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Abstract. Given a stationary sequence {Xk}k∈Z, non-uniform bounds
for the normal approximation in the Kolmogorov metric are established. The
underlying weak dependence assumption includes many popular linear and
nonlinear time series from the literature, such as ARMA or GARCH models.
Depending on the number of moments p, typical bounds in this context are
of the size O(mp−1n−p/2+1), where we often find that m = mn = log n.
In our setup, we can essentially improve upon this rate by the factor m−p/2,
yielding a bound of O(mp/2−1n−p/2+1). Among other things, this allows
us to recover a result from the literature, which is due to Ibragimov.
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1. INTRODUCTION

Let {Xk}k∈Z be a zero mean process such that E[X2
k ] <∞. Further, we in-

troduce the partial sum Sn =
∑n

k=1Xk and its variance B2
n = Var[Sn]. A very

important issue in probability theory and statistics is whether the central limit the-
orem holds or not, i.e., whether we have

lim
n→∞
|P (Sn ¬ xBn)− Φ(x)| = 0,(1.1)

where Φ(x) denotes the standard normal distribution function. Going one step fur-
ther, we can also ask ourselves about the possible rate of convergence in (1.1),
more precisely, if for some explicit, increasing sequence rn →∞ we have

lim
n→∞

d(PSn/Bn
, PZ) rn <∞,(1.2)

where d(·, ·) is some probability metric, Z follows a standard normal distribution,
and PX denotes the probability measure induced by the random variable X . This
question has been addressed under numerous different setups with respect to the
metric and underlying structure of the sequence {Xk}k∈Z. Perhaps one of the most
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popular metrics is the Kolmogorov (uniform) metric given as

sup
x∈R

∆n(x) := sup
x∈R
|P (Sn ¬ xBn)− Φ(x)| as n→∞.(1.3)

In the case of a more difficult non-uniform analogue, we consider the error

∆n(x) := |P (Sn ¬ xBn)− Φ(x)|,(1.4)

and we are interested in bounds of the form λn(1 + |x|)−p, p ∈ (2, 3], with λn =
O(1) as n→∞. Note that we always have the relation

sup
x∈R

∆n(x) = O(λn),

hence a bound for the non-uniform metric always gives a bound for the uniform
metric. Particularly, the latter has been studied extensively in the literature under
many different dependence assumptions. A common way to measure dependence
is in terms of various mixing conditions. In the case of the uniform metric, Rio [30]
showed that it is possible to obtain a rate of O(

√
n) in (1.3) under certain mixing

assumptions, given a bounded support of the underlying sequence {Xk}k∈Z (see
also Bolthausen [7] for martingale difference sequences). Given more general as-
sumptions such as α-mixing (see [10] for definitions), Tikhomirov [31] obtained
a rate of O

(
(log n)2n−1/2

)
, provided that the underlying third moments exist (see

also Bentkus et al. [4]). For related results in general Hilbert spaces, we refer to
Bentkus [3] and the references therein. We remark that in this case, even consid-
ering linear processes results in a nonlinear nature; see, for instance, El Mach-
kouri [15]. In contrast to the previously mentioned results, Tikhomirov [31] also
obtained the rate O

(
(log n)2n−1/2

)
in the more difficult case of the non-uniform

metric. Similarly, Hörmann [19] obtained rates of the form O
(
(mn)

2n−1/2
)

un-
der the notion of mn-approximability in ∥ · ∥p (see Definition 1.1 for details) both
for the uniform and non-uniform metric. This weak dependence concept covers a
wide range of very popular time series in the literature, such as ARCH, GARCH
and many other nonlinear processes (cf. [22], [29], [32]). In particular, it contains
examples of time series that are known to be not α-mixing (cf. [1]). Interestingly,
this concept is also applicable in more number theoretic settings, see Ibragimov
[20], Hörmann [19] and Example 2.3 below. To be more specific, let us introduce
the notion of mn-approximability in ∥ · ∥p:

DEFINITION 1.1. Let p>0, and put ∥ · ∥p=E[| · |p]1/p. Consider the sequence
{mn} of non-decreasing natural numbers. The process {Xk}k∈Z is called mn-
approximable in ∥ · ∥p of size an if there exist mn-dependent sequences {Xkm}k∈Z,
m = 1, 2, . . . , such that

n∑
k=1

∥Xk −Xkmn∥p = O(an).

