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Abstract. Let w € SN \ N be a free ultrafilter on N. It is known that
there is a difficulty in constructing the ultrapower of unbounded operators.
Krupa and Zawisza gave a rigorous definition of the ultrapower A, of a
self-adjoint operator A. In this note, we give an alternative description of
A and the Hilbert space H(A) on which A, is densely defined. This
provides a criterion to determine a representing sequence (£, )r of a given
vector £ € dom(A. ) which has the property that A€ = (A&n)w holds. An
explicit core for A, is also described.
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1. INTRODUCTION

Throughout the paper, we fix a free ultrafilter w on N and a separable infinite-
dimensional Hilbert space H. We denote by B(H) the algebra of all bounded
operators in H. Let H,, be the Hilbert space ultraproduct of H. Each bounded
sequence (an)n, C B(H) of bounded operators in H defines a bounded operator
(an)w € B(H), called the ultraproduct of (ay,)n, by the formula

(an)w(gn)w = (angn)wa (gn)w c Hw-

The ultrapower (or, more generally, the ultraproduct) of a sequence of bounded
operators has been used as an efficient tool for the analysis on Hilbert spaces. In
view of its usefullness, it is natural to consider a corresponding notion of ultra-
power A,, for an unbounded self-adjoint operator A. However, there arise essential
difficulties in connection with the following issues:

(1) definition of the domain dom(A,,) of A,;

(2) self-adjointness of A,;

(3) interpretation of A, (&,)w = (A&y)w for & = (§,)w € dom(A,).
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Regarding (1), it does not make sense to define dom(A,) to be the sub-
space dom(A),, of all £ € H,, which is represented by a sequence (&,),, where
&n € dom(A) for all n, because dom(A) , is simply the whole H,, and A, (&), =
(A&,)., is not well-defined. Importance of the question (2) should be clear. The
problem (3) is probably the most delicate. Even if we could manage to define
dom(A,) and suppose £ € dom(A,,) is represented by (&), with &, € dom(A)
for all n, it might be the case where there exists another (£/,);,, which also repre-
sents £ (i.e., limy, ., ||&, — &,,|| = 0 holds), and &/, € dom(A) for all n holds as
well, and yet (A&,), # (AE))o.

EXAMPLE 1.1. Let A be a self-adjoint operator and assume that there is an
orthonormal base {n,, } "> ; of H consisting of eigenvectors of A with An,, = nn,,,
n > 1. Letn € dom(A), and consider two sequences

1
En =, 57/1 ::77+E77n (n> 1)-

Then it is clear that &,, &), € dom(A), that (§,)n, (§,)r define the same element
£=(&)w = (fg)w € H,, but

lim || A&, — AZ, | = lim [l7a]l =1 £0,

whence (A4¢&,)w # (AE],)w.. Should we define A& = (A,), or A€ = (AE),)w?

Despite the above difficulty, Krupa and Zawisza [3], [24] gave a rigorous defi-
nition of A,,, as well as interesting applications to Schrodinger operators. To define
dom(A,) in any sensible way, it is necessary to note that such a domain must be
in the subspace of Z4, given as the set of all £ € H,, which has a representing
sequence (&), of vectors from dom(A) such that (A¢&,,), is also norm-bounded.
We put H(A) = 9 4. We recall from [4] the notion of partial ultrapowers.

DEFINITION 1.1. Let H C H,, be a closed subspace. A densely defined op-
erator .o/ in H is called a partial ultrapower (p.u. for short) of A in H if for any
¢ € dom(«) there is (&), C dom(A) such that & = (&,),, and & = (A&,),-

One of the fundamental results of Krupa and Zawisza [8] is the following:

THEOREM 1.1. (1) There is a p.u. A, of A in H(A) satisfying dom(A,) =
D 4, uniquely determined by the property that for £ € P andn € H(A), A,E =1
if and only if there is a representative (&), C dom(A) of € satisfying (A&n)w = 1.

(2) Ay, is the maximal among all p.u.’s of A. That is, if & is a p.u. of A in'H,
then H C H(A) and & = Au|dom(s)-

(3) A, is self-adjoint in H(A). Moreover, (A, — i)~1 is the restriction of
((A- i)*l)w to H(A) and sp(A) = sp(A) holds.

