
is open ([5], Theorem 3.4.11). By [11], Corollary 10.3.8, for φ,ψ ∈ P(A) the rep-
resentations πφ and πψ are equivalent if ∥φ− ψ∥ < 2 (see also [10], Corollary 9).
Hence, assuming (v), we see that the (norm open) set {ψ ∈ P(A) : ∥φ− ψ∥ < 2}
is a weak∗ open neighbourhood of φ in P(A). Its image under q is open but just
reduces to the point πφ. This shows that points in Â are open.

Now (ii)⇒(vi) is proved in [17], (vi)⇒(vii) is proved in [21], [12] (see also [6]).
The implication (vii)⇒(i) holds true by Theorem 2.1. From this theorem we have
also (viii)⇔(i). �

REMARK 3.2. Each of the following conditions implies (i)–(viii) above and,
if A is the group C∗-algebra of a locally compact group G, is equivalent to them.
(See [7], Section 5, for the definitions involved.)

(ix) A∗ has the limsup property.
(x) A∗ has the asymptotic centre property.

Under the assumption of separability it is shown in [18], Theorem 4.1, that
the limsup property implies the asymptotic centre property. From this in turn
the weak∗ fixed point property for left reversible semigroups follows ([18], Theo-
rem 4.2). Without the separability these implications hold equally true, see [7].

REMARK 3.3. It is proved in [16], Theorem 5, that the limsup property,which
is equivalent to Lim’s condition considered there, is not fulfilled in the space of
trace class operators of an infinite-dimensional Hilbert spaceH . So forA = K(H)
the limsup property for A∗ is not satisfied, and hence not equivalent to (i)–(viii)
above. It seems unlikely that the asymptotic centre property holds true in this case.
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