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Abstract. Recently, Pfaffel and Schlemm have investigated the Mar-
chenko–Pastur type limit (n→∞ and limn→∞n/p = λ > 0) of the sam-
ple covariance matrix p−1Xn

tXn, where Xn is the p× n random matrix
with dependence such that each row of Xn is given by a certain linear pro-
cess. They have also determined the limit spectral measure by giving the
functional equation for its Stieltjes transform.

In this paper, we will see that such a limit spectral measure is a com-
pound free Poisson law and, in the case where dependence is given by MA
modeled Gaussian process, the sample covariance matrix can be regarded as
compound Wishart matrix and, hence, gives the random matrix model for a
compound free Poisson law. We will also give an application of compound
Wishart matrix to the statistical data analysis of times series.
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1. INTRODUCTION

Assume that {Xi,j} (i = 1, 2, . . . , p; j = 1, 2, . . . , n) is the family of indepen-
dent random variables with common mean and unit variance. Let Xn = (Xi,j)p×n
be a random matrix and we put the p× p symmetric matrix as W n = p−1Xn

tXn,
which is called the sample covariance matrix of the sample size n of p-dimensional
data {Xi,j}. The spectral analysis of the sample covariance matrix W n has been
studied since the work of Marchenko and Pastur [6] was appeared. The main prob-
lems in the spectral analysis of large dimensional random matrices (the major
monograph in this topic is [1] by Bai and Silverstein) are to investigate the em-
pirical spectral measure µWn of W n defined by

µWn(dx) =
1

p

p∑
i=1

δλi
(x),

where λ1, λ2, . . . , λn denote the eigenvalues of the sample covariance matrixW n,
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and to determine the limit spectral measure as n→∞. Here in the limit n→∞,
we assume that the dimension p is of the same order as the sample size n, that is,
p = pn →∞ such that limn→∞n/p = λ ∈ (0,∞).

The empirical spectral measure of Gaussian sample covariance matrix was
first calculated by Wishart in [18]. Hence the above sample covariance matrix of
independent Gaussian random variables {Xi,j} is called the Wishart matrix.

A few decades later, Marchenko and Pastur [6] considered the case where the
random variables {Xi,j} are (not restricted to Gaussians but more general) inde-
pendently identically distributed with finite second moment. Under weak condi-
tions on {Xi,j}, it was shown by Silverstein [11] that the empirical spectral mea-
sure of the sample covariance matrix W n converges almost surely, as n→∞ and
n/p→ λ > 0, to the compactly supported probability measure µMP given by

µMP(dx) =
1

2πx

√
−(x− λ−)(x− λ+)χ[λ−,λ+](x) dx+max{0, 1− λ} δ0(x),

where χI is the indicator function for the interval I and δ0 denotes the Dirac unit
mass at zero. In this formula, λ± =

(
1 ±
√
λ
)2 and there is point mass at zero if

λ < 1. The limit spectral measure µMP is called the Marchenko–Pastur law.
Recently, Pfaffel and Schlemm [9] have investigated the Marchenko–Pastur

type limit of the sample covariance matrix W n in the case where there is depen-
dence in the rows of Xn. Especially, they have treated the case where the ith row
of Xn is given by a linear process of the form

(Xi,j)
n
j=1 =

( ∞∑
ℓ=0

cℓZi,j−ℓ
)n
j=1

, cℓ ∈ R.

Here, in the paper [9], the set {Zi,j} is given as the family of independent stan-
dardized (mean zero and variance one) random variables with uniformly bounded
fourth moment and the Lindeberg-type condition. Later in this paper, we will as-
sume {Zi,j} to be the set of independent standard Gaussians, which corresponds
to the case where each row of the data matrix Xn is given as an MA (moving
average) modeled Gaussian process.

It has been shown by Pfaffel and Schlemm [9] that when n → ∞ and
limn→∞n/p = λ, the empirical spectral measure of the sample covariance ma-
trix W n converges almost surely to the compactly supported probability measure
µ, and they have derived the exact formula of non-linear equation for the Stieltjes
transform mµ(z) of the measure µ. Here the Stieltjes transform of µ is defined by

mµ(z) =
∫ 1

x− z
µ(dx) for all z ∈ C+.