Note that in (1), the uniqueness of 7 is guaranteed by the condition € H(A).
Indeed, in Example [T, (AE,), € H(A), while (AE),)., ¢ H(A) (see Remark B
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below). Despite their success, what seems to be unsatisfactory is that there is no a
priori criterion for a given £ € %4 to choose an appropriate representative (&),
such that (A¢,,), is well-defined and is in H(A). Whether a chosen representa-
tive is indeed appropriate or not can be seen only after applying A and knowing
that the resulting vector is in the closure of Z4. In this short note, we give an al-
ternative characterization of such an appropriate sequence, which will be called
a proper A-sequence, and give a new description of A, in terms of an auxil-
iary operator A, by checking the validity of the equality A, = A,. More pre-
cisely, we show that a bounded sequence (&), of vectors from dom(A) has a
property that A, (&), = (A&y), if and only if (A&, ), is bounded and, for ev-
ery € > 0, there is a > 0, (9n)n € (N, H) with 1, € 1|_4 4 (A)H for each
n € N, such that lim,,_, [|£, — mnljla < e. (]| - |4 is the graph norm.) Moreover,
a bounded sequence (&, ), defines an element in H (A) if and only if the family of
maps {f,, : R — H}°2 | givenby f,(t) = €€, is w-equicontinuous (see Defini-
tion Bl). We believe that this description will make Krupa—Zawisza analyses more
accessible and give a new insight into them.

2. PRELIMINARIES

Let ¢>°(N, H) be the space of all bounded sequences in H. The ultrapower H,,
of H is defined by H,, = ¢>°(N, H)/7,,, where 7, is the subspace of (*°(N, H)
consisting of sequences tending to zero in norm along w. The canonical image
of (&,)n € ¢>°(N, H) is written as ()., and H,, is again a Hilbert space (non-
separable in general) by the inner product

<f>77> = Ai_r)rgu<fn777n>v § = (gn)wv n= (nn)w € H,.

We identify £ € H with its canonical image (£, &, ...), € H,, so that H is a closed
subspace of H,,. Let {a, }2°; be a sequence of bounded operators on H. We then
define a bounded operator (ay,,)., € B(H,,) by

(an)w(én)w = (@n€n)w,  (§n)w € He.

(an ). is well-defined by the above, and ||(ay,)y || = limy,—, ||ay|| holds. For a lin-
ear operator 7' on H, the domain of 7" is denoted by dom(7'). For £ € dom(T),
we denote by ||¢||7 the graph norm of T" given by (||€]|2 + || T€||?)/2. For details
about operator theory, see, e.g., [[7].

3. CONSTRUCTION OF A,

Let A be a self-adjoint operator on a separable Hilbert space H, and let u(t) =
eitA (t € R). We introduce several subspaces of H,,. First, we need to introduce
the notion of w-equicontinuity which has been used in the literature (see [], [5]).
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DEFINITION 3.1. Let (X1,d;), (X2,d2) be metric spaces. A family of maps
{fn: X1 — Xo}5° , is said to be w-equicontinuous if for every z € X and e > 0,
there exists 6 = 0, > 0and W € w such that for every 2’ € X with d(z,2’) < 0
and n € W, we have

dy (fn(x),fn(x’)) <e.

LEMMA 3.1. Let us assume that ({,,)n € ¢>°(N, H) is a sequence such that
{fn: t— g, o0 | is w-equicontinuous. Then t — (€A, is continuous.
Moreover, if (§},)n € £>°(N, H) satisfies limy,—, |6, — &, || = 0, then the sequence
{f! :t s AL 1 | is also w-equicontinuous.

Proof. Lett € R, and € > 0 be given. There exists § > 0 and W; € w such
that forany s € (t — §,¢ + &) and n € Wy we have ||e4¢, — e4¢,|| < /3. This
means that || (e?4¢,,),, — (€%4¢,)u|| < €/3, whence t — (e4E,),, is continuous.
By (&n)w = (&,)w, it follows that Ws := {n € N; ||§, — &,|| < £/3} € w. Then
fors e (t —d,t+6)andn € W := W, N Wy € w, we have

4], — g < [l (6, — &)l + ™ — e + €4 (€ — €0)]
<eE.
ii&A&/1

Therefore, {t — e o2 1 1s w-equicontinuous. m

DEFINITION 3.2. A vector § = (&n)w € H,, is called A-regular if the se-
quence {t — e4¢,}22 | is w-equicontinuous. By Lemma B, this notion does
not depend on the choice of the representing sequence (&, ).

DEFINITION 3.3. Under the above notation, we define the following:

(1) Let K(A) be the set of all A-regular vectors of H,,.