We will abbreviate this with {Xk} ∈W(L2, {mn}, {an}).
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A common method in the literature is to approximate Sn with Snm = X1m +
. . . + Xnm, and then apply various blocking and truncation arguments to infer
the result to relegate the problem to the i.i.d. case. This method has been used
by Tikhomirov [31], Bentkus et al. [4] and many other. Hörmann [19] directly
refers to the literature for this case, and concentrates on the error induced by the
m-approximation. In contrast, our focus lies on controlling the error ∆n(x) for
m-dependent sequences. We will assume that the sequence {Xk}k∈Z satisfies a
weak dependence assumption that is related to the concept of mn-approximability.
By exploiting the weak dependence within our m-dependent approximating se-
quences Xkm (which will be denoted by Y

(¬m)
k ), it is possible to establish a rate

of O
(
(mn)

1/2n−1/2
)

in (1.3) given p = 3 moments, which is an improvement by

the factor m−3/2n . Note that in the case of many time series such as GARCH and
ARMA models, this results in an ultimate bound of O

(
(log n)1/2n−1/2

)
in (1.3),

see Corollary 2.3 and the following discussion.
The remainder of this paper is organised as follows. In Section 2, the

main results together with some examples are presented. The proofs are given in
Section 3.

2. DEPENDENCE CONDITION AND MAIN RESULTS

Let {ϵk}k∈Z ∈ RZ be a sequence of zero mean i.i.d. random variables, and
introduce the filtration Fk = σ(ϵj , j ¬ k). In the sequel, we will consider the se-
quence of zero mean random variables Xk = g(ϵk, ϵk−1, . . .), k ­ 1, where g is
a measurable function such that Xk are proper random variables. Note that this
implies that {Xk}k­1 is stationary and ergodic. For convenience, we will also
write Xk = g(ξk) with ξk = (ϵk, ϵk−1, . . .). The class of processes that fits into
this framework is large, and contains a variety of linear and nonlinear processes in-
cluding ARCH, GARCH and related processes; see, for instance, [22], [29], [32].
A very nice feature of the representation given above is that it allows us to give
simple, yet very efficient and general dependence conditions. Following [33], let
{ϵ′k}k∈Z be an independent copy of {ϵk}k∈Z on the same probability space, and
define the ‘filters’ ξ(m,′)

k , ξ(m,∗)
k as

ξ
(m,′)
k = (ϵk, ϵk−1, . . . , ϵ

′
k−m, ϵk−m−1, . . .)

and
ξ
(m,∗)
k = (ϵk, ϵk−1, . . . , ϵk−m, ϵ′k−m−1, . . .).

We put
ξ′k = ξ

(k,′)
k = (ϵk, ϵk−1, . . . , ϵ

′
0, ϵ−1, . . .)

and
ξ∗k = ξ

(k,∗)
k = (ϵk, ϵk−1, . . . , ϵ0, ϵ

′
−1, . . .).
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By analogy, we put X(m,′)
k = g(ξ

(m,′)
k ) and X

(m,∗)
k = g(ξ

(m,∗)
k ); in particular, we

have X ′k = X
(k,′)
k and X∗k = X

(k,∗)
k .

As a dependence measure, one may now consider the quantities ∥Xk −X ′k∥p
or ∥Xk − X∗k∥p, p ­ 1. Dependence conditions of this type are often quite gen-
eral and easy to verify in many cases; see, for instance, [14], [34] and Examples
2.1 and 2.3 below. The main results will be formulated in terms of the following
assumptions.