Moreover it might be worth to note that Xie [19] extends the results of Pfaffel and
Schlemm in [9] to the case where λ = 0 is allowed.

The theory of free probability initiated by Voiculescu (see, for instance, [17],
[16], [4]) gives the powerful tools for random matrices. For instance, the asymp-
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totic freeness of independent random matrices well helps us to calculate the limit
spectral measures for the sum and the product of random matrices by using the free
additive [14] and multiplicative [15] convolutions, respectively.

The Marchenko–Pastur law can be regarded as the free analogue of Poisson
law because it is characterized by the property that it has the constant (= λ) free cu-
mulant of all orders. Furthermore, the free analogue of Lévy–Khintchine formula
will allow us to consider the compound free Poisson laws (see [7], [4]), which is
the free counterpart of the classical notion of compound Poisson. We should note,
however, that in the classical probability the compound Poisson laws can rely on
more general measures (see, for instance, [10], Definition 4.1).

In this paper, we shall see that the limit spectral measure of the sample covari-
ance matrix obtained in [9] is given as the compound free Poisson law. We shall
also make a suggestion that it can be applied to the statistical data analysis of time
series.

Each section is constituted as follows. In Section 2, we shall first give the ran-
dom matrix models for compound free Poisson laws related to symmetric Toeplitz
matrices, and as the special case of this result we will see that the limit spectral
measures of the sample covariance matrices derived in [9] are given as compound
free Poisson laws in the case of Gaussians. We also see the random matrix model
for the compound free Poisson of k-point discrete probability measures on R by
our model of compound Wishart matrix. In Section 3, we shall show an application
of the result in the previous section to the time series analysis, especially to MA
models. Namely, by using the relation between the free cumulants of a compound
free Poisson law and the moments of the compounding law, we will introduce cri-
teria for the goodness of the estimated parameters in an MA model.

2. RANDOM MATRIX MODEL FOR COMPOUND FREE POISSON LAWS

We shall begin this section with recalling the definition and some properties
of the free cumulants of compound free Poisson laws.

DEFINITION 2.1. The notion of free Poisson law can be generalized in the
following way (see [4], [7]). For any compactly supported probability measure ρ
on R and λ > 0, we put

R(z) = λ
∫ x

1− xz
dρ(x).

Then, by the free analogue of Lévy–Khintchine formula for the �-infinite divis-
ibility [17], it can be found that there exists a compactly supported probability
measure µ on R such that its R-transform satisfies R(z) = Rµ(z). Such a mea-
sure µ is called a compound free Poisson law and we denote it by π(ρ, λ). When
dρ(x) = δ1(x) (Dirac point mass at one), the corresponding compound free Pois-
son law is, of course, reduced to the free Poisson (Marchenko–Pastur).
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REMARK 2.1. Let ρ be a compactly supported probability measure on R and
denote its moment generating function by

Mρ(z) =
∞∑
k=0

mk(ρ) z
k,

where mk(ρ) stands for the kth moment of ρ. Then it can be seen (see, for instance,
[4]) that the compound free Poisson law µ = π(ρ, λ) is �-infinitely divisible and
its R-transform Rµ(z) satisfies the relation

zRµ(z) = λ
(
Mρ(z)− 1

)
,

that is, the kth free cumulant rk(µ) of µ is given by λmk(ρ).

Let X(n) be the p× n random matrix such that the ith row of X(n) is given
by an MA-modeled Gaussian process of the form

(2.1) (Xi,j)
n
j=1 =

( ∞∑
ℓ=0

cℓZi,j−ℓ
)n
j=1

, cℓ ∈ R,

where {Zi,j}i,j is a family of independent standard Gaussian random variables.
It has been shown in [9] that when n → ∞ and limn→∞n/p = λ, the em-

pirical spectral measure µn of the sample covariance matrix p−1X(n)tX(n) con-
verges almost surely to the compactly supported probability measure µ which is
determined by the requirement that its Stieltjes transform mµ(z) satisfies the func-
tional equation

(2.2)
1

mµ(z)
= −z + λ

∫ x

1 + xmµ(z)
dρ(x).