(2) Let dom(A,,) be the set of £ € K(A) for which lim;_o 3 (u(t), — 1)¢
exists.

LEMMA 3.2. K(A) is a closed subspace of H,, invariant under u(t),, for all
teR

Proof. Itis clear that K(A) is a subspace of H,, and that K(A) is u(t),-
invariant forall t € R.Let¢ = (£,) € K(A)ande > 0. There exists n = (1), €
K (A) such that || — n|| < /3. Let t € R. By the w-equicontinuity of {f,, : ¢ —
€4, 12 |, there exists 0 > 0 and W € w such that for each s € (t — 6,¢ + §)
and n € W1, we have ||, — e, || < ¢/3. Let Wy := {n € N; ||&, — nnl <
£/3} € w. Then, fors € (t —d,t +0) andn € W := W; N Wy € w, we have

le#4gn — el < 1€ (6n = na) | + e — e Aul| + [l (10 — &)l
<e.

Therefore, £ = (&), is A-regular, and { € K(A). =
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By Lemma B2, v(t) := u(t)w|x(4) is a continuous one-parameter unitary
group of K (A). Therefore, by Stone’s theorem, there exists a self-adjoint oper-
ator A,, with domain dom(A,,) such that

i A€ = %E}%%(U(t) - 1)5, e dom(gw).

In the sequel, we will show that A& = (AE,)., for appropriate (&, )n, representing

¢ € dom(A,,).

DEFINITION 3.4. Let A be a self-adjoint operator on H.

(1) A sequence (&), € (*°(N, H) is called an A-sequence if &, € dom(A)
for all n > N. We denote the space of A-sequences by (> (N, dom(A)).

(2) An A-sequence (&), is called proper if it satisfies the following con-
dition:

() For each € > 0, there exists a > 0 and an A-sequence (7,), with the
following properties:

(i) 7n € 1_q,q)(A)H foralln > 1.

(i) (A&y)n € £°(N, H), and lim,,_,, ||€, — mnlla < e

DEFINITION 3.5. As in [d], we let Z4 be the set of all £ € H,, which is
represented by an A-sequence (&, ), such that (AE, ), is bounded, and let H(A) =

24. We also define related subspaces: define Z4 to be the space of all £ € H,
which is represented by a proper A-sequence and also define % to be the set of
all § € H,, which has a representative (), satisfying &, € 1(_, 4 (A)H for all
n € N, where a > 0 is a constant independent of n.

It is clear that &, C @A C 9Dy.

The main result of the paper is that 4 = 2., K(A)=H(A), and A, =
A, = Aulg,.

In this section we will show that

THEOREM 3.1. dom(A,) = Pa C K(A), and Dy is a core for A,

We need several lemmata. The following lemma justifies the choice of proper
A-sequences to consider the ultrapower.

LEMMA 3.3. -@A C dom(gw), and for & € @A with a proper representative
(&n)n, we have

Avwg = (Agn)w
In particular, (A&y)w = (AE,)w if both (&n)n, (E),)n are proper A-sequences rep-
resenting the same vector £ € D 4.

Proof. We first show that Ds C K(A). Since K(A) is closed and every
element in %4 can be approximated by vectors of the form (7, )., where 7, €
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li_q,q)(A)H (n € N) for a fixed a > 0, it suffices to show that {t et An, 10
is w-equicontinuous for such (7,).. Let € > 0 and ¢t € R be given. Let A =
fR Ade(\) be the spectral resolution of A. We have

ey — "4, |1 = f\e (=92 — 112d]le(X)mn |
— 2f (1 — cos ((t — 3))\)>dHe()\)nnH2
R
< [ (=) 2dlle(A)mall?

[_ava}

< (t = 5)%a’||nal|*.

Therefore, let § > 0 be such that §%a® sup,,>; ||7n||* < 2. Then, for each n € N
and s € (t —4,t +9), le?*4n,, — e*4n,|| < e holds. Therefore (1, )., is A-regular
and 74 C K(A) holds.

Next, let ¢ := (iA&,).. We show that 1 (v(t)—1)¢ converges to ¢ as t — 0.
Let e > 0. We may find a > 0 and (7),,),, satisfying the conditions in (x) of Defini-
tion B4. Let n = (), Then we have

Hl(()—lé CH H () —1)(& - 77” H () = D)y — (iAna)e

t
+ [[(1AN0)w — (1A wl-

By the condition (x), the last term satisfies ||(iAny, ), — (1A&)w|| < &.
Now estimate the first term:

2

lim = f|e“fA 12d]le(N) (& — 1) II?

n—w t

im 5 [ EXAIe(3) &~ )l
= H(Agn)w - (A?]n)sz < 62.