ASSUMPTION 2.1. The sequence {Xk}k∈Z can be represented as {g(ξk)}k∈Z
for some measurable function g(·) and satisfies the following conditions for
p ∈ (2, 3]:

(i) E[Xk] = 0,

(ii)
∑∞

k=1 ∥Xk −X ′k∥p <∞,

(iii) σ2 =
∑∞

k=−∞ E[XkX0] > 0.

We are now ready to formulate the main results.

THEOREM 2.1. Let the Assumption 2.1 be satisfied and assume, in addition,
that mn is chosen such that n

∑∞
k=mn

∥Xk − X ′k∥2p = O(1). Then there exists a
finite, absolute constant C0 > 0 such that

∆n(x) ¬ C0(1 + |x|)−p
(
σ−p

(
mn

n

)p/2−1
+

(
− log(ep,n,mn)

)(p+1)/2
ep/(p+1)
p,n,mn

)
,

where e2p,n,mn
= O

(
σ−2n

∑∞
k=mn

∥Xk −X ′k∥2p
)
.

As can be seen from the above bound, this can be improved by balancing
(optimising) the two error terms. By imposing additional conditions on the rate of
decay of ∥Xk − X ′k∥p, we get more compact expressions. We will first consider
the case where we have an algebraic rate of decay, i.e., ∥Xk −X ′k∥p = O(k−α).

COROLLARY 2.1. Let the assumptions of Theorem 2.1 be satisfied. Assume, in
addition, that ∥Xk −X ′k∥p = O(k−α), α > 1. Then there exists a finite, absolute
constant C0 > 0 such that

sup
x∈R

∆n(x) ¬ C0(1 + |x|)−pσ−pnr(α,p)

(
1 +

1

2(α− 1)
(log n)(p+1)/2

)
,

where

r(α, p) =
p(p− 2)(1− α)

p(2α+ p− 2)− 2
< 0.

Note that limα→∞ r(α, p) = −p/2 + 1, which is the optimal bound and cor-
responds to the case where {Xk}k∈Z constitutes an i.i.d. sequence. By imposing a
stronger (exponential) rate of decay, we get the following result.
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COROLLARY 2.2. Let the assumptions of Theorem 2.1 be satisfied. Assume,
in addition, that ∥Xk − X ′k∥p = O(ρ−k), 0 < ρ < 1. Then there exists a finite,
absolute constant C0 > 0 such that

∆n(x) ¬ C0(1 + |x|)−pσ−p
(
log n

n

)p/2−1
.

Note that if we have p = 3 moments, then we obtain a convergence rate of
O
(√

log nn−1/2
)

under a very general dependence condition, which improves
upon the results in [31] and [19] (in both cases O

(
(log n)2n−1/2

)
was obtained).

Let us also mention that, by imposing stronger rates of decay (e.g., ∥Xk −X ′k∥p =
O(e−kγ ), γ > 1), faster rates can be obtained.

As already mentioned, an estimate for the non-uniform metric always implies
a bound for the uniform metric. However, more careful calculations give the fol-
lowing slightly improved result in case of the uniform metric.

THEOREM 2.2. Let the Assumption 2.1 be satisfied and assume, in addition,
that mn is chosen such that n

∑∞
k=mn

∥Xk − X ′k∥2p = O(1). Then there exists a
finite, absolute constant C0 > 0 such that

sup
x∈R
|∆n(x)| ¬ C0σ

−p
(
mn

n

)p/2−1
+ 2ep/(p+1)

p,n,mn
,

where e2p,n,mn
= O

(
σ−2n

∑∞
k=mn

∥Xk −X ′k∥2p
)
.

As before in Corollaries 2.1 and 2.2, one can derive more explicit results by
imposing conditions on the decay rate of ∥Xk −X ′k∥p.

COROLLARY 2.3. Let the assumptions of Theorem 2.2 be satisfied. Assume, in
addition, that ∥Xk −X ′k∥p = O(k−α), α > 1. Then there exists a finite, absolute
constant C0 > 0 such that

sup
x∈R

∆n(x) ¬ C0(1 + |x|)−pσ−pnr(α,p),

where

r(α, p) =
p(p− 2)(1− α)

p(2α+ p− 2)− 2
< 0.