Here ρ is the compactly supported probability measure given as the weak limit as
n→∞ of the spectral measure of the n× n Toeplitz matrix

(
γ(i− j)

)n
i,j

, where
γ(h) is the autocovariance function of the MA model (2.1) given by

(2.3) γ(h) =
∞∑
j=0

cjcj+|h|.

As we have mentioned, we will give an interpretation of the equation (2.2)
in the frame of free probability in this section. For this purpose, we shall see the
following proposition which gives the random matrix model for a compound free
Poisson law.

Let Z(n) be a p× n random matrix of independent standard Gaussian random
variables. We consider an n× n symmetric Toeplitz matrix Γ(n) = (γij)

n
i,j , where

γij = r|i−j| for some real sequence {rk}k­0, and assume that it has the weak limit
spectral measure ρ as n → ∞. The conditions for the convergence of spectra of
symmetric Toeplitz matrices related to orthogonal polynomials can be found in
[3], Chapter 6, and see [5] for the theorem of Kac, Murdock, and Szegö on spectral
measures of Hermitian Toeplitz matrices (see also, for instance, [13]).
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PROPOSITION 2.1. Assume that Z(n) and Γ(n) are as above. Then in the
limit n → ∞ and limn→∞n/p = λ > 0, the almost sure limit of the empirical
spectral measure of

(2.4)
1

p
Z(n)Γ(n) tZ(n)

is given by the compound free Poisson law π(ρ, λ).

P r o o f. The symmetric Toeplitz matrix Γ(n) can be diagonalized by an or-
thogonal matrix P (n) as D(n) = tP (n)Γ(n)P (n), where D(n) is a diagonal
matrix of dimension n.

Since an orthogonal transformation on a system of independent standard Gaus-
sian random variables preserves independence and standard Gaussianity, the prod-
uct Z̃(n) = Z(n)P (n) yields a p × n random matrix of independent standard
Gaussians again. Hence the random matrix in (2.4) becomes the compound Wishart
matrix in [4], Section 4.4. Then the proof is an application of Proposition 4.4.11 in
[4] to the case where Z(n) = p−1/2Z̃(n) and B(n) = D(n). �

Here we briefly recall the proof of the main results in Pfaffel and Schlemm [9].
In their proof, they first dealt with the truncated process

X̃i,j =
n∑

ℓ=0

cℓZi,j−ℓ,

and considered the p × n matrix X̃(n) = (X̃i,j), i = 1, . . . , p, j = 1, . . . , n. An
important observation is the decomposition X̃(n) = Z(n)H(n), where Z(n) =
(Zi,j) is the p × 2n matrix of independent standard Gaussians and H(n) is the
2n× n deterministic (non-random) matrix given by

H(n) =



cn 0 · · · 0

cn−1 cn
. . .

...
...

. . . 0
c1 cn
c0 c1 · · · cn−1
0 c0 cn−2
...

. . . . . .
...

0 · · · 0 c0


∈ R2n×n.

Hence X̃(n) tX̃(n) can be reformulated as

X̃(n) tX̃(n) = Z(n)H(n) tH(n) tZ(n).
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Pfaffel and Schlemm [9] have shown that the spectral measure of the 2n × 2n
matrix H(n) tH(n) weakly converges, as n→∞, to

1

2
δ0 +

1

2
ρ,

where ρ is the weak limit of the spectral measure of the symmetric Toeplitz matrix
Γ(n) =

(
γ(i− j)

)n
i,j

with the autocovariance function γ(h) defined by (2.3).
The rigorous proof of this fact takes many pages, but we can expect it by the

following observation: Since the rank of the 2n × 2n matrix H(n) tH(n) is at
most n, a half of eigenvalues of the matrix H(n) tH(n) must be zero for any n.
Because the n× n matrices tH(n)H(n) and Γ(n) are asymptotically the same in
elementwise operations and the set of the non-trivial eigenvalues of H(n) tH(n)
coincides with that of tH(n)H(n), hence the weak limit of the spectral measure
of the 2n × 2n matrix H(n) tH(n) has the point mass at zero with weight 1/2
and the half-weighted measure of ρ.