Using nn, € 1j_qq)(A)H (n > 1), we then estimate the second term:

HECEES

t

N

2 a

2
|4 60~ 00— Gan. | = ] e

~on () (452 ) v

= lim [ F(t Nd]e(\)na |,

Tt
1
€ — A
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where

1 — cos(tA) sin(t\)
F(t,\) = \? <2 o 22—+ 1).

Therefore, for each ¢ with |t|a < 7/2, we have

in(t\
sup F(t,\) < 2a? sup <1 — sin )>
N<a N<a tA

sinx
=2a% sup <1 — )
|z|<[t|a z

= 242 <1 - Sii(a’fa)).

Consequently, for |t| < 7/(2a),

a a

in(t
i, (eI < gim, T 202 (1= 0 e
n—w n—w a

_ 942 (1 _ sin(ta)

) lom)ulP 0 ast .

Therefore we have

lim < 2e.
t—0

H(0t) ~ 1)n — iAn,).

Since € > 0 is arbitrary, the claim is proved. =

Now we show that the order of integration and ultralimit can be interchanged
for the w-equicontinuous family {F,,: R — H}>° ; under some additional condi-
tions.

LEMMA 3.4. Let F,, € C(R,H) N LY (R, H) (n € N) be a family of H-
valued w-equicontinuous maps satisfying the following two conditions:
(3.1) [sup |[Fa(t)|ldt < oo, sup||Fp(t)]| <oo (t€R).
R n=1 n>1
(3.2) lim lim [ ||Fu(t)[|dt = 0.

a—00 N—w R\[—a,a]

Then we have

(éFn(t)dt)w = % (Ful(t)),dt.

REMARK 3.1. Note that, by the w-equicontinuity of {F,,}72, t — (F,(t))
is continuous. In particular, it is measurable.

w
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Proof. By (B&), we have

a

[ (Fa(t)) dt = lim [ (F,(t)) dt.

a—00
R —

By (B22), we also have

([ Fu(t)dt) = lim (j F(t)dt)_

a—00
R

Therefore, we have only to show that [ (F,(t))_dt = ( [, F,(t)dt)_ for all
a > 0. By the w-equicontinuity of { F},}> , there exists a partition of the interval
[—a,a] suchthattg = —a < t; < t2 < ... <ty =a,and W € w so that for each
0<i<N-1,neW,and o, 8 € [t;, t;11], we have

[ Fn(a) = F(B)|| < €/4a.

This in particular implies that || (F,,(«v)) | — (Fn(8))_|| < £/4a. Therefore, by the
definition of the Riemann integral, we have

a

N-1
I ;) (tiv1 — i) Fu(ti) — [ Fa(t)dt|| <e/2  (neW),

—a
and

N-1 o
|5 i = ) (Fatt),, = [ (Falt) ]| < /2

Using (21{1_01(ti+1 — ti)Fn(ti))w = zg\;_ol(tzﬂrl — ti)(Fn(ti))wa we have
a

1T (Puo) e = (] Futtyir) | <=

—a
Since € > 0 is arbitrary, the claim is proved. =

LEMMA 3.5. Let £ = (&,)o € K(A) and let f € LY(R). Then we have
([ f®)e*euat) = [ (ft)e™&,), dt.
R R

Proof. Note that t — f(t)(e®4¢,),, is measurable thanks to Lemma 1.
Let C := sup,, ||&, || First assume that f € L'(R) N C(R). It suffices to show that
{F, : t — f(t)e4¢,}°%, is w-equicontinuous and satisfies the conditions (BT)
and (B22) in Lemma B3. It follows that sup,, [, || Fu(t)|ldt= [5 | f(#)]dt - [|€]| < oo,
supy, [[Fn(8)|] = | f(#)] < o0, and
lm lm [ [FOdi= lm [ (Bl €] = 0.

a—0o0 N—w

R\[—a,a] R\[—a,a]
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Therefore (B) and (B22) in Lemma B4 are satisfied. We show the w-equicontinuity
of {F,}5° . Suppose ¢ > 0 and ¢ € R are given. By the A-regularity of £ and
continuity of f, there exists 0 > 0 and W € w such that for each s € (t — 0,1+ 0)
and n € W, we have

9 9

[F(&) = F()] < 5oy

itA isA
_ < .
He bn = an 2 2(C +1)

2171 +1)’
Then it follows that
If (D46, — f(s)e A6l
<IF@O1- €4, — e 46all + 1£(2) = F(5)] -l 6all < /2 +2/2=.