In case of exponential decay, the same result as in Corollary 2.2 is obtained.
As already mentioned, our setup includes many popular time series that are

used for modelling in many different fields. To highlight this fact, we will briefly
discuss some prominent examples from the literature.

EXAMPLE 2.1 (GARCH(p, q) sequences). Let {Xk}k∈Z be a GARCH(p, q)
sequence given by the relations

Xk = ϵkLk,
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where {ϵk}k∈Z is a zero mean i.i.d. sequence and

L2
k = µ+ α1L

2
k−1 + . . .+ αpL

2
k−p + β1X

2
k−1 + . . .+ βqX

2
k−q

with µ, α1, . . . , αp, β1, . . . , βq ∈ R. A very important quantity in this context is

γC =
r∑

i=1

∥αi + βiϵ
2
i ∥2 with r = max{p, q},(2.1)

where we replace possible undefined αi, βi with zero. If γC < 1, then {Xk}k∈Z is
stationary (cf. [9], [8]). In particular, it was shown in [5] that {Xk}k∈Z may then
be represented as

Xk =
√
µϵk

(
1 +

∞∑
n=1

∑
1¬l1,...,ln¬r

n∏
i=1

(αli + βliϵ
2
j−l1−...−li)

)1/2
.(2.2)

Using this representation and the fact that |x − y|p ¬ |x2 − y2|p/2 for x, y ­ 0,
p ­ 1, one can follow the proof of Theorem 4.2 in [2] to show that

∥Xk −X ′k∥p = O(ρ−k), where 0 < ρ < 1.(2.3)

Hence an application of Corollary 2.2 yields a rate ofO
(
(log n)p/2−1n−p/2+1

)
for

p ∈ (2, 3].

EXAMPLE 2.2 (Iterated random functions). Let {Xk}k∈Z be defined via the
recursion Xk = f(Xk−1, ϵk). Such a construction is often referred to as iterated
random functions, see [13] for a general overview. Let

Lϵ = sup
x̸=y

|f(x, ϵ)− f(y, ϵ)|
|x− y|

(2.4)

be the Lipschitz coefficient. If E[Lϵ] < 1 and ∥f(x0, ϵ)∥p <∞ for some x0, then
it follows that

∥Xk −X ′k∥p = O(ρ−k), where 0 < ρ < 1,(2.5)

see, e.g., [35]. In particular, Xk can be presented as Xk = M(ϵk, ϵk−1, . . .) for
some measurable function M . As a particular example, consider the function
f(x, ϵ) = 1/(1 + x2) + ϵ. In this case, since

E[Lϵ] = sup
x̸=y

|x+ y|
(1 + x2)(1 + y2)

< 1,

the above conditions are clearly met. We may thus apply Corollary 2.2 to obtain a
rate of O

(
(log n)p/2−1n−p/2+1

)
for p ∈ (2, 3].
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EXAMPLE 2.3 (Sums of the form
∑

f(ω2k)). For the exposition of this par-
ticular example, we will borrow from the related discussion in [19]. Let f be a
function defined on the unit interval [0, 1], such that

1∫
0

f(ω)dω = 0 and
1∫
0

|f(ω)|pdω <∞, p ∈ (2, 3].

For x ∈ R+, let f̂(x) = f(x − ⌊x⌋), i.e., f̂ is the one-periodic extension to the
positive real line. Consider now the partial sum Sn =

∑n
k=1 f(2

kω) =
∑n

k=1 Lk.
Note that in this case we may write Lk as

Lk = f
( ∞∑
j=1

ζk+j2
−j),

where {ζk}k∈Z is a sequence of i.i.d. random variables, ζk taking values zero and
one with probability 1/2. This representation originates from a binary expansion,
see [19] and the next references. Quantity Sn has been studied by many authors,
see, for instance, [20], [25]. For our setup, the result in [20] is of particular interest.
Introduce the modulus of continuity ωf (δ) as

ωf (δ) = sup
0¬s,t¬1,
|s−t|<δ

|f(t)− f(s)|, where 0 < δ < 1.