Then Pfaffel and Schlemm [9] have applied the formula (1.2) in [8] to the case
where the p× 2n matrix Xn = Z(n), the 2n× 2n matrix Tn = H(n) tH(n), and
An = 0 (zero matrix), and derived the functional equation (2.2) for the Stieltjes
transform of the limit spectral measure µ of the sample covariance matrix.

Although they derived the equation (2.2) in the above manner, in the case of
Gaussians, we can infer simply by Proposition 2.1 that the measure µ can be given
as the compound free Poisson. Namely, with the above observation on the relation
between the Toeplitz matrix Γ(n) and tH(n)H(n) in our mind, we obtain the
following theorem:

THEOREM 2.1. Let X(n) be the p × n random matrix defined by (2.1), and
let γ(h) be the autocovariance function as in (2.3). We assume that the spectral
measure of the symmetric Toeplitz matrix Γ(n) =

(
γ(i− j)

)n
i,j

converges weakly,
as n→∞, to ρ.

Then in the limit n → ∞ and limn→∞p/n = λ > 0, the empirical spectral
measure of p−1X(n)tX(n) converges almost surely to the compound free Poisson
law π(ρ, λ).

REMARK 2.2. We should also note that the functional equation (2.2) for the
Stieltjes transform of the limit spectral measure µ of the sample covariance matrix
yields the equation for the free cumulant series (Voiculescu’s R-transform) of µ
for the compound free Poisson as follows:

For a compactly supported probability measure µ on R, the Cauchy transform
Gµ(z) of µ is given by

Gµ(z) =
∫ 1

z − x
µ(dx).

Then Voiculescu’s R-transform (the free cumulant series) Rµ(z) of µ is related to
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the Cauchy transform Gµ(z) by the functional equation

Gµ

(
Rµ(z) +

1

z

)
= z.

Since the Cauchy transform Gµ(z) is the opposite signature of the Stieltjes
transform mµ(z), that is, mµ(z) = −Gµ(z), and the inverse function G−1µ (z) is
given by Rµ(z) + 1/z, one can easily find that the inverse of the Stieltjes transform
is given by

m−1µ (z) = Rµ(−z)−
1

z
.

Using this fact, we invert the function mµ(z) in the functional equation (2.2). Then
it follows that

1

z
= −

(
Rµ(−z)−

1

z

)
+ λ

∫ x

1 + x z
ρ(dx).

Replacing the variable z with −z we obtain

Rµ(z) = λ
∫ x

1− x z
dρ(x),

which means that µ is the compound free Poisson law π(ρ, λ) by Definition 2.1.

The explicit formula of the limit spectral measure of Γ(n) =
(
γ(i− j)

)n
i,j

has
been also investigated in [9], which is formulated in terms of the Fourier transform
of the autocovariance function γ(h) (the spectral density of the process),

(2.5) f(ω) =
∑
h∈Z

γ(h)e−
√
−1hω.

Namely, they have written the functional equation for the Stieltjes transform of the
limit spectral measure µ by using the function f(ω).

REMARK 2.3. The assumptions in [7] cover only two special cases of the limit
spectral measure of ρ with smooth spectral density and ρ with piecewise constant
spectral density mentioned in Lemma 2.1 below.

In the case of Gaussians, however, our model of a compound Wishart matrix
in Proposition 2.1 can relax the assumptions on the spectral density.

LEMMA 2.1. If the Fourier transform f(ω) of the autocovariance function
γ(h) is given by the piecewise constant function on [0, 2π] of the form

f(ω) =
k∑

j=1

αj IAj (ω)
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for some positive real numbers αj and a measurable partition

[0, 2π] = A1∪A2∪ . . .∪Ak, k ∈ N,

then the empirical spectral measure µn of p−1X(n)tX(n) converges almost surely
to the compactly supported probability measure µ, as n→∞ and limn→∞n/p =
λ > 0, the Stieltjes transform mµ(z) of which satisfies the functional equation

(2.6)
1

mµ(z)
= −z + λ

2π

k∑
j=1

∣∣Aj

∣∣αj

1 + αjmµ(z)
,

where |Aj | denotes the Lebesgue measure of the set Aj .