Therefore { F},}°° ; is w-equicontinuous. By Lemma 34, the claim follows.
Next, suppose f € L'(R). Let ¢ > 0. There exists g € L'(R) N C(R) such
that || f — g|j1 < ¢/2(C + 1). Then we have

[f (&) — g(®)][[énlldt < e/2,
lg = fllv-[I€lF < /2,

w

1] (g 6n) ,dt = [ (FB)" 6n) |

R R

([ ft)e™endt — [ g(t)e™&,dt) || < lim
R R n—

N B

whence by applying the above argument for g we have

I() e endt),, = [ (F(t)e"6n) ]| < .
R

R

Since € > 0 is arbitrary, the claim is proved. =

LEMMA 3.6. dom(A,) = @A.

Proof. By Lemma B33, it suffices to show that dom(gg) C Da. Let e(-)

(resp. €(+)) be the spectral measure associated with A (resp. A,). We first show
the following:

CLAIM. For a given § € dom(A,) and € > 0, there exists a > 0 and (n,), €
€°(N, H) with the properties: 0, € 1_q q(A)H (n € N), | — (nn)w|l < €, and

ngg - (Ann)wH <e&.

Note that in general €(B) is not the ultrapower of e(B) for a Borel set B.
Therefore we need some extra work (cf. [[1], Section 4). As | 1{—q,q] (Aw) K (A)

is a core for A, there exists a > 0, 7 = (1,)w € Li—a/2,a/2) (A,)K (A) such that

|€ —n|| < eand ||Zw§ — A < e.Let f € L'(R) be a function with the follow-
ing properties: supp(f) C [—a,a], f = 1on[—a/2,a/2],0 < f(A\) <1 (X € R).
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Here, f(\) = fR e f(t)dt is the Fourier transform of f. For instance, one may
choose the de la Vallée-Poussin kernel D,, /2 (see [M], Definition 4.12). Let

f f ztA

Then we have (by the spectral condition of n and f = 1 on [—a/2, a/2])

0= fff Je'Ad(e(A)n)dt f(ff Je'dt)d(e(A)n)
:ff )d(e(A W)Zf(ﬁw)nzn'
R
Furthermore, by Lemma BS, we have

= (J IO mt), = (F(A)m),,

and 7, := f(A)n, € 1{_q,q)(A)H foreach n > 1. Therefore, (1}, )n is the required
sequence, as A,n = (An),), (cf. Lemma B3).

Assume now that £ € dom(A,,) with [|¢]| = 1. We show that £ € D, ie.,
it has a proper representative. Let € > 0. We use the following argument similar
to Lemma 3.9 (i) in [[I]. By the above Claim, for each k € N, put € = 2-Fk=1in
the above argument to find ax(< ag4+1 < aggo < ...) and (ngk))n € (*(N,H)
satisfying ngk) € 1—ayay)(A)H (n € N), and

1 ~ 1
€= 0P)ll < g 1~ (AgP)ll < sy (B EN).

Furthermore, we may assume Hnn )H < 2 for each n, k € N. Then for each k € N
we have

1 1
e = ll < 5p (AR — (A0l < o

[(n o

Let

1
Gui= {n € N It il < oo, Anf) - Pl < g} (k).

Then G, € w (k € N) holds, and since w is free, it follows that F}, := ﬂle GiN
{neN;n >k} € w (k € N). Since {F},}72, is decreasing with empty intersec-
tion, N = (N'\ Fy) U |72, (Fj \ Fj11). Then define (), b

. 2V (neN\ ),
" 777(1k) (nGFk\Fk+1).
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Then sup,,> [|n]| <2 < occ. Fixk > L.Ifn € Fj, = | |72, (F; \ Fj41), thereisa
unique j > k for which n € F}j \ Fj;1 holds, so that &, = nn ) Then we have

1
16n — 1) = 109 — ) < Z i =i < Z 2 < 9T

so that ', € w implies

1
I = @l < 3o (R EN).
Similarly,
1(A&)w — (Al < o1 (REN).
In particular, for each £ € N we have
1
1€ = (€n)sll < 11E = el + 108N = (En)sll < -