Provided that ωf (h) ¬ consthβ , β > 0, Ibramigov [20] showed that

sup
x∈R

∆n(x) ¬ C0σ
−p

(
log n

n

)p/2−1
.(2.6)

A priori, the sequence {Lk}k∈Z does not directly fit into our framework. However,
this can be achieved by a simple time flip. Define the function Tn(i) = n− i+ 1
for i ∈ {n, n− 1, . . .}, and let ϵk = ζTn(k). Then we may write

LTn(k) = Xk = f
( ∞∑
j=1

ϵk−j · 2−j
)
.

Note that we have to perform this time flip for every n ∈ N, which however has no
impact on the applicability of our results. Using the same arguments as in Propo-
sition 4.6 in [19], we find that for p ∈ (2, 3]

∥Xk −X ′k∥p = O
(
ωf (2

−k)
)
= O(2−βk),

hence the conditions of Corollary 2.2 are satisfied. Applying Corollary 2.2, we thus
obtain a non-uniform version of (2.6), which in particular yields Ibragimov’s result
in [20]. Note that in the case of p = 3 Ladokhin and Moskvin [24] have established
a similar (slightly weaker) result.
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3. PROOFS

Let {Uk}k∈Z be a stationary process adapted to the filtration Fk. Then we
define the projection operator Pk(Ui) as

Pk(Ui) = E(Ui | Fk)− E(Ui | Fk−1), k ­ 1, i ∈ Z.

Many of the following results are (implicitly) based on martingale approximations
for partial sums. Various different approximating martingale sequences have been
proposed in the literature, see, for instance, [18], [21], [27] and the references
therein. In our setting, the following representation via martingale differences (pro-
jections) is useful (see [16], [34]):

Xk =
k∑

i=−∞
Pi(Xk) for all k ∈ Z.

As already outlined in the introduction, another essential tool will be approxima-
tions with mn-dependent random variables. To this end, we introduce the following
notation. Let {ϵk}k∈Z ∈ RZ be a sequence of zero mean i.i.d. random variables.
Recall that Fk = σ(ϵj , j ¬ k), and define, in addition, the σ-algebra

Fk
k−m = σ(ϵj , k −m ¬ j ¬ k)(3.1)

and the random variables

Y
(¬m)
k = E[Xk|Fk

k−m], Y
(>m)
k = Xk − Y

(¬m)
k .(3.2)

Let ηj,m = m−1/2
∑(j+1)m∧n

i=jm+1 Y
(¬m)
i , where we point out that {ηj,m} is a two-

dependent sequence. Let N = ⌈n/m⌉ + 1 and put S(¬m)
N = N−1/2

∑N
j=1 ηj,m.

In addition, in order to avoid any notational difficulties, we also put ηj,m = 0 for
j > N .

REMARK 3.1. We will frequently make use of the following property. It fol-
lows that (cf. Lemma 3.84 in [21])

Pi+h(Xk+h)
d
= Pi(Xk), h ∈ Z.

This implies, in particular, ∥Pi+h(Xk+h)∥p = ∥Pi(Xk)∥p, p ­ 1.

Throughout the proofs, C > 0 denotes an absolute constant that may vary
from expression to expression. For convenience, we will also write m instead of
mn, thereby dropping the index n.

LEMMA 3.1. Let the Assumption 2.1 be satisfied. Then

∥Pi(Y (¬m)
k )∥p ¬ ∥Xk −X

(i,′)
k ∥p and ∥ηj,m∥p = O(1).
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P r o o f. We have

Pi(Y (¬m)
k ) = E[X(m,∗)

k |Fi]− E[X(m,∗)
k |Fi−1] = E[Xk −X

(i,′)
k |F

k
k−m].

Hence Jensen’s inequality gives

∥Pi(Y (¬m)
k )∥p ¬ ∥Xk −X

(i,′)
k ∥p.