In the same manner as we have shown in Remark 2.2, the functional equation
(2.6) can be reformulated as

Rµ(z) = λ
k∑

j=1

pj αj

1− αjz
,

where pj = |Aj |/(2π) (j = 1, 2, . . . , k), and hence
∑k

j=1 pj = 1. Namely, µ is
given as the compound free Poisson law π(ν, λ) of the positive real k-point mea-
sure ν of the form

(2.7) ν(dx) =
k∑

j=1

pj δαj (x),

where δαj stands for the Dirac unit mass at αj .
Now we shall see a slight extension as an application of the compound Wishart

matrix model of Proposition 2.1. In Lemma 2.1 the parameters αj (j = 1, 2, . . . , k)
are restricted to positive reals, our compound Wishart matrix model, however, can
extend to any reals.

Actually, given a k-point measure (2.7) with αj being possibly negative, we
make the piecewise constant function on [0, 2π] of the form

f(ω) =
k∑

j=1

αj IAj (ω),

where a measurable partition {Aj}kj=1 should be taken so that the function f(ω)
becomes an even function in periodic continuation to R, that is, f(ω + 2nπ) =
f(ω) for ω ∈ [0, 2π] and n ∈ Z. Then we calculate the inverse Fourier transform
of (2.5) to obtain the sequence {γ(h)}h∈Z, that is,

γ(h) =
1

2π

2π∫
0

f(ω)e
√
−1hω dω, h ∈ Z.
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The above choice of a measurable partition ensures that γ(−h) = γ(h), which
implies that Γ(n) is symmetric. Using this function γ, we construct the Toeplitz
matrix Γ(n) =

(
γ(i− j)

)n
i,j

. Then the compound Wishart matrix

1

p
Z(n)Γ(n) tZ(n)

gives a random matrix model for the compound free Poisson law of any real k-
point measure.

EXAMPLE 2.1. We consider the two-point measure ν,

ν(dx) =
1

2
δ−1(x) +

1

2
δ1(x),

and make the corresponding function f(ω), for instance, as

f(ω) =

{
1, ω ∈

[
0, π

2

]
∪
[
3π
2
, 2π

]
,

−1, ω ∈
[
π
2
, 3π

2

]
,

that is, the measurable partition of [0, 2π] is A1 =
[
0, π

2

]
∪
[
3π
2 , 2π

]
and A2 =[

π
2 ,

3π
2

]
, and |A1| = |A2| = π.

In this case, we obtain the sequence {γ(h)}h∈Z as

γ(h) =


(−1)m 2

(2m+ 1)π
, |h| = 2m+ 1,

0, |h| = 2m,m = 0, 1, 2, . . .

Namely,

γ(0) = 0, γ(±1) = 2

π
, γ(±2) = 0, γ(±3) = − 2

3π
,

γ(±4) = 0, γ(±5) = 2

5π
, . . . ,

and the n× n matrix Γ(n) becomes the following Toeplitz matrix:

Γ(n) =
2

π



0 1 0 − 1

3
0 · · ·

1 0 1 0 − 1

3

. . . ...
0 1 0 1 0 0

− 1

3
0 1 0 1

. . . − 1

3

0 − 1

3
0 1 0 0

...
. . . . . . . . . 1

· · · 0 − 1

3
0 1 0





n.

︸ ︷︷ ︸
n
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REMARK 2.4. The compound free Poisson law π(ν, λ) of the two-point mea-
sure ν in Example 2.1 is known as the free Bessel law of the parameter s = 2 and
t = λ. The free Bessel laws have been deeply investigated by Banica et al. [2],
where they have also given another random matrix model for the free Bessel laws
in case of t = 1.