Letting kK — oo, we obtain £ = (&,,),,. We show that (&,),, is a proper A-sequence.
Suppose £ > 0 is given. Take k such that ¢ > 27%*1 and put a = aj, > 0,7, =
nﬁlk). Then, by construction, 7, € 1{_q q)(A)H (n € N), [[(§n)w — (M)l < &, and
II(A&)w — (Any)w|| < € holds. Therefore, changing &, to be zero if necessary for
n belonging to a set I with I ¢ w, we may assume that (A&, ), is bounded, and

(&n)n s a proper A-sequence. This completes the proof. m

LEMMA 3.7. Let ({n)n € ¢°(N,H) be a sequence such that £ = (&), €
K(A). Then (A —1)” le = (( i)_lfn) and (Ay, +1)~ le = ((A+i)_1§n)w.

Proof. Since v(t) = eitA = (e k() (t € R), by the resolvent formula
and Lemma B3, we have

(Zw i) le = fe_te_itg‘“gdt _ ife_t(e_itAﬁn)wdt
0

= (i

The latter identity follows similarly. m

o8 °

etem g, dt) = ((A—i)'&),

REMARK 3.2. Note that (A, — i) 6= (A i)*lﬁn)w holds even if (§n)n
is not proper. The only requirement is A-regularity: (&), € K(A).

We are now ready to prove Theorem Bl

Proof of Theorem Bl The assertion dom(ﬁw) = -@A is proved in
Lemma B6. Then, for every § € Z4 and € > 0, there exists n € % _such that
I€ —nll 7 < eholds (cf. Lemma B3). Therefore, A, is the closure of Ay[z,. =
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4. ALTERNATIVE DESCRIPTION OF A,

Now we are ready to show

THEOREM 4.1. Under the same notation as in Section 3, the following holds:

(1) K(A) = H(A),and A, = A. Moreover, 9 is a core for A,,.

(2) For a representative (&,)y, of & € dom(A,,), A& = (A&,)., holds if and
only if it is a proper A-sequence (see Definition B-4).

Proof. (1) By construction, it is clear that A,, is a p.u. of A in K (A) C H.,.
Therefore, by the maximality of A,,, Theorem T (2), K(A) C H(A) and A,, =
Awlk (a)- Consequently, if we show that K (A) = H(A), then A, = A, holds. To
show H(A) C K(A), suppose (&), is a representing sequence of £ € Z4 with
(A&,)n € £°°(N, H). We show that {f, : t — e®4¢,1°° | is w-equicontinuous.
Let C := sup,, || A&, ||. Then for ¢, s € R, as in the analysis in Section 3,
€46, — A, 2= [ 16 - i Pde(A)en < (¢ — 82| A&l <C2(t — 5)2

R
which tends to zero as (t — s) — 0 uniformly in n. Thus, we infer that { f,, }°° ; is
w-equicontinuous. Therefore Z4 C K (A), and taking the closure, H(A) C K(A)
holds. Consequently, H(A) = K (A). By Theorem B, Z is a core for A, = A,

(2) This follows from (1), Theorem BT, Lemma B, and a simple observa-
tion that if A,¢ = (A&, ). and if (&),),, is another proper A-sequence represent-
ing &, then for every € > 0 there is @ > 0 and an A-sequence (7,), with 7, €
1i_q,q)(A)H (n € N) such that limy, ., [|£, — 1nlla = limp o [|€], — mlla <,
so that (&, )y is proper as well. =

REMARK 4.1. Finally, let us return to Example 1. We note that (&), is
proper, while (&), is not. The first claim is obvious. For the latter, if it
were proper, then so would be (%nn)n But if (%nn)n were proper, there would
exist an A-sequence (Gn)n and a > 0 for which (, € 1_yq(A)H (n € N),
limy— |G = 200 || < 1/2 and limy,—.q, || AG, — nn|| < 1/2 hold. Let ng € N be
such that ng > |a|. Then, for n > no, n, € 1 (A)H, s0 0y, L Cn. Thus

1
47
which is a contradiction. Thus (%nn)n, whence (£),)n, is not proper. Note also that

(Mn)w is perpendicular to H(A) and, in particular, (AE))., ¢ H(A). To see this,
let (§,)n be an A-sequence such that (A&,,)y, is bounded. Then

| Jim (1, €n)] = [ lim (10, (A = 8) 7 (A +0)n)|

. 1
< lim -
n—w |n + i

lim ||AC, — 77nH2 = lim ”ACnHQ +1<
n—w n—w

(A + i)&nll = 0.

Thus (n,)w € 24 = H(A)L.
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