Using this inequality, applying Theorem 1 of [34] and the stationarity of {Xk}k∈Z,
we obtain

∥ηj,m∥p ¬ C(p)
∞∑
k=0

∥Xk −X ′k∥p = O(1). �(3.3)

LEMMA 3.2. Let the Assumption 2.1 be satisfied. Then

∥Y (>m)
k ∥2p ¬ C

∞∑
k=m

∥Xk −X ′k∥2p.(3.4)

P r o o f. The lemma follows from combining Proposition 3 in [16] and Theo-
rem 1 in [33]. �

LEMMA 3.3. Let the Assumption 2.1 be satisfied. Then σ2<∞, n−1B2
n→σ2

and Var[ηj,m]→ σ2 as m increases.

P r o o f. The first and second claim follow by proceeding as in [23]. The third
claim follows by employing additionally computations as in the proof of Lem-
ma 3.4 given below. �

LEMMA 3.4. Let the Assumption 2.1 be satisfied. Then for all j ∈ N we have

lim
n→∞
|E[ηj,mηj+1,m]| = 0.

P r o o f. Without loss of generality, we can assume that j = 1. We have

mE[η1,mη2,m] =
m∑
k=1

k∑
i=−∞

2m∑
l=m+1

l∑
j=−∞

E[Pi(Y (¬m)
k )Pj(Y (¬m)

l )].

By orthogonality of the martingale difference sequences Pi(Y (¬m)
k ), Pj(Y (¬m)

l )
and an application of the Cauchy–Schwarz inequality, we get

mE[η1,mη2,m] ¬
m∑
k=1

k∑
i=−∞

2m∑
l=m+1

∥Pi(Y (¬m)
k )∥2∥Pi(Y (¬m)

l )∥2.
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Applying Lemma 3.1 and shifting the indices (h = k − j), we see that the above
is bounded by

m∑
k=1

2m∑
l=m+1

∞∑
h=0

∥Xh −X ′h∥2∥Xl+h−k −X ′l+h−k∥2

¬
m∑
k=1

∞∑
l=m+1

∞∑
h=0

∥Xh −X ′h∥2∥Xl−k −X ′l−k∥2.

Since
∑∞

k=0 ∥Xk − X ′k∥2 < ∞, another shift in the indices implies that this is
further bounded by

C
m∑
k=1

∞∑
l=0

∥Xl−k+m −X ′l−k+m∥2 ¬ C
∞∑
l=0

(m ∧ l + 1)∥Xl −X ′l∥2.

We thus obtain

E[η1,mη2,m] ¬ Cm−1
∞∑
l=0

(m ∧ l + 1)∥Xl −X ′l∥2 = O(1) as m increases,

which completes the proof. �

The following two lemmas are special cases of Theorem 2.6 in [11].

LEMMA 3.5. Let Z1, Z2, . . . , Zn be m-dependent random variables with zero
mean and finite ∥Zi∥p for 2 < p ¬ 3. Then

sup
x∈R
|∆n(x)| ¬ 75(10m+ 1)p−1B−pn

n∑
i=1

∥Zi∥pp.

LEMMA 3.6. Let Z1, Z2, . . . , Zn be m-dependent random variables with zero
mean and finite ∥Zi∥p for 2 < p ¬ 3. Then there exists an absolute constant
c0 > 0 such that

|∆n(x)| ¬ c0(1 + |x|)−pmp−1B−pn

n∑
i=1

∥Zi∥pp.

In the sequel, we require the notion of m-approximability

ep,n,m = B−1n

n∑
k=1

∥Xk −Xkm∥p,(3.5)

and the following preliminary estimate, which is Lemma 5.1 in [19].
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LEMMA 3.7. For every δ > 0, every m,n ­ 1 and every x ∈ R the following
estimate holds:

|P (Sn ¬ xBn)− Φ(x)| ¬ A0(x, δ) +A1(m,n, δ)

+ max{A2(m,n, x, δ) +A3(m,n, x, δ), A4(m,n, x, δ) +A5(m,n, x, δ)},

where

A0(x, δ) = |Φ(x)− Φ(x+ δ)|, A1(m,n, δ) = P (|Sn − Snm| ­ δBn),

A2(m,n, x, δ) =
∣∣P (

Snm ¬ (x+ δ)Bn

)
− Φ

(
(x+ δ)Bn/Bnm

)∣∣,
A3(m,n, x, δ) =

∣∣Φ((x+ δ)Bn/Bnm

)
− Φ(x/Bn)

∣∣,
A4(m,n, x, δ) = A2(m,n, x,−δ) and A5(m,n, x, δ) = A3(m,n, x,−δ).