3. AN APPLICATION TO TIME SERIES ANALYSIS

In this section, we shall show an application of Theorem 2.1 related with the
compound free Poisson law, which is devoted to the statistical data analysis of time
series. Namely, we shall give criteria of the goodness of the estimated parameters
in an MA model.

For a given stationary time series {xj}Nj=1, we shall approximate it by an MA
model,

(3.1) Xj = c0 Zj + c1 Zj−1 + c2 Zj−2 + . . .+ cq Zj−q,

where {Zj} is the family of independent standard Gaussian random variables and
q ∈ N is the order of the MA model. That is, we shall regard the time series data
{xj} as a sample path of the MA process {Xj} in (3.1).

At first, we construct the p× n matrix x from given data {xj} such that

x = (ξij), with ξi,j = x(i−1)n+j and pn ¬ N.

In this construction, the bigger sizes of p and n are the better, and the closer to the
square ratio (p = n) is also the more acceptable.

We calculate the first few (for instance, five) moments {mk} of the covariance
matrix p−1xtx, that is,

mk =
1

p
Tr

(
(p−1xtx)k

)
.

Then we calculate the first few free cumulants {rk} from the moments calculated
above by using the free cumulant-moment formula (see, for instance, [12]):

r1 = m1,

r2 = m2 −m2
1,

r3 = m3 − 3m1m2 + 2m3
1,

r4 = m4 − 4m1m3 − 2m2
2 + 10m2

1m2 − 5m4
1,

r5 = m5 − 5m1m4 − 5m2m3 + 15m2
1m3 + 15m1m

2
2 − 35m3

1m2 + 14m5
1,

where, of course, the first k moments can produce the first k free cumulants.
Next we shall make the Toeplitz matrix γ =

(
γ(i− j)

)
i,j

based on the auto-
covariance function of the MA model in (3.1), that is,

γ(h) =
q∑

j=0

cjcj+|h|.
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Here we should note that the size of the matrix γ can be taken as large as we want
because the matrix γ depends only on the autocovariance function. Then we shall
also calculate the first few moments m̃k of the matrix γ.

As we have mentioned in the previous section about the random matrix model
related with the compound free Poisson law, if a given time series {xi} is well-
approximated by the MA model (3.1), in other words, the MA parameters {cℓ}qℓ=0
are well-estimated from the data {xi}, then the kth free cumulant rk of the covari-
ance matrix p−1xtx and the kth moment m̃k of the Toeplitz matrix γ constituted
from the MA parameters should satisfy

(3.2)
rk

λ m̃k
≈ 1, k = 1, 2, . . . ,

for large p and n, where λ = n/p. Now we will use the approximations (3.2) as
criteria for the goodness of the estimated parameters for an MA model.

EXAMPLE 3.1. We shall here illustrate an example numerically by simulated
data. We consider the following MA model of order five:

(3.3) Xi = 1.0Zi − 0.3Zi−1 − 0.5Zi−2 + 0.7Zi−3 + 0.3Zi−4 − 0.5Zi−5.

According to this model, the simulated time series data of length 40,000 is gener-
ated numerically. Then we make the p× n = 200× 200 data matrix x and calcu-
late the first five free cumulants of the covariance matrix p−1xtx.

k 1 2 3 4 5
rk 2.15 10.25 61.10 400.07 2771.64

On the other hand, based on the MA parameters c0 = 1.0, c1 = −0.3, c2 =
−0.5, c3 = 0.7, c4 = 0.3, c5 = −0.5, we make the parameter matrix γ and also
numerically calculate the first five moments of γ. In this example, we take the size
of the matrix γ as 500× 500.

k 1 2 3 4 5
m̃k 2.17 10.38 60.44 374.48 2392.61

Since λ = n/p = 1, we obtain the following table of the approximations:

k 1 2 3 4 5
rk/(λm̃k) 0.9914 0.9875 1.0107 1.0683 1.1584

REMARK 3.1. Since the parameter matrix γ depends only on the autocovari-
ance function, the above criteria can be extended to AR and ARMA models without
any change.
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