We are now in a position to prove the main results. We will first deal with
Theorem 2.1.

P r o o f o f T h e o r e m 2.1. By Lemma 3.7, it suffices to bound the quan-
tities A0(x, δ), A1(m,n, δ), A2(m,n, x, δ) and A3(m,n, x, δ), where we set

δ = δn(x) = ep/(p+1)
p,n,mn

(1 + |x|).

Recall the definition of {ηj,m}j∈N and S
(¬m)
N , and that {ηj,m}j∈N constitutes a

two-dependent sequence. Let Xkm = Y
(¬m)
k be the approximating m-dependent

sequence. Then Snm =
√
nS

(¬m)
N , and an application of Lemma 3.6 yields

A2(m,n, x, δ) ¬ c0(1 + |x|)−p · 2p−1Var(S(¬m)
N )−p/2

N∑
j=1

∥ηj,m∥pp.

It follows from Lemma 3.1 that
∑N

j=1 ∥ηj,m∥
p
p=O(N). Using the two-dependence

of {ηj,m}j∈N, we also have Var(S(¬m)
N ) ∼

∑N
j=1 ∥ηj,m∥

2
2 +

∑N
j=1 E[ηj,mηj+1,m].

Lemma 3.4 now gives E[ηj,mηj+1,m] = O(1) as m increases, and hence Lem-
ma 3.3 implies

Var(S(¬m)
N ) = N

(
σ2 + O(1)

)
.(3.6)

Piecing all these facts together, we deduce that

A2(m,n, x, δ) ¬ (1 + |x|)−pO
(
(Nσ2)−p/2N

)
(3.7)

= (1 + |x|)−pO
(
σ−p

(
m

n

)p/2−1)
.
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Now, since B2
n = O(σ2n) by Lemma 3.3, it follows from Lemma 3.2 and the

assumptions that

e2p,n,m ¬ Cn
∞∑

k=m

∥Xk −X ′k∥2p = O(1),

and we conclude that {Xk}k∈Z ∈W(L2, {mn}, {Bn}). For the remaining parts
A0(x, δ), A1(m,n, δ) and A3(m,n, x, δ), one may thus proceed exactly as in the
proof of Theorem 3.2 in [19]. This implies that the total remaining error is of the
magnitude

O
((
− log(ep,n,mn)

)(p+1)/2
ep/(p+1)
p,n,mn

)
.

Hence, piecing everything together, we obtain the claim. �

P r o o f o f T h e o r e m 2.2. The proof of Theorem 2.2 requires similar ar-
guments. Setting

δ = δn(x) = ep/(p+1)
p,n,mn

,

using the bound in (3.7) and the fact that {Xk}k∈Z ∈W(L2, {mn}, {Bn}), one
may proceed as in the proof of Theorem 3.1 in [19]. �

P r o o f o f C o r o l l a r y 2.1. Setting mn = nq, q > 0, it suffices to evalu-
ate the bound in Theorem 2.1. Then, by a simple optimisation, we obtain

q =
p2 − 2

2(α− 1)p+ p2 + 2
,

which implies the result. �

P r o o f o f C o r o l l a r y 2.2. It again suffices to evaluate the bound in The-
orem 2.2. Let mn = H logn. Then for sufficiently large H > 0 it follows that∑∞

k=mn
∥Xk − X ′k∥p = O(n−(1+2/p)). This implies that ep/(p+1)

p,n,m = O(n−1/2),
hence the claim. �

P r o o f o f C o r o l l a r y 2.3. We may proceed as in the proof of Corolla-
ry 2.2, using Theorem 2.1. �
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